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1. Introduction

By virtue of their statistical characteristics, living systems and living organ-
isms have in common the very general property of variation. This phenomenon
occurs at both inter- and intraorganism levels. Several authors have emphasized
the statistical character of the activity of nervous fibers (Pecher [36], [37]), of
nerve-muscle junctions (del Castillo and Katz [5]), and of the nervous system
(McCullough and Pitts [32], Rosenblatt [38]), to give a small biased sample of
the literature.

This paper considers four other physiological systems:
1. Intrarenal system variation in glucose resorption for increasing load of gly-

cemia when the rate of glucosuria is studied.
2. Intravisual system variation in time for the recovery of visual capacity

after a controlled dazzling.
3. Intracardiac variation in time of ventricular response on complete arhyth-

mia by auricular fibrillation.
4. Interorganism variation in survival time after application of an acaricide

to a population of susceptibles. This is an interesting case of a mortality curve.
The first two situations have in common the morphologically and physio-

logically proven existence of a great number of anatomical and functional units,
the nephrons for the kidney and the retinons (rods and cones) for the retina.
The fourth situation corresponds to a group of distinct individuals submitted

at time zero to the action of an acaricide. On the hypothesis of independent re-
action to the specific stimulus in each of the three situations, it is reasonable to
set up a simple stochastic model in which the intensity of the process may be
guessed from experimental curves giving the mean evolution of the system, or
to consider the situation from the point of view of waiting or holding times.

After having shown the adequacy of model to describe, or rather exhibit the
phenomena, the important statistical problem should be raised of estimation of
the parameters of the stochastic model. This point is hardly considered here.

2. Evolution of the glucosuria when the glycemic load is increased

2.1. The facts. In physiological conditions, when the glycemic load is about
1 mg/ml, no glucosuria is observed. If the glycemic load x is increased by in-
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gestion of intravenous perfusion of glucose, glucosuria appears at a mean thresh-
old level of 1.2 mg/ml, the so-called Claude Bernard threshold labeled xB. For
an increasing glycemic load, the rate of glucose urinary elimination follows curve
3 of figure 1. The first part xBM increases with increasing slope tending to the
slope of the straight line MF. Figure 1 was constructed from graphs in Govaerts
and Muller [20], Govaerts [13], and Smith [40], pp. 93-95.

2.2. Physiolcgical model. Microscopical and physiological studies have shown
that the mammalian kidney consists of a great number of elementary units,
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FIGURE 1

Glucose resorption as a function of x, the plasmatic glucose concentration.
Curve 1: G(x), glucose filtration rate in the glomerule, in mg/min,

Curves 2 and 2': R(x), tubular resorption rate of glucose, in mg/min,
Curves 3 and 3': U(x) urinary excretion rate of glucose, in mg/min.
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FIGURE 2

Mammalian kidney structure for glucose filtration and resorption.

the nephrons, whose relevant structure for glucose filtration and resorption is
sketched in figure 2.
This paper considers only the glucose resorption, using the notation
x: plasmatic glucose concentration, in mg/ml
G(x): glucose filtration rate in the glomerule, in mg/min
R(x): tubular resorption rate of glucose, in mg/min
U(x): urinary excretion rate of glucose, in mg/min.
Experimentally, we observe that

(1) G(x) = gx,

where g ml/min is the glomerule filtration rate which can be determined by
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administration of creatinine or sodium thiosulfate. In the absence of secretion,
the relation of conservation of the glucose mass at every plasmatic load is written
(2) G(x) = R(x) + U(x),
which is an analogue of the Kirchhoff law in electricity. For x < XB we have
U(x) = 0, so that G(x) = R(x). For x > XB, the observed U(x) follows curve 3
in figure 1 (Govaerts and Muller [20]; Govaerts [13]-[17]; Govaerts and
Lambert [18]).
The glomerule filtration rate G(x) is known from creatinine clearance. Thus it

is easy to construct this rate, by differencing curve 2 in figure 1, which shows
the progressive failure in resorption. The maximal resorption rate is observed in
NL, for a load XM. For increasing glucose plasmatic loads over N, the urinary
excretion rate U(x) follows a course MF which is parallel to the filtration curve
G(x) with a constant difference.
(3) NL = MT = DR = Tmg mg/min.
The Tmg (Shannon and Fisher [39] and Smith [40]) is the maximal glucose re-
sorption rate, which can be determined experimentally.

2.3. Stochastic modelfor glucose resorption by the mammalian kidney. Two sets
of states have to be considered; they are glycemic loads below the Claude
Bernard threshold XB and over this threshold.

2.3.1. x < XE. The kidney is constructed of a great number N of nephrons
supposed to act independently and fully resorbing glucose under a glucose
plasmatic load x. The organ is said to be in the state S. when n nephrons are
active per unit volume, thus realizing a random spatial process. Let t be the in-
tensity of the process expressed in units (mg/ml)-'.

Using classical notation, we then have (Feller [8]; Hald [22])

(4) P.'(x) = - tPn(x) + WPn_ (x),
(5) PN(W) = -tPo(x).
The initial conditions are
(6) P0(0) = 1, P(0) = 0, n > 1,

whence
(7) PO(x) = e-tz,

(8) Pn(X) = e-txz ( , n _ 0; x > 0.

The mean number of nephrons resorbing per unit volume at load x is

(9) Wx) = {x.
The total number of resorbing nephrons in the kidney is Ntx. In man, N is of
the order 1 X 106 to 1.3 X 106 in nonpathological renal conditions (Hayman and
Johnson [23]). If p mg is the average glucose mass resorbed per nephrQn and
unit time, the total rat of resorption at load x is
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(10) R(x) = Nptx.
Comparing (1) and (10), it is possible to write

(11) g = Npt.
This relation establishes a link between the experimental filtration value

g ml/min and the quantity Npt, obtained from the Poisson model and character-
izing the integral resorption of the filtered substance. In physical units, p is ex-
pressed in mg/min and t in (mg/ml)-'. Since N is dimensionless, the product
Npt is expressed in units (mg/min) X (ml/mg) or ml/min, or in the same phys-
ical units as those of the filtration rate g. From (11) another interesting relation
holds, namely,

(12) Tmg = Np,

both in units mg/min.
Several authors have shown that Tmg varies little for one individual (see, for

example, Verbanck [41]). As N also is constant, there is a strong argument for
the practical constancy of p mg/(nephron X min).
The proportion of elementary volumes in which no nephron is acting is

given by (7). For a load x increasing from 0 to the Claude Bernard threshold
XB, we find that Po(x), the probability of the state SO of the kidney in which no
nephron is acting, decreases exponentially from 1 to exp (-(XB). Conversely,
the probability of a state different from SO, that is, of finding an elementary vol-
ume where at least one nephron is acting, increases from 0 to 1 - exp (- xB).

2.3.2. x > XB. Govaerts [13], [14] introduced the concept of "weak" and
"strong" nephrons as well as the unequal functional capacity of resorption of the
nephrons reflected in the shape of the glucose excretion curve by the kidney.
Here we are looking for a probabilistic interpretation of this state of affairs.
When the glucose plasmatic load is increased over XB, there is a progressive

failure in the capacity of resorption of the system of nephrons. We now introduce
the excess of load over the threshold u = x -XB, that is, for u > 0, and imagine
that the probability of finding an elementary area in which a nephron fails to
resorb follows the well-known law of exponential holding times (Feller [8], [9]).
The operational time here is the excess of load u = x -XB.
In analogy with the exposition of Feller ([8], p. 424), for loads greater than

xB, the probability that a nephron still resorbing at load u fails to resorb within
the next load increase du is, up to terms of higher order,

(13) 1-F(u)

provided that F'(u) exists.
Let us consider the particular case of exponential holding excess loads,

(14) F(u) = 1 - e-u > 0,
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where q is in units (mg/ml)-'. The probability (13) becomes

(15) e-u =du du.

If then, a nephron holds an excess load u = x -XB, the probability that the
holding excess load will fail to be resorbed within the next interval du, is j du +
o(du) and independent of what has happened for lower excess loads. Although
not writing in terms of holding times, Fortet ([10], pp. 83-84) describes an anal-
ogous case in terms of conditional probability.
We are assuming, as a first approximation, that p is the same in this glucosuric

set of states as in the aglucosuric set. The glucose mass resorbed per unit time
at excess load u is
(16) R(u) = Np(l - e-1u).
The total mass resorbed at load x > XB is the sum of two terms,

(17) R(x) = NP{XB + Np[l - e-1(-B)].
According to (17), the rate of urinary excretion of glucose over the Claude
Bernard threshold may be written as

(18) U(X - XB) = Np(x - Np,XB - Np[l -e-(-B)]
= Np[t(x - XB) - 1 + e n(xZB)].

When x -X xEwith decreasing values, U(x - XB) -- 0, as is to be expected.
2.3.3. Probabilistic interpretation of the Claude Bernard threshold xB. The

Claude Bernard threshold XB is the transition point from a set of states of ne-
phrons fully resorbing at any glucose load x < XB(according to a Poisson process)
to a set of states when the nephrons resorb an excess load u = x -aB according
to an exponential holding excess load process, which is (Feller [9], p. 412) the
zero term in a Poisson distribution in u, that is, the holding excess load up to
the occurrence of the first failure to resorb.

For x < XB, in the aglucosuric set of states, the intensity of the Poisson process
or the conditional probability of finding any nephron active in resorption is
asymptotically

(19) pn(X) dx dx,
with x in mg/ml and t in (mg/ml)-'. For x > XE, in the glucosuric set of states,
an excess of load u = x -XB is introduced. In this set of states the probability
that a nephron, holding an excess load u = x -XE, will fail to resorb within the
next increment du is asymptotically equal to 17 dx and independent of what
happened for lower excess loads.

2.3.4. Mean threshold of P. Govaerts. Govaerts [13], [14] introduced the con-
cept of mean threshold (seuil moyen), here labeled XG. This concept corresponds
to a physiological model of resorption of a system of nephrons which would fully
resorb for x < XG and which would all stop the resorption of glucose abruptly
for x = XG. On this hypothesis the curve of rate of glucosuria should follow the
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segment OXG and then the straight line 3' (XGMD. ) in figure 1. Conversely,
since the filtration curve 1 is the same, the rate of glucose resorption would
follow the segments OK and KLD. This model is nonstochastic. It is, however,
possible to imagine a stochastic model by putting a Poisson process with intensity
t for x < XG and, for x = XG, putting a fixed and no longer random holding load
at XG-
From figure 1, it is easily seen that

(20) Tmg = UXG.
From (11) and (12) we write

(21) Np = XGNpt.
Thus t in ml/mg equals the inverse of XG in mg/ml.

This relation shows that it is possible to estimate the parameter t of the
random process of resorption in aglucosuric conditions from experimental meas-
urements in the zone MF. From this very necessary experimental procedure, it
is clear that XG will be estimated by extrapolation of a regression curve from
plots of [xi, U(xi)] and will thus be subject to a rather high error of estimation.
Using figure 1 and a property of the exponential we may write

(22) XG = XB +
77

If, then, XB and XG can be estimated with sufficient precision, it should be pos-
sible to estimate the two parameters t and -j involved in the stochastic model
of glucose resorption in the mammalian kidneys following this model. We could
also test the statistical null hypothesis Ho: t = 77 and the biologically equivalent
null hypothesis in the sense of Neyman [35], say 3Co: the functional state of the
mammalian kidney in the glucose resorption is described by one parameter t in-
volved in two distinct processes, namely, a Poisson process below the Claude
Bernard threshold XB and a holding excess glucose load above XB.

Relation (18) gives the equation of the transitory state of the kidney from XB
to the point where the capacity of glucose resorption is exhausted. This point
XE corresponds to the maximum absolute threshold where, for the load XE, prac-
tically all the N nephrons are active in resorbing glucose. According to its very
definition it is not easy to fix XE experimentally, since theoretically it is related
to the value +oc for u = x-XB. Indirect experimental evidence for the expo-
nential holding excess load model could be given in relating XE -XB to 1/in. If,
owing to an extensive set of accurate experimental data, the biometrician has to
look for a more elaborate model (see McKendrick [33], Eggenberger-P6lya [7],
Neyman [34], Consael [4]), the proposed model will in any case be useful be-
cause it provides a "fil d'Ariane" to the physiologist.

2.3.5. Two exanmples. Smith ([39], p. 88; see also his figure 17, p. 87) stated
that the dog is unique in that glomerular activity defined as above is quite uni-
form throughout the kidneys, all nephrons saturating at the same value of plasma
glucose concentration. This is confirmed by Verbanck [41] who deduces the iden-
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tity of the Claude Bernard threshold XB and the Govaert mean threshold XG,
"when these values are determined by experiments where hyperglycemia is
slowly induced."

In our stochastic model this corresponds to the unique Poisson process with
constant intensity tfor 0 < x <XB and to the value 71 X o for the second phase
of exponential holding excess load.

"In man, the glucose titration curve has considerable splay, . . ." (Smith [40],
p. 88). This corresponds to the second phase of exponential holding excess load
characterized by 71 and following the Poisson phase with intensity t. In this case
the difference XG - XB = 1/n is different from zero.
The splay in the tubular resorption in the human kidney is well shown in

Smith ([40], figure 18, p. 92) and its glucosuric rate counterpart (figure 19, p. 95)
is given, following Govaerts, et al. [19]. In his comments on this graph, where L
is our XG, Smith writes that XG iS the "threshold value of the plasnma glucose con-
centration ... at which the renal tubules are nominally just saturated. This
value neglects the splay in the excretion curve which may be large if there is a
wide dispersion in glomerular activity." The stochastic model throws some light
on this point. If the exponential holding excess load process holds, the value
XG -XB corresponds to a fraction 1 - 1/e = 0.63 of tubules failing in glucose
resorption and a fraction 1/e = 0.37 of tubules not yet failed in resorbing glucose.
Moreover, according to Govaerts ([13] p. 50), with a slight modification the
mean threshold XG -XB is the excess load of glycemia for which the reabsorbing
power of all the nephrons would be saturated if this power were equal to the
statistical mean of the actual capacities of the nephrons. This is indeed true in
an exponential model where the frequency function in excess load u = x -XB is
(23) dF(u) = 7e-lu

du

and the expected or mean value of u is

71(24) E(u) = -=xG -xrB

3. Adaptometric curves

The adaptometer of Goldmann-Weekers [11] allows one to register successive
plots of the curve of recovery of light sensibility after a fixed dazzling of five
minutes duration.

3.1. Experimental curves. Let I(t) be the threshold light intensity necessary
to see the test object at the time t of the recovery phase. The adaptometer plots
t against logio I(t), which results in two portions, giving rod and cone response
respectively [1], [6], [24], [25], [26]. The transition point between the two parts
is classically labeled a.

3.2. Biometric reduction of the adaptometric curves. By replotting the experi-
mental points in the coordinate system [log t, log log I(t)], we obtain two straight
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lines of clearly different slopes [12], [29], which are indexes of the functional
state of the rods and the cones, respectively.

3.3. Stochastic model of recovery of luminous sensitivity after controlled dazzling.
After five minutes to of strong illumination the retinons recover gradually. We
say that the retina is in state Sn, for n = 0, 1, 2, * * *, if n retinons per elementary
unit area have recovered their biochemical integrity and functional capacity.
We have shown [30] that it is possible to set up, as a first approximation, a

Poisson model for the recovery of luminous sensitivity of the human retina by
putting as intensity of the process

(25) pN(t) = X dt X dLnt.

(-log log 107
0.8

0.7 -

0.6 _ *0~~~~~~~~~~

co 0.5 _-\

0~~~~~~~~~

0.4 -

0.3 -

0.2 X

I 1 2 2.5 3 3.5

log t
FIGURE 3

Threshold light intensity necessary at time t
to perceive the test object.
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This gives the mean value

(26) ,u(t) = tLn-
to

This mean value provides a good fit of the experimental curves giving
log log I(t) as a function of log t. The slope X is clearly different for the system
of rods and of cones and in these coordinates the transformed point a appears
quite evident (figure 3). In this case, the chronological time t is replaced by an
operational time Lnt/to, a function of the period to of strong illumination of the
retina.

4. Mortality curve of acares submitted to an acaricide action

The evolution of the mortality curve of acares subjected to an acaricide action
[31] may be described by a Poisson model with intensity

(27) p.(t) dt = {t dt = d )
or, more generally,

(28) pn(t) = (tndt = d + 1)
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FIGURE 4

Experimental survival curve.



STOCHASTIC PROCESSES IN PHYSIOLOGY 317

In this case the operational time scale has to be adjusted after the estimation
of n. This kind of model has also been considered by Arley [2].

However, a model in terms of holding time may also be considered.
According to (13) the asymptotic probability that an acare still surviving at

time t will die within the next interval dt, is

dF(t)
1 - F(t)

Experimentally (figure 4) the survival curves from a suggest putting

(30) G(t) = ce-t2/2,2
with c = 1, where t and T are expressed in the same time units.
The mortality curve F(t) is

(31) F(t) = 1 - G(t) = 1 -e-
to which corresponds the unimodal frequency function, defined for t > 0,

(32) 2(t)= e-

Owing to (31) and (32), equation (29) may be written as

(33) ~~~~~~~te-t2/2,2dt __t dt
(33) T2G(t) T2

Thus the asymptotic probability (29) to (33) increases linearly with the time t
but is constant in the operational time (t/T)2. This is the simplest extension of
relation (15). The parameter r may be regarded as an index of sensitivity of the
organisms to the toxic agent.

6. Ventricular activity in case of complete arhythmia by auricular fibrillation

Macrez [27] has given an analysis of the frequency curve of the interval RR
of the ECG between two successive ventricular beats in case of complete arhyth-
mia by auricular fibrillation. This interval is a random variable whose frequency
curve is unimodal and positively skew. The author uses a concept of "imminence"
closely related to (13) and (29). Two histograms of about 1000 intervals RR have
been fitted by a frequency function of the type (32). This corresponds to a linear
relation such as (33) in the initial portion of the distribution. The operational
time is u = t - to, where to (the refractory period of the ventricle) is about
0.40 sec, corresponding to a rate of 150 beats/min. A parameter r corresponding
to 1/T of (33) is regarded as an index of ventricular receptivity and is to be added
to the classical characteristics of heart activity. The cases of complete ventricular
arhythmia by auricular fibrillation, when the imminence increases linearly with
u = t - to, could be regarded as typical, thus giving an objective basis for classi-
fication and modalistics of regularization.

The author remarks also that the observed distribution of the RR intervals
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may be realized by a ventricle submitted to random impulses which would give
a contraction after having received a fixed number of impulses (five impulses in
this case).

This example shows the interest of the registration of intraindividual variation
of response with time. Its analysis may help to give a deep insight into the deter-
minism of physiological phenomena, which is the aim of the biometrical analysis
[3], [28].

6. Conclusions

This paper is intended to show the interest of a probabilistic approach in the
biometrical analysis of some physiological phenomena. In such widely different
fields as nervous, renal, visual, cardiac, and toxicological physiology, the concept
of random phenomena appears to be fundamental and a few simple probabilistic
models may describe these phenomena in terms of independent units working
randomly in space or time. One important feature of these models is the intro-
duction of parameters with physiological meaning which may give indexes of
physiological state or activity.

However, it may happen that the phenoamena may be represented by two or
perhaps more probabilistic models. The first case is the well-known contagious
process, discussed, for example, in [8], where the biologically different schemes of
Eggenberger and P6lya [7] on the one hand and of Greenwood and Yule [21]
on the other lead to the same probability distribution.
A second example is given with the acare mortality curve where the observed

survival curve may be seen as generated by a Poisson process with intensity
given by (27) or in relation with the optics of holding times with an imminence
of death proportional to t, or constant in operational time (t/T)2.
A third example refers to the ventricular response interval RR whose distribu-

tion corresponds to a similar concept of imminence or to a Gamma distribution
with parameter n = 5 [27].

Finally, due to the fact that the argument of the exponentials is dimensionless,
the simple models introduced in this paper contain dimensionless variables which
allow a juxtaposition of experimental results obtained in different conditions,
provided that the statistical problem of estimation of the relevant parameter
has been solved previously.
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