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1. Introduction

It is the purpose of this paper to examine certain of the properties of popula-
tions of cells, in particular, properties relating to the architecture of cell colonies.
We imagine that the underlying process in the growth of an organism begins with
a single cell (perhaps derived from the fusion of two germ cells), and then con-
tinues by a process in which the initial cell divides into daughter cells. These in
turn divide into other cells, these divide further, and so on. The rates of division,
the rates of growth of the individual cells, the ultimate size of each cell, its life
span, the cellular form, and the procedures of differentiation are constrained by
the "information" contained in the cells at any time t and by the environment
of each cell, that is, the nutrient medium and the cells surrounding it.

That the process of morphogenesis is not entirely determined is fairly obvious.
Evidence in favor of the conception that the development of form contains cer-
tain indeterminate features is found in studies of twins. Monozygotic twins are
initially endowed with identical genetic "information," and if this information
were to control the generating process completely, then the twins should be iden-
tical in every detail. It is true that by and large there is a greater correlation
between morphological properties of monozygotic twins than those of fraternal
twins. Still, so-called monozygotic offspring do not exhibit perfect correlations
even in rather gross features such as in the dermal ridge count of fingerprints
[1], the scute (scale) counts in nine-banded armadillo quadruplets [2], or the
skin color patterns in cow twins [3]. There is less correlation in considering finer
features such as patterns of retinal venation. There is little evidence available
but it is to be anticipated that, on a cellular level, there would be little more
correlation between twins than between any other members of a given species
population. That is, it seems reasonable to assume that the "blueprint" of struc-
ture does not extend down to the position of every cell in the organism. Indeed,
workers in the field of neural networks have made an operating principle of the
assumption that the connections of individual neurons are essentially random.
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It must be pointed out, however, that in this last case there is some evidence
that this is not the case, at least in the connections of the optic nerve [4].
The idea that every feature of an organism's structure is not determined in

the initial code is a commonplace in embryology. An extensive literature has
demonstrated that a specific environment at a specific stage in development can
have a crucial effect on differentiation and further development. Thus, whether
a certain bit of chick embryo will develop into a feather or into a skin cell will
depend on the presence in the environment of a bit of mesoderm [5], or the pres-
ence of a bit of cartilage will cause an unorganized clump of cells to produce a
kidney tubule [6]. In the light of these considerations it would seem instructive
to investigate how probabilistic factors might be introduced into the process
of morphogenesis.
The problem that we wish to consider is this. Given a single cell or a homog-

eneous population of cells, how can such a cluster develop into a structure of
lower order of symmetry or no symmetry at all, that is, into a structure of
recognizable and characteristic shape, without involving special structural
properties of the cells themselves? So far as I know, the only attempt to treat
this problem from a mathematical point of view was made by A. M. Turing in
1952 [7]. Turing postulated a one-dimensional ring of cells initially of identical
length, each of which was supposed to contain essentially identical concentra-
tions of chemical components and surrounded by a homogeneous medium. In
treating this special case, Turing further postulated a specific set of chemical
reactions and a set of reaction rate constants. In this way he was able to de-
monstrate that statistical fluctuations in the concentrations of certain of these
hypothetical components would be sufficient to introduce a periodicity in the
growth rate of the various cells around the ring so that one might think of the
ring as growing into a three- or four-lobed structure. Although Turing made
some attempts to extend the model to two-dimensional sheets, he was no longer
able to produce an explicit analytical solution.
The model presented below represents a different approach to the problem

and in fact considers an even simpler question, namely: starting from a single
cell which may divide, its daughter cells divide again and again, what are the
structural properties of the resulting colony of cells and how do various possible
constraints effect the architecture? It has been necessary to make a large number
of simplifying and special assumptions so that the resemblance between the
model and the growth of any complicated metazoon or specialized organ or
tissue is slight. We may view the successive division of the cells of a colony as a
branching process and examine the sequence of configurations through which
the colony passes in its growth. If this sequence of configurations can be de-
scribed by a recursive relation, then a generating process can be formulated for
the branching process, and the probability of certain subsets of the set of possible
configurations may be computed.
We shall assume that each cell is identical with every other cell, that each cell
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is connected to at least one other cell, that the location of each cell is specified
by a node in some regular lattice. For the purposes of simplicity the model will
be restricted to two dimensions. Any migration of cells, differentiation into spe-
cialized cell types, variations in cell size, and similar properties of organisms will
be neglected. Indeed, cells will be assumed immortal and a very special time-to-
division distribution function is used, although these last two specializations
could be modified without too much cost in complexity. We shall consider prin-
cipally the properties of various finite subsets of points in the square lattice,
although virtually all the results can be readily extended to hexagonal or tri-
angular lattices and, for that matter, to higher dimensions. However, it has not
been possible to generalize the results to sets of points in any less structured
topology.
We shall distinguish certain nodes v(x, y) by saying that they are occupied by

a cell y(x, y). We define a nontransitive relation of adjacency by specifying that
v(x,y) is adjacent to v(v, w) if and only if x = v and y = w :1: 1, or y = w and
x = v 4 1: We further specify that two cells are connected if they are adjacent
to the same cell or if they can be related to the same cell by a chain of adjacencies.
An arrangement of cells will be called a k-configuration ck if and only if it con-
tains exactly k connected cells. We shall define Ck as the set of k-configurations
which are unique under translation, rotation, or reflection.
The enumeration of the configurations of Ck is a known problem and has been

referred to by Golomb [8], but it has not yet been solved. An explicit listing of
all configurations up to k = 8 has been presented in an earlier paper [9]. The
methods employed are so laborious that it seems hardly worthwhile to attempt
any further extension to higher values of k. However, before introducing any
specific procedures for generating such configurations we shall consider certain
bounds C(k) on the number of elements in Ck.

J. M. Hammersley has shown that, for a general class of random walks on
regular lattices, the number of distinct walks of k steps is approximately A9k
and he has shown how to estimate y by Monte Carlo methods. Hammersley also
has considered percolation processes, a problem similar in many respects to that
treated in the present paper [10], [11].

2. A lower bound on elements of Ck

2.1. Distinguish a node in the square lattice as the beginning of a random
walk on the lattice subject to the following constraints. If the coordinates of wj,
an element of the walk, are (x, y) then wj+l = (x + 1, y) or (x, y + 1), that is,
the randomswalk extends by going "north" or "east." Obviously such a random
walk is nonintersecting and every such walk of length k - 1 edges corresponds
to some c E Ck. Further, the set of distinct walks W(Ck) = 2k-1. However, rota-
tion by 180° and reflection around the main diagonal will reduce the number of
distinct configurations by a factor of 4 (except for those configurations which



226 FOURTH BERKELEY SYMPOSIUM: EDEN

map into themselves under these operations. This is a set of order 2kl2 and neg-
ligible for large values of k; see appendix). Hence W(Ck) = 2k-s. A fortiori, the
number of configurations in Ck is C(k) > 2k-3.

2.2. A somewhat better estimate for a lower bound on Ck can be obtained
by generating a larger set of connected configurations from the set Wk. Consider
any walk w E Wk. Suppose this walk is bounded by a rectangle of width m and
height n. We can describe w uniquely by an ordered n-tuple of integers A (w) =
(r1, r2, * * *, r.). The value of rj is obtained by counting the number of occupied
lattice points in the jth horizontal level (row) of the rectangle.

Consider the configurations generated by translating each node of the subwalk
(ri, r2, . .. , ri) to the east by t lattice points, at the same time retaining the sub-
walk (r+1i, * , rn) in its initial position. Such new configurations w* will no
longer be walks but they will be connected so long as t < ri + r1+1 - 2. It is
obvious that each of the t new configurations is unique. Since this translation
procedure can be made independently between every pair of rows ri and r1+i, it
follows that the number of unique configurations generated from a particular
W E Wk iS

n-1
(1) w*(k) = II (ri + ri+1 -1)

We can arrange the terms in the product in order of increasing value,
max v

(2) w*(k) = H (v-
V=2

in which max v = max (ri + ri+s) and n(v) is the number of adjacent row pairs
ri, ri+1 for which ri + 7 i+1 = v. Now

max v
log w*(k) = E n(p) log(v - 1),

(3)
max

log E[w*(k)] > E[log w*(k)] = E E[n(v)] log(v -1).
V=2

LEMMA.

(4) E[n( (v-1)(k v + 3)

PROOF. By induction. (i) For v = k we have E[n,(v)] = (v - 1)/2v-1. By
our definitions, n,(v) stands for the number of walks of v nodes with two rows.
We have already shown that W(k) = 2k-1. For k = v + 1,

(5) E[n,+,(v)] = 2(v-1 2-
= 2(1) v-i,

that is, for three rows either r1 + r2 = v or r2 + r3 = v will be counted.
(ii) Consider the set Wk-1 of 2k-2 walks. (a) Adjoin a node to the last row of

each walk. The sum of rn + r.-1 is increased by the number of cases in which
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rn + r,_1 had previously equaled v - 1 and decreased by the number of cases
in which rn + r,,- had equaled v. (b) Start a new row r.+1 by adjoining the node
above the right-most node of each walk of Wk-1. Then nk(v) is increased by the
number of last rows whose length is v - 1. Further, the probability that the
last row is of length t is 2-t.

It follows that

(6) E[nk(V)] = E[nk-l(V)] + 2k-1 -

V-1
= E[nk_l(v)] + V +1

By the induction assumption,

(7) E[nk (V) (v-1)(k- 1 -v + 3)
2 +1

so that

(8) E[nk(v)] -( 1)(k-P + 2 + v-1

(v - 1)(k - v + 3)
2'+1

which is equation (4).
Using this value of E[nk(v)] we have

(9) E[log 1A1 1 -ax
= k + 2- (v- 1) log(v- 1)(9) E[~-log' w*()-i~ YE 2+1

=4- Ea[(k + 2)a log -a2log2]-

Since these series converge rapidly, we can neglect the second sum for sufficiently
large values of k to obtain

(10) log E[w*(k)] > E[logw*(k)] = k + 2 (0.775...)4
E[w*(k)] > (1.57)k+2.

Finally, W*(k) = W(k) E[w*(k)]. Thus,

(l l) W*(k) > 2k-1(J .57)k+2 > (3.14)k-1.
It may be remarked that so long as a single row of any W* is connected,

the cells of any other row need not be connected to each other but only to
cells in the rows either above or below. As a consequence the number of pos-
sible connections of ri and ri+1, where ri, ri+1, is bounded from below by

max [r.i + r.i+ - 1, (ri)]. While the use of this condition would certainly

raise the lower bound on C(k), the fact that the shifts of adjacent rows are no
longer independent of the shifts of their other nearest neighboring rows make
the combinatorial formulas intractable.
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3. An upper bound on the elements in Ck

The upper bound on C(k) will be estimated using a different combinatorial
technique. We shall first devise a procedure for specifying each of the elements
of Ck by a word F(c) with a finite number of digits and then estimate the size
of the set of words representing configurations. We will do this by constructing
an algorithm for ordering the cells ye of any configuration ci and then describe
a function F(yil, Yi2, * * *, Yik) whose values map uniquely onto Ck.

Choose some ci E Ck, some -y E ci, and one of the four possible orientations
of the square lattice. Distinguish this cell as yi. Examine the nodes adjacent to
71 beginning with the node "south" of yi, and proceeding clockwise. Number any
cells occupying these four nodes in the order in which the nodes are examined.
Now assign the first four digits of the word F(c) a one or a zero according as
whether or not a cell has been found at each of the nodes. Next distinguish 72,
and examine the nodes adjacent to it beginning with yi, proceeding clockwise
as before, numbering any new cells to be found at the adjacent nodes and assign-
ing the appropriate binary digit to the next three places of F(c). In this case and
in the examination of the neighbors of any succeeding cell in the configuration,
only 3 binary digits are required, since to each -yj there is some z1, with 1 < h,
such that the designation of -y contains a 1 distinguishing its place in the order
of F(c), and the orientation of yI relative to yj has already been established. Such
a 'yj will be called the designator of yz and denoted d(-yl). Thus in the assignment
of numbers to the designation of some -yj, a 1 is entered only for those adjacent
nodes occupied by cells which have as yet no designator.

It is obvious that this procedure can be carried out until all of the cells of c
have been ordered and a designation given to each. It will be noted that F(c)
contains 3k - 2 binary digits and hence there are 23k-"ipossible values of F(c).
Since the choice of the initial cell and its orientation in the lattice are arbitrary,
each configuration will be specified by 4k words (again except for the small set
of configurations which can be reflected or rotated into itself). Finally, it is clear
from the mode of construction that for c, distinct from Cm all F(c;) will differ
from the F(cm). Thus an upper bound on K(C) is 23k/16k.

However, if the values of the digits in any F(c) are summed they must equal
k-1, since each cell has one designator and the first cell has none. Therefore,
we obtain immediately as a better upper bound on Ck),

(12) C(k) < 1 (3k 2)-
By Stirling's approximation,

(13) C(k) <
k/ 27 + 1 ]k

A further improvement can be obtained by considering the constraints induced
by the configurations on the permissible values of F(c). There is one obvious
constraint namely, that x:'- 1 fj _ a for every a as well as Ik- fj = k - 1. Any
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sequence for which the number of cells designated is less than the number of
triplets of digits is complete; that is, there are no more cells to order. Such a
word will represent a configuration containing fewer than k cells.
We shall invert the process described above and construct sequences of binary

digits of length 3k + 1 and estimate how many of them will specify permissible
configurations. We shall call a sequence of length FX <3X - 1 a partial word
for any X < k.

It follows from the algorithm for proceeding from a configuration to the word
F(c) that any of the possible sixteen values of the quadruple fi of eY are possible
and in like manner any of the eight values for the triple f2 of values specified by
-Y2. However, the designations of -1 and 72 already induce restrictions on the
designation of y3 and in general the designation of yj will depend upon the par-
ticular values of other cells designated previous to yj, but not upon d(-yj). We
proceed by cases to consider the constraints upon fj induced by the designation
of d[d(Qyj)] and induced by cells other than yj that are designated by d(-yj). Of
course, other constraints may have been induced by earlier and more distant
portions of the configuration. The cases are displayed in figure 1. The nodes of
each directed tree distinguish the cells in some configuration. The cell at the
root of the tree is the designator of the next cell in the tree and that cell in turn
designates the cell or cells corresponding to the twigs of each tree. The boxes
marked with an "x" represent nodes which have been designated previously
and hence represent constraints on the triples derivable from the neighbors of
the second node of the tree. The black boxes represent restrictions on the desig-
nations of the cells of the twigs of each tree, each such constraint deriving either
from the designation of d[d(Qyj)] or from one of the collateral twigs of -yj.
The first row of diagrams in the chart represents all the possible designations

of the middle cell d(-yj) when it is not restricted. It will be noted that when the
only new cell yj is directly above d(-yj), then there will be no restrictions on the
designation of yj induced by d[d(yj)]. However, if the single new cell is either
"east" or "west" of its designator, then d[d(-yj)] or some earlier cell constrains
the designation of yj to at most four choices. If d(-yj) designates two additional
cells (as shown in the fourth diagram of the first row), then the first twig cell 'Y
is unrestricted; however, it induces a restriction on yj+l (the second twig cell),
while d[d(y)] induces a second restriction on yj+,. Each of the diagrams may be
interpreted in a similar fashion. For this set of cases, the expectation of the num-
ber of new cells designated equals the expectation of the number of restrictions
on further f,n, E F(c).

In the other rows of the chart it is assumed that there are one or more restric-
tions on d(yj) induced by some node vj # [d(d-yyj)], but the designation of vP pre-
ceded the designation of d(-yj) in F(c). Two subsets of cases are considered, either
vj is occupied by a cell or it is not. The first of these possibilities is illustrated in
the upper diagrams of each row. By the nature of the algorithm, these cells will
have been designated before any twig cell. The cases in which a node is restricted
but remains unoccupied by a cell, are illustrated in the lower half of each row.
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It will be seen that for each row, at least as many restrictions are induced as
there are cells added.

It follows that there are 27 partial words F2, less than 27 X 2713 words F3.
However, by reason of the expected number of restrictions on each new triple

t 1!!-t
Z A tx x4x x x4 x x x?

31K B tx x x x x t xq X a xx

*x x *x xox txa x ?X

IIB
x x X

tx xt Xx mXX x x

XEXX

3Z 44x- 4 1 x X?

2 X9X
FIGURE 1

A graphical representation of the possible cases
for adjoining new cells to a configuration.

I No restrictions on d(z);
expectation for the number of cells adjoined, E(a), = 1.5;

expectation for the number of constraints on these new cells, E(p), = 1.5.
II One restriction; E(C) = 1; E(p) = 1.
III One restriction; E(a) = 1; E(p) = 1.5.
IV Two restrictions; E(a) = 0.5; E(p) = 0.5.
V Two restrictions; E(a) = 0.5; E(p) = 0.75.
VI Three restrictions; E(o') = 0; E(p) = 0.

of the sequence of partial words, Fx < 22X+1. Now the set W(Ck) is a proper sub-
set of the set of partial words, so that a fortiori, C(k) < (1/4k)22k+1 = (1/k)22k-1.

4. A "symmetrical" growth process

The first model of "growth" which we will consider is perhaps the simplest.
Distinguish a single node of the square lattice and assume that it is occupied by
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a cell yl. Assign equal probability to the configurations obtained by adjoining
one other cell to the nodes adjacent to SYi (there are four of these that are obvi-
ously equivalent under rotation). This two-celled configuration has six adjacent
nodes. Again assign equal probability to the six 3-configurations obtained by
adjoining a single cell. This procedure can be carried out indefinitely, each time
adjoining a single cell.

If there is any reasonably close biological counterpart to this process it may
be in the growth of bacterial cells or tissue cultures of cells that are constrained
from moving. The process described may be likened to the growth of a colony
of cells in which growth can proceed only where there is nutrient medium, that
is, at the periphery. It may also be commented that Ulva lactuca, the common
sea lettuce, grows as a sheet two cells thick and apparently grows only at its
periphery. Finally, while there is no information concerning its mode of growth,
the gamete-forming thalli of Prasiola stipitata exhibit a cellular pattern that is
almost identical to the patterns developed by the model described above, for
small values of k [12].
The probabilities for all k-configurations up to k equal to eight have been tabu-

lated in an earlier paper [9]. In addition, certain estimates have been made
concerning the probabilities of certain subsets of Ck up to Cl6.
THEOREM. The probabilities of k-configurations isomorphic to the same graph

are equal.
We first define the graph of a configuration by identifying each node occupied

by a cell of the configuration by a node of the graph. Any two occupied nodes
that are adjacent are connected by an edge of the graph.
We consider configurations having a given cell picked out as the starting cell;

the graph of such a configuration has a distinguished node, which we shall call
the starting node. We show below that the probability of obtaining such a con-
figuration depends only on its graph. By taking each cell of a configuration
in turn as the starting cell (clearly equivalent to taking each node of its graph
in turn as starting node) and summing, we get that the total probability of a
configuration depends only on its graph.
The probability of a configuration is proportional to "the number of ways

that it can be generated." For a configuration c, we shall write N(c) for this
number. Examination of the generating process shows that N(c) has the follow-
ing inductive definition.

(a) If c is the one-celled configuration, N(c) = 1.
(b) If c is a k-celled configuration, k > 1, then N(c) = ,_ M(,y, c)N(c - yA

where the sum is over all cells yj E c, such that c - yj is a configuration and
where M(,y, c) is 1, 2, 3, or 4 according to the number of edges of yj which adjoin
c - . (By the phrase "c - yj is a configuration" is meant that c - -1 is con-
nected and contains the starting cell.)
Now to each cell yj of c there corresponds a node Vj of G, the graph of c. Thus,

c - yj is a configuration if and only if G -Vj is the graph of a configuration, and
then the graph of c - yj is isomorphic with G - Pi. Also, M(,y, c) is equal to the
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number of lines of G joining Vj with G - vj. Thus under the inductive hypothesis
that N depends only on the graph for (k -1)-celled configurations, the right
side of the formula in (b) is completely determined for any k-celled c by the
graph of c. It is trivial to start the induction with k = 1.
We may obtain an interesting corollary of this theorem by defining an exten-

sion G' of the graph G. This G' is identical with G except that an edge exists be-
tween two nodes of G' (permissible under the constraints of the lattice topology)
that is not present in G. We also define G*, the completion of G. Namely, G* is the
completion of G if and only if G*' = G* = [... (G')'.* *1'.

It follows immediately from the definition that every G has a completion G*.
COROLLARY. To every G there corresponds a G* such that p(c*) > p(c).
Since the probability of a configuration is proportional to "the number of ways

it can be generated," and since the number of ways depends on the number of
edges which adjoin c - yj, it follows that p(c') > p(c) for every c and c'. Since
G* terminates a chain of G', in which p[c(j')] > p[c(j-1'),] the corollary follows.
The subset {G*} is very much smaller than the set {G} and since there are

many configurations corresponding in general to an arbitrary G, while there is
only a single c* corresponding to any G*, it is clear that {c*} is a very small sub-
set of Ck. However, it has not been possible to enumerate this set or determine
the probabilities associated with each G*. It will also be noted that G* is not
unique and it has not yet been found possible to order the G* derivable from an
arbitrary G.

5. Remarks on some random variables defined on the set of
k-configurations

The theorem given above and an examination of the probabilities computed
for configurations up to k = 16 suggest certain properties as being closely re-
lated to the probabilities. One of these properties has been utilized in the proof
of the theorem, namely the number of edges of the graph proceeding from each
node. If we examine the random variable M(G), where M(G) = Yj M(-yj, c), it
is true that by and large the configurations with the higher value of this random
variable are the more probable. However, it is easy to exhibit counterexamples
to the conjecture that p(c) is a monotone function of M(G).
Another random variable is the perimeter of c. We define the number of un-

occupied nodes adjacent to cell Cj as aj. Let 7r(c) denote the perimeter of c; then
7r(c) = _j aj. The maximal perimeter of c in Ck is 2k + 2. Referring again to the
graph of c, and defining L(G) as the number of minimal loops in G, then it is easy
to verify that 7r(c) = 2[k + 1 - L(G)]. For each extension G' of G we have
ir(c') = 7r(c) - 2. Clearly, 7r(c*) is minimal. However, here too one can exhibit
counterexamples to the conjecture that ir(c.) > 7r(cp) implies p(cp) > p(Ca)-

Nevertheless, in order to obtain some insight into the properties of the growth
process defined above, the configurations for C6, C7, C8 were ranked in order of
decreasing probability and the cumulative distribution function was plotted. In
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addition, estimates were made of the size of the subsets of C10 and C16 for each
value of (c), as well as estimates of E[p(c)]; the value of 7r(c) = n for each of
these subsets. These subsets were ordered in decreasing values of w(c) and again
the cumulative distribution function was plotted. Finally, the measure for each
of these functions was normalized to the interval [0, 1]. The distribution func-
tions obtained in this way are shown in figure 2. This figure suggests the con-
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FIGURE 2

Distribution function for configurations with k = 6, 7, 8, 10, 16.

jecture that for any ck generated by the growth process and any E and 5 there is
some k such that
(14)

P{c} E C'Ic E C' if and only if 7r(c) _ n and NCk) < > 1-

in which N(Cn) is the size of the subset Cn.
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FIGURE 3

Six stages in the grow-th of a conifiguration with the
('O1,(litioIl p)(ht) = i)(N).
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6. Monte Carlo procedures applied to the growth process

Since the analytical results obtained for the growth model are so meager a
Monte Carlo procedure was devised. The TX-2 computer of Lincoln Laboratories
was programmed to compute configurations following the generating rules given
above. An example of the growth of a typical configuration is shown in figure 3.
In general, the configurations were permitted to grow to a size of 21' cells.
Although it is planned to compute moments and other properties of the con-
figuration during the process of growth on the computer, at present the only
parameter (aside from the configuration itself) retained in the computer memory
was the count of cells and the values of 7r(k) for a number of selected values of k.
As yet the samples of configurations computed in this way appear to be too few
to justify anything more than a few qualitative statements.

It is to be seen that the colony is essentially circular in outline. Needless to
say, there are a number of properties of each growing colony as well as properties
of the ensemble that may be worth examining, for example, moments, the eccen-
tricity of the configurations, the "roughness" of the edge. The programming
needed in order to investigate such properties has not yet been completed. How-
ever it was found that the appropriate instructions controlling the probability
of adjoining cells could be altered by a minor change in the computer program.
Accordingly configurations were generated in which the probability p(h) of ad-
joining a cell at a vertical edge was an integral multiple of the probability p(v)
of adjoining to a horizontal edge. A series of steps in the development of a figure
in which p(h) = 10 p(v) is displayed in figure 4.
One immediate observation is that the "axial ratio" of the figure generated

in this way is a good deal less than the ratio of p(h) to p(v), table I. So far it has
not been possible to obtain by analytical means the expectation of the ratio of
length of sides of a circumscribing rectangle or its asymptotic value. When a
sufficiently large sample of such configurations have been generated by the
Monte Carlo procedure, it should be possible to make an estimate of this and
similar properties.

It is obvious from the configurations generated that the values of 7r(c) are very
much lower than the maximal r(c). A log-log plot of 7r(c) as a function of k for
the growth of these configurations is illustrated in figure 5. It will be noted that,
aside from considerable variability in this property, the curve seems to converge
rapidly to the line representing 7r(Ck) = 8\/k. Even if the value of the coefficient
is in doubt it seems reasonable to conjecture that 7r(ck) = Av\k. It is clear that
the convex hull of these configurations is close to minimal or, roughly speaking,
that the "density" is maximal. A few special cases may be of interest. Thus the
figure of minimal convex hull is a square, call it ct. In this case r(c') = 4\/k.
If the square is rotated through 450, call this figure a diamond cd, then 7r(cd) =
42k. Finally, for a circle c' we have 0(ct) = 8\/k/\/7r.
We may estimate the size of the subset of Ck with lr(c) = 8\/k by using the

method described for the first upper bound on the size of Ck. We modify the



236 FOTIt'I'll BERKELEY SYlMPOSIUM: EDEN

FI (i v R F, 4

Six Ftt'pS ill thlie growtli of a (olnfiglurn tion witlh the
(londitioll 1)(11) (10 p(').

procedure for enunmerating the memLers of C0Iby assigning a I to tlle al)propriate
place in the woord F(c) without regard to wvhether the cell has beeli designated
or Inot. Thus there may be as many as four I's in F(c) corresponding to a par-
ticular cell of the configurationi. Applying this proced(lure to the configuration
with 7r(c) = 8I/k, at least k - 8/k of the triples in F(c) Nvill be identical, that
is (111). Assuming no restrictions on the remaining assignments and assuming
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FIGURE 5

Log ir(C) as a function of log k for three configurations:
dots: p(h) = p(v), open circles: p(h) = 2 p(v), triangles: p(h) = 10 p(v).

that any ordering of the k - 1 triples is permissible, the number of possible
words is

(15) 88%/k (8.\/k-) or N[F(c)] < (8 + k)8v1.

TABLE I

A MONTE CARLO-PRODUCED CONFIGURATION
WITH p(h) = lOp(v)

Size of Circumscribed
k Rectangle "Axial Ratio"

36 1.6 X 3.3 2.0
64 1.7 X 5.4 3
104 1.8 X 5.7 3.2
161 2.5 X 7.5 3
273 3 X 9 3
383 4.6 X 11 2.4
534 5.2 X 12 2.3
740 6 X 14 2.3
957 7 X 17.2 2.5
1518 8 X 20 2.5
2114 8.8 X 24 2.7
3230 11 X 30.5 2.8
5001 14 X 37.6 2.7
6938 16.6 X 41.8 2.5
9770 19.5 X 49.2 2.5
15097 22 X 57 2.6
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Recalling the lower bound on C(k) given earlier, we have

N[F(c)] (8 + k8Vk _ F(8 + k)8j Vk
C(k) 3.138k L3.I 3

It is obvious that this ratio converges rapidly to 0 for sufficiently large k.
This result supports the conjecture stated above that when k is sufficiently

large then the fraction of all possible configurations that are likely to be generated
is vanishingly small. If we consider the biological analogue to be a colony of cells
growing wherever there is a nutrient medium we can be quite sure that the colony
will have the largely circular morphology exhibited by the model. If the clone
of cells has a more complicated morphology, for example, an elliptical shape, it
would suggest that there was an additional constraint imposed on the generating
process, perhaps one resembling the unequal probabilities which led to the colony
of figure 4. Paul Weiss has shown that an anisotropy in the nutrient medium of
a tissue culture will produce growth that is reminiscent of this figure [6].
Whether more complicated forms of organization can be described by growth

models such as the one presented in this paper remains to be seen. However, the
combinatorial difficulties are so large that a direct attack seems out of the ques-
tion with the tools presently available. On the other hand, the Monte Carlo sim-
ulation procedures appear to be a fruitful means of exploring growth processes.

I am indebted to Professor Hale Trotter of Queens University, Kingston,
Ontario, for several illuminating discussions as well as for the form of the theo-
rem on equality of probabilities given above. I am also indebted to Mr. Alexander
Vanderburgh of Lincoln Laboratories, Lexington, Massachusetts, for assistance
in programming and operating the TX-2 computer.

K K K ) K
APPENDIX. INTERNAL SYMMETRIES OF THE k-CONFIGURATIONS

The theorem relating graph isomorphism and probability, that is, the esti-
mates of C(k) and of the probabilities of k-configurations, requires certain cor-
rection terms because the effects of k-configurations with internal symmetry
bave not been taken into account. This source of error has been neglected since
the proportion of configurations with internal symmetry is very small for large k.
We sketch below a method for determining an upper bound for the number of

symmetrical k-configurations and show that this bound is of the order of C(k/2).
Consider the k-array, k even (a similar proof can be made for k odd). Any

k-configuration exhibiting rotational symmetry may be decomposed into two
identical k/2 configurations adjoined at one or more edges. Since the maximal
number of open edges in a k/2 configuration is k + 1 the number of such sym-
metrical k-configuration is Srot(k) < (k + 1)C(k/2). Any k-configuration contain-
ing a plane of reflection will have pairs of isomorphic k/2, k/2 - 2, k/2 - 4, * * -

configurations, with the respective planes of symmetry passing through 0, 2,
4, * * * cells. Taken together,
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(17) S(k) < 4
k
+ 1) C (k) + 4 (k-1) C (2-2)

t 6 k(_-3) C (k2-4) +*---

If, as we have discussed in the text, C(k) Ailk, where A and ,u are constants,
3 < AL<4;0 <A < 1.Then

(18) S(k) < 4 (2 + 1) kI2+ 4 (2- k + - < k1

Since Mk/2 will dominate, S(k) will be of the order of (lAk)I/2.
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