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1. Introduction

By a repeated measurements design we shall mean that type of arrangement
where each experimental unit (an individual or an animal) receives all of the
treatments under investigation. The simplest illustration of this type of design is
m individuals each of which are subjected to k treatments. If the individuals are
considered to be drawn at random from a multivariate normal population, the
analysis for treatment effects depends on the structure of the variance-covariance
matrix. If £ = 2 the analysis of variance (mixed model) will be appropriate, for
m > k > 2 an exact analysis, in the general variance-covariance case, can be
made by the use of Hotelling’s T? (see Scheffé [10]) and an approximate analysis
by adjusting the degrees of freedom of the usual mixed model F ratio (see Box [2],
Geisser and Greenhouse [3]). In particular, if the variance-covariance structure
is uniform (equal variances and equal covariances) the usual F test ratio is exact.

Now repeated measurements designs may have certain disadvantages depend-
ing on the nature of the treatments, the response variable, and the population
under study, for assessing treatment differences. The three main disadvantages
are: (a) carry-over effect; (b) latent effect; (c) order or learning effect. When a
treatment has been administered before a previous treatment’s effect on the
response variable has worn off, the assessment of the treatment differences are
obscured by what we shall call carry-over effect. Sometimes when the apparent
effect of a treatment has worn off the administration of another treatment may
activate the effect of the previous treatment which has been dormant (or alter
the effect of the new treatment). This we shall call a latent effect. Another effect
may be the order or practice effect on the response variable itself, for example,
the variable is the response to a performance test on which individuals may tend
to improve merely by repetition of the task, independent of any treatment.

The carry-over effect is usually controlled by the administration of the treat-
ments far enough apart in time so as to eliminate this effect. If a latency effect
is suspected, the repeated measurements design probably should not be used un-
less this effect is itself of interest rather than a pure treatment comparison. The
order effect, when carry-over is eliminated and latency is not present, is primarily
a function of practice or learning (or even tolerance if very similar drugs are
used). A method that has been used to eliminate this order effect from treatment
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comparisons is the single latin square design. In the case of only two treatments
the replicated cross-over design is also often used. Also replicated latin square
arrangements are employed (see Lindquist [8], Geisser [4]).

The purpose of this paper is to discuss the analysis of these designs.

2. The single latin square

Let » individuals be given n treatments on = different days or in # different
orders in a latin square arrangement. A particular latin square arrangement is
presented in table I, where T';, D, represent the jth treatment and the kth day

TABLE 1
Individuals Ty Ty--T,
l D1 Dg e D,.
2 D, D;---D,
3 .
n Dn Dl e Du—l

or order. The n? observations may be written in the form of z;;, where ¢ rep-
resents the ¢th individual. If n = 3 and the latin square of table I were used, then
we would have the array of z;; as shown in table II.

TABLE II
T T122 2133
To12 Ty2s Ta3t
T3 Ts2t Tza2
Now let 2’ = (x1, z3, - - - , z5) be the vector variable of the n? variables where

x4 is the sth row vector of an nth order latin square. Further let 2’ be multivariate
normal with mean u’ and variance-covariance matrix A where

(1) W= (a1, o, )
and

F{ = (tl + dl, b2 + d2, ctty thy + dn—l, tn + dn)
(2 pr=(+dyto+ds -, tas+ dutn + do)

y.,', = (tl + dn, t2 + dl, MY tn—l + dn—2, tn + dn—l)
where {; is the jth treatment effect and dy is the kth day or order effect, and
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Vo---0

{0

@) A=t L. 0
0---0V

Now suppose we partitioned the sums of squares in the usual latin square
analysis of variance method presented in table III.

TABLE III
Source Sum of Squares D.F. F
Individuals ) n—1
Treatments Q: n—1 (n — 2)Q:/Qu = F
Days Qs n—1 (n — 2)Q:/Qu = Fs
Residual Qu (n —(n - 2)

We shall use the quadratic form notation for the sums of squares, that is,
the Q. Hence

) Q= 2Ax, Qy = 2'Asx, Qs = T'Asx, Qi = T A,
where the A are the n? by n? matrices partitioned into n by n submatrices so that
m-1)E —-E ... . —E
—E .
Al = n1 .
(5) .
. —-E
—E - . —E (n—-1E
I—-E:---... I-E
(6) Az =n!
I—FE - cc--- I-E
I-E LL;—-E --- . LL,—E
L.Li — E .
7)) Ay=n .
. L.L,— E
L.Li — E . «v L)Ly, —E I—-E
@) Ai=nt
(n—2)I —B) 2E—(I+LlL) - : 2E — (I + LiLs)

2E — (I + L.L})

. 2E — (I + LasLy)
2E — (I + L.LY) . vvr 2E — (I 4 LaLn—y) (n—2)(I — E)
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where I is the n by n identity matrix; E = n~'1,1, and 1, = (1, --- , 1); L;1s
the » by n matrix which transforms the 7th individual vector into a vector
which is in the natural order as regards time and hence must be a matrix which
has a single 1 in every column and row and zeros elsewhere. Further I,L] = I
and L; 3°; Lj = nL;E = nE. These relationships are true in general for any nth
order latin square although we have illustrated this by a particular latin square.

Further manipulation of these matrices show that Q. and @; are each independ-
ent of Qy,since A:A Ay = A;A A, = 0, which is the condition for independence of
two quadratic forms in multivariate normal variables. The expected values of
these quadratic forms are found to be

9) EQ, = (n — 1)TrEV,

(10) EQ, = Tr(V — EV) + ,;"1 t — 1,
(11) EQs = Tr(V — EV) +n él (e — Ay,
(12) EQ, = (n — 2)Tr(V — EV).

These results imply that even in the correlated case the numerator of F, and
of F. in table III is independent of the denominator in each case. Further since
both the numerator and denominator are each linear sums of independent
chi-square variates we may use the methods of Box [2], and Geisser and Green-
house [3] to get analogous approximate distributions of F, and F.. These dis-
tributions will depend on the population variances and covariances. In [2] and
[3] it was possible to approximate a function of these parameters which appeared
as an adjustment to the original degrees of freedom. However, in the unrepli-
cated latin square case we cannot estimate these parameters so that we can only
use the lower bound developed in [3] on the adjustment which in this case
is (n — 1)L

Hence in the general correlated case while the numerator and denominator
both estimate the same quantity under the null hypothesis and are independent,
thus making the F ratio a reasonable statistic to use, one can only use the con-
servative test which would be F(1, n — 2). Only in the case where the variances
and covariances are equal would the original F test be valid.

It is worth noting and well known that if we had postulated a treatment by
day (order) interaction the expectations of individuals and of the residual would
be altered to include the interactive variance and hence bias the test for treat-
ment effects (for details see Wilk and Kempthorne [7]). This implies that the
conservative test suggested above is conservative in two ways when an inter-
action is present. Firstly, from the point of view of the distribution of the ratio
and, secondly, from the fact that the denominator is inflated.

Note added in proof. The introduction of an interaction effect, in the above
paragraph and subsequently is primarily for mathematical completeness. It is
not to be inferred that the test for treatment differences necessarily retains its
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usual interpretation in the presence of interaction. See Scheffé ([11], p. 94) for
a more detailed discussion.

3. The replicated latin square

Suppose we had replicated the previous latin square m times, that is, we started
out with nm individuals from the same population and then at random we split
them up into » groups of m individuals and subjected each group to the same
latin square arrangement, then a particular design would be as shown in table IV,

TABLE IV
T, Ty--Thn
S, D, D,---D,

S: Dz Da b Dl

Sn Dn Di-:-Dpa

where S; stands for the 7th subgroup, T'; stands for the jth treatment and Dy
stands for the kth day. Such a setup can be analyzed by exact methods even
if we postulate an interaction effect between treatments and days. The method
has been given in [4] and will be extended here so as to include an interaction
effect and several different populations. Here we will assume an interactive model
and develop the methods on this basis.

Let ia = (Tiat, -+ , Tian), Where a =1, -+- ,m, and ¢ =1, --- ,n be the
vectorial representation of the ath individual in the 7th subgroup, and where the
indices 1, - -+, n represent the n treatments. Assume i, has a multivariate
normal distribution with mean ui = (ua, ---, pi) and arbitrary variance-
covariance matrix V for all 7. Hence for the particular arrangement given,

(13)
pm=l+d+a,te+d+ an - taa+ dics + Gurnet, b + dn + Gan)
pr=(+do+ arp,to+ds+ @z, -+, bacr 4 dn + Anoin, b + di + am)

n =+ dn+ amto+di+ an, -+ ytas + du2+ Gaoing, ta + du1 + Gnn),

where {; is the effect of the jth treatment and dj is the effect of the kth day and
a; is the day by treatment interaction effect. Although we are treating a par-
ticular latin square the results are general enough to include any latin square
arrangement. Further, since the treatments and days are fixed effects we will
assume that

(14) Z ajr = % ayz = 0.
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Before we give the exact method it will be of interest to give the analysis of
variance approach which has been commonly applied to this design.

An analysis of this data by the analysis of variance procedure is given in
table V. The methods for finding E(Q.) are the same for the @ of table III.

TABLE V
Sum of
Source D.F. Squares Q; EQ:)
Treatments n—1 Q Te(V — EV) +nm ) (t; — )2
Days n—1 Q: Tr(V — EV) + nm ) (dr — d)?
Subgroups n—1 Qs (n — 1)TrEV +mn > a}
Individuals within
Subgroups n(m — 1) Q. n(m — 1)TrEV
Latin Square
Residual n—1n—2) Qs (n—2)Te(V —EV) 4+m 2.3 (ak— a:)?
Discrepance nin —1)(m —=1) Qs n(im — 1)Tr(V — EV)

There a; represents the average of the a; in the 7th mean vector. Now using
methods similar to the previous section, we can make approximate tests on the
treatment effects and the day effects using the discrepance as the error term.
For the interaction of days and treatments there are two tests available each
testing a different interaction of day by treatment. One tests the row averages
of the day by treatment interactions, that is, n(m — 1)@s/(n — 1)Q, and the
other possible test is the within rows day by treatment interaction, that is,
n(m — 1)Qs/(n — 2)Qs. If we define the total interaction of days by treat-
ments to be

(15) orp = (n — 1) TX ai

then

(16) orp =n(n — 1)Lekpm + (0 — 2)(n — 1) o%pamy,
where

17 oo = (n— 1)1 Y d}

(18) otoomn = (0 — 1) n — 2)71 Y (ap — i)

An exact analysis of the treatment effects in the above setup can be made
without resorting to the approximate test indicated by the analysis of variance.

Apply a transformation to i, so that y. = Czi, where C is any n — 1 by
n matrix such that every row sums to zero and C is of rank n — 1 (for details
see Geisser [4]). Hence we get a new vector for each individual yta = (Yia1, ***
Yian—) and y.. has variance-covariance matrix CVC’ and mean Cu;. Nowy'. =
m™! ¥, Yia, the mean vector of the sth subgroup, has variance-covariance matrix
n~!CVC’ and mean Cu;. Further .. = n—! Y, y;. has variance-covariance matrix
(mn)~"'CVC’ and mean n~'C 3, u; = Cu where p’ = (h+ d, -+, tay + d) and
d = n! Y i di. It can also be shown that if the matrix C has the element n — 1
in the (7,7) position ¢ = 1, --- ,n — 1 and —1 in every other position, then
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(19) (Cﬂ)' = (tl - z; by — Z) Tty tn1 — t)‘
Hence testing the hypothesis that {, = &, = - -+ = ¢, is equivalent to testing the
hypothesis that t, ~ ¢ =t, —{ = -+ = t,_; — I = 0. We then estimate CVC’

by computing the sample variance-covariance matrix for each of the n subgroups
on the transformed variables and then pooling the n matrices. The statistic

(20) T2 = mny'.S™Yy..,

where S is the pooled variance-covariance matrix, has the T2 distribution with
n(m — 1) degrees Qf freedom and

*{(m — 2)n + 2]
n(n — 1}(m — 1)

where F is the usual F distribution with n — 1 and (m — 2)n + 2 degrees of
freedom. This statistic then provides an exact test for the equality of the
treatment effects.

Now an extension of this type of design to several groups, that is, different
types of individuals can be given, multivariate tests for treatments, groups,
treatment by group interaction will be indicated based on the usual assumption
that the variance-covariance matrix for each group is the same.

The design setup for this case would be to repeat the same latin square arrange-
ment as was done for the single group previously to say g groups. Now to test
whether there is a group difference over all treatments simultaneously one would
first compute the treatment vector mean over all subgroups within a group.
Letting an individual vector observation be represented now by zie =
(Tivaly Tiva2, * ** 5 Tivan), that is, the 7th individual in the ath subgroup in the
vth group and indices 1, - - - , n represent the n treatments, the treatment vector
mean for the yth group would be

(21) =Fn—1,(m— 2n+ 2],

(22) xf.,. = (x.,.l, Loyegy =0, x"y-n)-

One can then compute a between variance-covariance matrix based on these
group vector means. Call this matrix B. Further if we pool the variance-covari-
ance matrix from each subgroup within a group and then over all groups we
get a within variance-covariance matrix W. The test statistic then used is
either based on the product of the roots of BW-1, Wilks [12], or on the sum of
the roots of BW—!, Hotelling [6], or on the maximum of the characteristic
roots of BW—!, Roy [9]. The detail of this test may be found in Anderson [1]
and is essentially the multivariate analysis of variance.

Now to test whether there are treatment differences, one applies the trans-
formation given earlier, and computes on the n — 1 adjusted treatment variables
the vector mean over all groups and the pooled variance-covariance matrix
over all subgroups and groups, and applies Hotelling’s 7" test. If one now wishes
to test for a group by treatment interaction he computes on the adjusted data
the vector mean for each group and from this he gets a between variance-
covariance matrix and uses the same adjusted within pooled variance-covariance
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matrix and following Greenhouse and Geisser [5] tests for the group treatment
interaction.

4. The treatment covariance assumption

It is important to point out that the assumption of a covariance matrix
between the treatments which leads to the equality of covariance matrices among
the subgroups has interesting ramifications if we wish to study the day effect or
the effect of the order of administration of the treatments. It is easier to discuss
this point by considering the case of a 3 by 3 latin square and using a slightly
different notation. For notational convenience we will also omit the day by
treatment interaction. We then have m observations on each of the variables

TABLE VI
Subgroup Treatment 1 Treatment 2 Treatment 3
1 Xi=n+th+d Yi=y+t+de Zy =2z +1t;+ds
2 Xe=2+t+dp Ye=yp46+ds Zy =2+t +d
3 Xs=as+ b+ ds Yi=yp+b+d Zy =123+t + de

appearing in table VI. Let Ex; = Ey; = Ez; = y and V() = o2, V(y:) = o2,
V(z:) = o% for ¢ = 1, 2, 3. Further let

(23) Cov (zix;) = Cov (y:y;) = Cov (2:2)) =0
fori = jand7,j =1,2, 3 and
0 1 #7
29 Cov (za) = { T
Pzy0z0y, t=1
0 1 # 7,
(25) Cov (z:2) ={ ’ I
Pzz0202, =)
1 #7
(26) Cov (yiz;) = {0 ’ T
Pyz0y0z, =

In table VII the data are rearranged by days, under the same assumptions.
The means we wish to compare are

@n Wo=Xi+ 2o+ Va0 = Vi + Xo+ Zs; 03 = Z1 + Yo + X,

since Ew; = p + f + d;. However, it is obvious that the covariance structure in
each subgroup is different so if we proceeded as before (making the transforma-

TABLE VII
Subgroup Day 1 Day 2 Day 3
1 Xi=n+t+d Yi=y+t+d Zy =2+t +ds
2 Zi=2n+t+d Xo=z+t+d Y=y 4+t +ds
3 Ys=yw+t+d Zs = 23+ 13 + dp Xs =23+t +ds
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tion, and so forth) our statistic would no longer have Hotelling’s T2 distribution.
However, an inspection of the covariance structure of w0, W, 1; reveals that

1 . .
3 (02 + oy + o), i =
(28) Cov wap; = 1
o (sza'zo'y + Pzz020; + Pyzo'ya'z), 1 # j;
3m

for all 7 and j.

Having three independent estimates of each parameter of the covariance
matrix, we may use these to estimate this uniform covariance matrix. We may
then transform the w; as before to 1; — W, = 4 and W; — W; = %. The co-
variance matrix of the 4; is also uniform and the 7? statistic which can be com-
puted will be asymptotically kxz_1 (where k is a constant depending on the
uniform variance and covariance) for large m. This method would take advantage
of the uniform covariance structure underlying the day effects and would be
preferable to merely pooling and then using a test which took into account the
fact that the covariance matrix was different for each subgroup.

However, the real point of importance is the fact that postulating an arbitrary
covariance structure (other than a uniform structure) for treatments which leads
to equality of covariance matrices for the subgroups leads simultaneously to
inequality of the covariance matrices for days. In an experiment, if an investi-
gator has good reason to suspect the postulation of a covariance structure on
the treatments, he should test the equality of the subgroup covariance matrices
for both treatments and days and then act accordingly in making his tests on
treatment effects. If he finds the day covariance structure is really the underlying
model he may use as a test for the treatments that test which was outlined above
for days.
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