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1. Introduction

Assume two parallel line segments of indefinite length, one of which is fixed
and the other of which is movable, moving in a linear direction, parallel to the
fixed line. Along the fixed line there are special points equally spaced which we
shall denote as positions. Similarly, on the moving line, there exist equally spaced
points which we denote as sites. A site may be in either of two states which we
refer to as vacant or filled. After a site's initial state, which is determined, it can
change states only after interactions with the positions along the fixed line in the
following manner. A site which is vacant can become filled at certain positions.
Call these "load" positions. Similarly, a site which is filled can become vacant
at the remaining positions. We denote these as "release" positions. We assume
an arbitrary fixed starting position on the fixed line with the positions numbered
consecutively beyond the starting position and, further, the release and load
positions alternate so that the odd numbered positions are release positions and
the even numbered ones are load positions. Then, under certain assumptions
stated in the next section, the question posed is the probability a site will be filled
(or vacant) after a transit of n positions. The model will then be extended to the
case where a site can be in any one of (m + 1) states and the analogous question
posed is the probability the site will be empty, filled or in any arbitrary state j
after a transit of n positions.
The model given above is related to the following theory concerning the mech-

anism of muscular contraction as discussed by Podolsky [1]. A muscle fibril, as
seen under the electron microscope, consists of alternating thick and thin fila-
ments. It is assumed that sites exist along the two kinds of filaments at which
certain chemical interactions occur at the molecular level. The sites on the thin
filaments are capable of binding certain molecules and when a site containing
the molecule approaches a site on the thick filament an interaction (splitting
off of the molecule) may or may not take place.

Observations on the living muscle suggest that during shortening there is
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relative motion of the two filaments. In our model, we have introduced an ideal-
ization by assuming that only the thin filament moves (the moving line) and
that the thick filament is rigid (the fixed line). Further, Podolsky assumes that
the positions on the thick filament are only release positions and that the site
on the thin filament picks up (becomes filled) a molecule from the medium
between the two filaments at any point between two positions. For simplicity,
we have placed this binding action at a fixed point between two positions and
also call this point a position.

2. Assumptions and notation

Letting "event" refer to either the occurrence or nonoccurrence of an inter-
action, we make the following assumptions with regard to the process:

(a) an event between a site and a position is independent of any previous
events involving that site and position,

(b) only one event can occur between a specific site and a specific position,
(c) the moving line moves with uniform velocity past the fixed line,
(d) a filled site becomes vacant at a release position with a constant probability

which is the same for all release positions; similarly, a vacant site becomes filled
at a load position with a constant probability which is the same for all
load positions.

Assumptions (c) and (d) deviate from the real situation in the muscular con-
traction problem in that during shortening a site on the thin filament moves with
a varying velocity. The probability of an interaction between a site and a position
will clearly be greatly affected by the speed with which a site moves past a
position: the slower the speed the greater the probability of an interaction. Hence,
a solution based on assumption (d) can only be a first approximation to the
question posed in the muscle problem. A more realistic assumption would postu-
late the probability of an interaction between site and position as a function of
speed or time.
We let S represent the state of a site, So being the state of the site when it is

vacant and S1 when it is filled. If

(1) (Si - Sj)In, i, j = 0, 1; n = 1, 2, ***, (2r - 1), 2r,*
represents the transition of a site from state i to j at the nth position and recalling
that an odd position is a release position and an even position is a load position
we let

a = P{(S1 So)[2r - 1}, 1 - a = P{(S1 SI)j2r -1,
0 = P{(So Si) 12r - 1}, 1 = P{(So - So)[2r -1,

(2) # = P{(So Si)12r}, 1 - = P{(So So)j2r},
0 = P{(S1 So) 12r}, 1 = P{(S1 Si)12r4,

P. = P{(S = S')In}, 1 - Pn = P{(S = So)In}.
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We seek a solution for Pn, the probability the site will be filled at the end of
the nth position.

3. Solution through difference equations

The branching process can be illustrated as shown in figure 1.

(2r - 1)st Position 2rth Position
(Release) (Load)

1 -So 1 So

SO - _OoSI SO
SIS

a ~So O ,So
SI1

SI
SI

St i
FIGURE 1

We write at once the two joint difference equations

(3) P2? = P2r-1 + 3(1 - P2r-1) = f3 + (1 - #)P2r-1
(4) P2,-1 = (1 - a)P2,2
from which we obtain the following second order difference equations

(5) P2r = 03 + (1 - a)(1 - f3)P2r2
(6) P2r-1 = /3(1 - a) + (1 - a)(1 - /)P2,-3.
The standard solution of (5) and (6) gives respectively

(7) P2,= [(1 -a) (1 -/)]'PO+O 1-D(1 -a)(1 -)],

r = 1, 2, *
and

(8) P2,- = [(1 -a)(1 - 3)]?-1Pl + fl(1- a) 1 [( - ()(1 -)])

( a) [(1 - a) (1 -3)]-'Po+/(1 -a) 1 [(1 - a)(1 - M`

r= 1,2, .

Thus, if the site starts in state S1, the boundary condition is Po = 1 and

(9) P. = [(1 - a)(l /3)] + 1 - (1 - a)(1 - )
1-( a)(1 -/3)

n = 0, 2, 4, *
or
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(10) P+ = (1 - a) [(1 - a)(1 - [)](n-1)/ -

+ :( ) 1--(1 -a)-) '

If the site starts in state So, so that Po = 0, we have

(11) Pn, =1-, [(1 )( - 1,)]2 n , 2, 4,*1 -(1 - a)(1- )

or

(12) P =(1 1 - ((1 a) (1 n-1) n =1,3,5,

4. Solution through transition matrices

It is of interest to obtain the solution to this problem involving only dichoto-
mous states of a site using transition matrices. This method can be employed
to solve the more general problem.
From the branching process given previously, we obtain the matrix of transi-

tion probabilities for the state of a site as it passes an odd position to be shown
in table I, and the transition matrix as the site passes an even position shown
in table II.

TABLE I

State before State after (2r -1)st position
(2r - 1)st position S0 SI

so 1 0
S1 a i-a

TABLE II

State before State after 2rth position
2rth position So Si

So 1- a
Si 0 1

Denote the transpose of the above matrices by A and B respectively, that is,

(13) A (o 1a)

and

(14) B=(1 a: 0)

Let pj,n = P {(S = Sj) n}, with j = 0, 1 and P(n) = (Po,n, p,n), a row vector of
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probabilities of the two possible states of a site at the end of the nth position.
Then
(15) P(2r)= BP(2r-1)

P(2r-l) AP(2r-2), r = 1, 2,
Hence for n even,

(16) P(s) = BAP(n-2) = (BA)n/2P(O).
Since

(17) BA= (1 A a(1 - j3)

we have

(18) kp0) j1_ -a(l - 3) An/2kpo
\Pi.n/ \ 9 1-a(l-, \Pi")

n = 0,2,4,
where p0,o and p1,0 are the initial conditions of the process. If the site starts
filled, po0, = 0 and p,.0 = 1; if it starts empty po0, = 1 and pi,o = 0.
For n odd, we get

(19) P(s) AB P(n-2) = (AB) (n-1) /2P
which yields

(20) (Po,n \(l - i3(1 - a) a (n-l)U/2po0i
(Pl,n/k ( (1-a) 1-a/ pl

n = 1, 3, 5,
where po,i = a and pi,i = 1 - a if the site starts filled, and po,i = 1, pi, = 0
if the site starts empty.

5. Generalization

We extend the problem to the case where each site can be in any one of m + 1
states So, Si, * * *, Sm. When a site in state Si, with i = 0, 1, * * *, m on the
moving line encounters an odd (release) position on the fixed line segment, any
number i - j, where j = 0,1, * * *, i, of interactions can occur resulting in the
site changing from state Si to S,. Similarly, when a site in state Si with i = 0,
1, * , m encounters an even (load) position on the fixed line segment, any
number j - i, where j = i, i + 1, - * *, m, of interactions can occur resulting
in the site changing from state Si to S,. It is assumed that the number of inter-
actions occurring at the juxtaposition of a site and a position has a binomial
distribution with parameter a at a release position and parameter ,B at a load
position.
We now let

(21) pi,n = P{(S = Si)In}, i = 0, 1, m,
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and

(22) Pos) = (Po.a, PI.", P.. ")
be an (m + 1) X 1 column vector. In general, we desire to determine any com-
ponent of P(,) although there may be some particular interest associated with
pO,. or pm,n, the probabilities the site is empty or filled, respectively, as the site
has moved past n positions.

Since we assume the number of interactions is a binomial variate, we may then
write for the transition probability at an odd position

(23) P{(S; - Sj)2r -1} = {(i j i)ai(l-a)' = b;;.i(a), j i,
j> i

0, 1, *... ,m;j = 0, 1, * i
and for the transition probability at an even position,

(24) P{(Si - SJ,) 12r} = {( -)i-i(i- )m-j = b..s3), j 2
2 j~~~~~<i

i,, 1, * m;j = + 1 im.
Then the transition matrix at an odd position is as shown in table III,

TABLE III

So ... Si ... Si ... Sm

So 1 ... 0.*-0 *--O

S, b,,i(a) ... bi,i;.(a) ... b;.o(a) ... 0

Sm bm.m(a) ...bmm..-i(a) ... bm.m.i(a) ... bm.o(a)

where E._obt,,_j(a) = 1. Denote this matrix by A', the prime representing the
transpose.
The transition matrix at an even position is as shown in table IV,

where 'J'_ bm _jj_(#) = 1. Denote this matrix by B'.
We then have

(25) P(2,) = B P(2r_-)
and
(26) P(2r-,) = A P(2r.2)
so that

(27) P(2,) = BA P(2,_2) = (BA)2P(2r_4) = (BA) (2r)12P(0).
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TABLE IV

So ... Si ... Si ... Sm

So bm-o()... bm.i(8) ... bm,j(#) ... bm,m(g)

Si 0 ... bm.i,4 ) ...*bmiii(#) ...b-im-i(ft)

Sm O ... 0 .. 0 ... 1

Similarly,
(28) P(2r-1) = AB P(2,8s) = (AB)2P(2r -5) = (AB) (2-l)2p(l) = (AB) (2'-''A P(o).
Therefore,

(29) P(s) = (BA)n/2P(o), n = 0, 2, 4,
and
(30) P(.) = (AB) (n-l)12A P(o), n = 1, 3, 5,
P(o) is the vector whose components {pi,o}, with i = 0, 1, - , m, represent the
initial conditions. Of interest, are the cases where pm,O = 1, Pi.o = 0, i 0 m, or
where po,o = 1, pi,o = 0, i # 0. The former case holds when the site starts in
state Sm, that is, it is filled, the latter case represents the situation where the
site starts in state So, that is, it is empty.

6. Estimation of parameters in the simple case

If a and ,3 are known then clearly the probability that a site will be either
empty or filled at any position n is immediately determined by equations
(9)-(12) or (16) and (19) in the special case. Likewise the probability that a
site is in any state So to Sm is determined by (29) and (30) in the general case.
If a fixed number of sites in known starting states are observed at the end of a
transit past n positions, then the set of proportions, {pi,.} where i = 0, 1, * * *,
m, of sites observed to be in state i are random variables having a joint multi-
nomial distribution or a binomial distribution when An = 1. The statistical
problems might then be in testing the binomial model.
Of greater interest is the case where a and , are unknown. We consider the

problem of estimating a and , only in the special case where the possible states
of the site are dichotomous so that we have solutions in closed form as given
by equations (9) to (12). We illustrate the procedure by employing equation (9),
similar techniques being applicable to the other forms.

In (9), let 0 (1 - a)(l-,) to obtain
1 - fin/2

(31) P. = an/2 +In3 2

n = 0, 2, 4,** <0 < 1.1-0O
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Now lim7,l P. = 3/(1 - 0). Let N be large enough so that we may write to
a given degree of accuracy

(32) PN= 1

Then

(33) P" = an/2 + PN(l - An/2)
yielding

(34) on/2 =Pn -PN
lPNV

and hence

(35) 0 [p_pN]21n
Let u and v be two independent estimates of Pn and PN respectively. Then an
estimate of 0 is

(36) = [u v]2/n

From (32), and the definition of 0, we get

(37) = )v
and

(38) 1 0

If n = 2, that is, u is observed at the second position on the fixed line, these
estimates become
(39) u-v

01v

(40) d u1 v

(41) U)= 1 (1 v).
1 -2v+uv

The observables u and v can be obtained in the following manner. Consider
starting with m sites all in state Si, since we are using (9) which is obtained with
this initial condition. Then if the states of each site are noted at a selected nth
position, u is the proportion of sites observed to be in state Si. Repeat this with
another set of sites and now if the state of each of these sites are noted at a large
distance along the fixed line from the starting position so that N is large enough
for the approximation (32) to take hold, v will be the proportion of sites in Si
at the Nth position. Thus u and v are independent, binomial variables with
expectations Pn and PN and variances Pn(l - P.)/m(n) and PN(1- PN)/m(N)
respectively.
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If the number of sites involved in the experiments, m(n) and m(N), are large,
then we may obtain an estimate of the variance of 6 by the usual Taylor series
approximation. This gives

(42) ~~~~4 V2 +(1 -u)a2~(42) Vt(H) = n26(n-2)(1 - V)2 VU + (1 - V)2 0fJ
The estimates of variance of a and j8 are more difficult to obtain for general
values of n because of the covariance between v and 6 and between j8 and 0.
However, for n = 2, the estimates & and , are functions only of u and v, and
estimates of their variances are

(43) = 1 [v2&U2+ 1u)2
and (1 -~~~~~~V)2u (-V)21and
(44)~ ~ 2V)&2_1 [(1 +

(44) da - (1 - 2v + UV)4 - V)ou+ (1 U) JuU.

7. Concluding remarks

The previous discussion was based on two major assumptions: (a) the proba-
bilities of the two kind of interactions, a and ,B, were constant over all positions,
and (b) the transition probabilities were binomial. We could relax both conditions
and with little change in the development obtain a solution of P(s).

Let
45) P{(Si Sj)12r - 1} = pij[a(2r - 1)],
i _ j, i = 0, 1, * , m; j = 0,1, . * , i, where a, the probability of a release
interaction, is now a function of the position number along the fixed line, and p
is some discrete probability function whose parameter is a(2r - 1). Also denote
the transition matrix whose elements are the transition probabilities just defined
by A(2r1). Similarly, we let

(46) P{(Sj - Sj)12r} = qq[#(2r)],
i j, i = 0, 1, *.* ,m, j = i, i + 1, * **, m, where ,B, the probability of a load
interaction, also depends upon the position number, and q is a discrete probability
function with parameter i3(2r), not necessarily of the same type as p. Denote
the transition matrix at an even site by B2r. Then we have, for example, for n
even, the very general solution
(47) P(n) = B(nfA(n.l)B(n-2)A(n-3) ... B(2)A(l)P(o).
Now with a and ,B functions of n, we may approximate the muscle problem more

closely since in effect a and j3 can be taken as velocity functions.
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