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1. Description of the model

The purpose of this paper is to summarize the mathematical aspects of our
more complete study of this subject [1].
From the physiological data available and the working of the respiratory

system as outlined in the foregoing reference, we set up a mathematical model
to represent the more important of the known interrelated physiological functions
and chemical reactions involved in the human respiratory system.

Figure 1 is a schematic illustration of the system and demonstrates the relation-
ship of the inputs and outputs of the mathematical model to the actual system.
The a and v in the figure refer to the amounts of the input "elements" or "build-
ing blocks" coming to the lungs in unit time from venous blood and from the
air. The x refer to the amounts of the resulting numerous molecular species
produced in the arterial blood and in the air of the lung sacs when equilibrium
is reached and as determined by the solution of the mathematical model. At the
present stage outputs of the tissue cells are introduced into the model in terms of
the composition of the venous blood.
The model was constructed to provide an accounting for the mass of all the

elements involved. Having available the equilibrium constants for the molecules
formed, it was possible to establish the thermodynamics of the system within
the model. In order to illustrate our approach, we have extracted a small piece
of our respiratory model. Let us for simplicity set aside most of the substances
found in the blood plasma compartment except for the carbon dioxide dissolved
in water. As shown in table I this will result in the forming of chemical species
such as H20, OH-, H+, C02, HCO03. We suppose everything is held at constant
temperature and pressure and that sufficient time has elapsed for the mixture
to settle down. Our problem is to predict the equilibrium distribution.
To build up the chemical equilibrium model we first distinguished the dif-
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The relationship of the inputs and outputs
of model I to the respiratory system.

ferent molecule types by giving a formula by which they could be formned from
more elementary elements. A simple example of this is H20 which indicates that
water can be formed from two atoms of hydrogen and one of oxygen. Actually
we could use any building blocks we please to build up the molecular types.
Since organic molecules are very complex, we found it more convenient to use
groups of atoms as our building blocks. In our model we used H+, OH-, and CO2.
Thus, water is composed of one unit of H+ and one unit of OH-, indicated by
the position of the entries in the H20 column of table I, while HCO-3 is formed
from one unit of 0H- and one unit of CO2 as shown by the position of the units
in the HC0t column.
To determine the unknown quantities of these molecules, xi, in the equilibrium

mixture we first expressed the chemical law of mass balance. In words, this law
says that the total amount of each type of buLilding block placed initially in the
pixture is equal to the amounts used to form the various species in the mixture.
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TABLE I

A SIMPLE CHEMICAL MODEL

Building Molecules in Mixture
Blocks
(Atoms) H20 H+ OH- CO2 HCO3

0111 1
OH- 1 1 1
C02 1 1

Quantities in Mixture

XH20 XH+ XOH- Xco, XHCOI-

Mass Balance Relations

Input H+ = XH2O + XH+
Input OH- = XH2o + XOH- + XHCO,-
Input CO2 = XCo2 + XHCO,-

The equations expressing each of these relations are shown in the bottom half
of table I and are formed from the top half by multiplying xiby the corresponding
entries in any row and summing.

However, for equilibrium, classical chemistry tells us another law must also
be satisfied, the law of mass action. There are various ways to express this law.
One way is to state that the so-called free energy of the system will "run down
hill" until a minimum is reached. Now the function z which measures the free
energy of the system has the simple form
(1) Z = XH20FH20 + XH+FH+ + XOH-OH- + XCO,-VCO, + XHCOs4PHCOs-
where

(2) FH20 = CHO+log E1 ,O
and so forth. The values of the constants such as CH,O can be found in chemical
tables. All logs are natural logarithms.
The chemical equilibrium model in general can be expressed mathematically

as follows: Let i = 1, . . ., m represent m different types of "building blocks"
that can be used to generate j = (1, * - -, n) different possible types of species
(molecules, ions). Let bi be the number of each type of building block introduced
into the mixture and let xi 2 0 be the number of each species present.
The law of mass balance asserts

n

(3) bi = ai,x i=1, ,

where aii is the number of type i present in each unit of species j (the law of
combining proportions).
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According to Gibbs the total free energy of the system is given by

(4) F(X) = ±c+ log )

where
n

(5) =E xj, X = (xi, * * X.)
j=1

and the equilibrium of the mixture takes place when the total free energy of the
system is at minimum. Therefore, the mathematical problem consists of finding
min F(X) subject to the mass balance constraints and xj _ 0.
To solve this problem, the classical approach is to apply the method of

Lagrange multipliers. It can be shown that this leads to a set of n - m conditions
that must be satisfied by the values of xj. These are known as the law of mass
action. These conditions combined with the m equations for mass balance yield a
system of n equations in n unknowns. Unfortunately, this system is a mixed
system involving m equations linear in xj and n - m equations linear in the
logs of xi and Y. Convergence properties of this mixed system do not appear to
be well understood. On the other hand, it has been shown that F(X) is convex
and it is possible to solve this problem by a sequence of quadratic approximations
to this function; see [2] and also [3]. We have taken this approach in this study.
The model which we actually used, however, involved an extension of these

techniques to a chemical system involving several phases. In particular we were
interested in determining the equilibrium between three parts separated by mem-
branes. In this case it was necessary to introduce a special charge equation and
to rewrite the free energy equation in the more general form

(6) F(X) = xj C + log_ ) + x, (c, + log_ )

+ Ex, (cj + log_=i),
where X,, X-I, Xm are the total number of molecules, expressed in moles, in each
of the parts and the summations are restricted to the species belonging to each
part.

Because this formulation of the chemical equilibrium problem leads to a com-
pact representation of the theory and provides a more direct technique for
solution, we have added a section at the end of the paper reviewing the rela-
tionship of this approach to the usual one found in chemical texts.
The actual performing of the minimization for a full-scale physiological sys-

tem is a very sizable problem. In fact, we think the human respiratory system
represents the largest simultaneous multiphase chemical system whose solution
was ever attempted on electronic computers. We explored the use of both digital
and analog computers for this purpose. An important characteristic of the
analog simulation is that the entire analog system is interconnected in just the
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way hypothesized for the body. This enabled us to see at a glance how a change
in the dial setting for any chemical species was immediately reflected throughout
the analog~system. One can imagine how such a simulator device with more sub-
systems could give a medical student at the controls a feel for the effect of this
or that change on the functioning of the human body.
Having built these computational tools, we were now in position to get around

a fundamental difficulty that confronts physiologists. Usually equilibrium con-
stants for reactions dealing with blood chemistry in vivo are based on standard
blood plasma solutions. This is because it had been difficult to assess the inter-
actions of the many competing substances in the mixture. However, our pro-
cedure allows us to build up a rigorous model based on as many individual
components as we please. Such a model, if it could be constructed, would have
the advantage that it could predict reactions that are far from normal with
regard to blood and environment.
The format of the model we used for validation is shown in table II, in which

HPp = miscellaneous protein in plasma, HBl = 1/4 hemoglobin molecule,
HPr = miscellaneous protein in red cells, and all values cj 0 except c1 =
-10.89; c2 = -7.69; C3 = -11.49; C12 = C24 = -39.23; C4 =-36.44; C13 =
C25 = -21.20; C29 = -16.23; and c15 = C27 = 6.25.
Although this model appears to be complex, the important thing to notice is

that it is just an expansion of the simple format described earlier. The inputs
from lung sacs and venous blood are entered here in the same manner. The out-
put x, or amounts of the species in the three compartments lungs, plasma, and
red cells, appear on the right of the figure when a solution for equilibrium is
obtained. It is noteworthy that most of the important respiration phenomena

TABLE III

INPUTS FOR THE RESPIRATION SYSTEM MODEL

Taken from [4]. Bi denotes 1/4 reduced hemoglobin molecule, mol. wt. 16,500; symbols P,
and Pr represent miscellaneous protein in plasma and red blood cells, respectively.

From Lung-sac Air
(moles per 0.031 From Mixed-venous

Element moles air) Blood (moles per liter) Total

02 a, = 6.4872 X 10-3I , = 6.83 X 10-3 bi = 1.33172 X 10-2
CO2 a2 = 9.27 X 10-1 V2 = 2.27 X 10-2 b2 = 2.270927 X 10-2
N2 a, = 2.44176 X 10-2 V3 = 4.37 X 10-4 b = 2.48546 X 10-2
H+ a4 = 0 V4 = 46.7 N = 46.70
OH- a, = 0 v5 = 46.71973 b5 = 46.71973
C1- a6 = 0 v6 = 0.0814 b6 = 0.0814
Na+ a7 = 0 V7 = 0.08092 b7 = 0.08092
]K+ as = 0 V8 = 0.050 b8 = 0.050
HBl- a, = 0 V9 = 9.09 X 10-3 bg = 9.09 X 10-3
HP- aio = 0 vio = 8.80 X 10-3 blo = 8.80 X 10-3
Hp,- a,, = 0 VI, = 1.19 X 10-2 b,l = 1.19 X 10-2

Charge z a,2 = 0 V12 = 0 b,, = 0
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can be described in detail and rigorously interrelated on one page by the use of
this format. We believe that this compact organization of a large part of the
theory is by itself an important contribution.
As a test we have actually calculated the x, using this model and inputs from

the venous blood and lungs of an average resting adult male (see table III),
and compared them with observed values. The thirty outputs listed in the third
column of table IV are the amounts of the lung gases and chemical species of
the arterial blood as calculated by the machine. In the next column the actual
observed values from physiological tables are shown for the same species.
The representative values listed in the last column were obtained from [4],

p. 272 and p. 52, where they are reported as being observed averages except in
the case of dissolved blood gases, which are reported as "synthesized" and "de-
rived from basic assumptions and factors and constants."
The values in parentheses are "fixed values" in the sense that they can occur

only in the compartment indicated and do not explicitly enter into chemical
reactions as represented in this model. They should be exactly equal to the values
in the last column. Differences in these two sets of values are an indication of
the precision inherent in the computational procedure. The values in compart-
ment I are given in mole fraction to be comparable to the more familiar volume-
percent.

It will be seen that the agreement between the values from the model in
column three and the observed values in column four is quite satisfactory in
most cases.
Comments should be made about some of the calculated and observed values

in table IV to put them in their proper perspective:
1) The values are listed in order for compartments 1, II, and III: lung sacs,

blood plasma, and red cells, respectively.
2) The values for lung sacs are given in mole fraction to be more easily com-

parable to the familiar volume-percent standard. All other values are given in
terms of moles per volume produced.

3) The mechanism of breathing with its complex intermittent flow, mixing,
and diffusion effects has been approximated in this initial study. The total
volume and composition of atmospheric air per liter of blood was not provided
by the source data. However, the air inputs, a,, * * -, a5, can be determined from
the standard composition of atmospheric air at sea level and the known com-
position of lung sac air and the incremental changes of the gaseous elements of
venous and arterial blood. The values of a,, ar,as shown in table III were
established in this manner.

Several other techniques may be used for approximating the breathing mech-
anism. For example, the set of input elements ai, * * *, a6, may be established as
representing a large excess volume of air having the observed composition of the
gases of the pulmonary alveoli of a normal resting male. The assumption intro-
duced by this procedure is that the concentration of gases in the alveoli of resting
individuals does not change significantly during the breathing cycle. Alterna-
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TABLE IV

COMPARISON OF VALUES OBTAINED FROM MODEL I AND OBSERVED BLOOD VALUES

Value from Model Observed Value
Species Quantity (moles/vol. produced) (moles/vol. existing)

Compartment I. Lung-sac Air

02 xl/x 0.1355 0.1315
CO2 X2/X- 0.0547 0.0526
N2 X3/1 0.751 0.754
H20 X4/X- 0.0611 0.0611

Compartment II. Plasma

02 x$ 7.33 X 10-6 6.34 X 10-5
CO2 X6 7.26 X 10-4 6.96 X 10-4
N2 X7 2.23 X 10-4 2.16 X 10-4
H+ xs 2.20 X 10-8 2.104 X 10-8
OH- X9 3.49 X 10-7 3.578 X 10-7
Cl-x1o 5.80 X 10-2 5.7 X 10-2
Na+ xl, (8.092 X 10-2) 8.092 X 10-2
H20 X12 28.859 28.71
HCO3 X13 1.406 X 10-2 1.375 X 10-2
H2CO3 X14 6.62 X 10-21 Not reported
CO; X18 2.22 X 10-$ Not reported
HP,; x1s (8.80 X 10-3) 8.80 X 10-3

Compartment III. Red Cells

02 X17 4.53 X 10-5 6.43 X 10-5
CO2 Xis 4.49 X 10-4 4.73 X 10-4
N2 xus 1.38 X 10-4 2.20 X 104
H+ X20 2.088 X 10-3 2.093 X 10-8
OH- X21 1.406 X 10-7 1.416 X 10-7
Cl- ZR 2.34 X 102 2.4 X 10-2
K+ X23 (5.0 X 10-2) 5.0 X 10-2
H20 X24 17.84 18.00
HCO3 X2 5.67 X 10-3 5.987 X 10-3
H2CO3 X26 4.09 X 10-21 Not reported
CO3 X27 5.84 X 10-6 Not reported
HBl- X28 3.107 X 10-4 3.636 X 10-4
HB102 X29 8.78 X 10-3 8.7264 X 10-3
HP- xs (1.19 X 10-2) 1.19 X 10-2

Total moles
Compartment I 0.0326879 Respiration Quotient
Compartment II 29.021472 (CO2 out)/(02 in) = 0.86
Compartment III 17.9401779 Percent hemoglobin
Compartment II + III 46.9616499 saturation = 96.6

tively, the computer can be programmed to sample the concentrations of 02
and CO2 in either the arterial blood or sac air compartments and to calculate
by a series of iterations the amount of atmospheric air of given composition
required to make these lung or blood values correspond to previously established
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standards. All of these techniques have been used and are satisfactory for
representing the breathing mechanism within their limitations. These devices
avoid the necessity, at this early stage, of combining a physical model of breath-
ing with the present chemical model of the respiratory system.

There are four calculated values, enclosed in parentheses, which are fixed
because these species have no freedom to vary in the present model. These four
calculated values should, therefore, be exactly equal to the corresponding
observed values except for machine and code errors.
The greatest difficulty in validating the model arose in connection with the

representation of acidity and the concentrations of H+ and OH-. The observed
values of acidity in blood are obtained and reported in terms of pH, an empirical
measure. The values calculated by the model appeared to be low in H+ concen-
tration until we applied the correction to the observed pH values as suggested
by the literature [5]. After this correction was made the observed values fell
nicely in line with the values calculated by the machine.

It is of interest to observe the respiration quotient, (CO2 out)/(02 in). The
calculated value is 0.86, a value well within the range for resting individuals.

2. A review of certain chemical thermodynamic concepts

Since the relationship between our formulation of the model and the usual
procedure of expressing a series of chemical reactions and their equilibrium
constants is not readily apparent, we have added the following discussion of
these thermodynamic concepts. Suppose a compartment contains various species
such as H20, OH-, H+, C02, and HCO3, when CO2 is dissolved in the solution.
The amounts of these various constituents depend on the total amounts of water
and carbon dioxide originally "dumped" into the compartment, but their relative
concentrations to each other satisfy certain conditions that are independent of
the input amounts. In general the concentrations (or activities) of the species
at equilibrium have the property that, independent of the input quantities, one
or more ratios of products of concentration among them have fixed values.
These nonlinear conditions are called mass-action relationships.

For example, if we let x denote the total number of molecules in the
mixture, so that
(7) X = XH2O + XOH- + XH + XCO2 + XHCO3-,

where XH2O = the number of nonionized water molecules, XOH- = the number of
ions of OH-, and so forth, and define

(8) N111o = XH O N XOH-

and so forth, to be the concentrations of these species in the mixture, then the
mass-action law states that
(9) NH20

(NoH-) (NH+)=
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where K1 has a fixed value (at constant temperature and pressure), called the
equilibrium constant for the reaction H+ + OH -+ H20. Even if no C02 were
present, or if a salt were added to the mixture, this same relationship would hold
despite the fact that the individual concentrations forming the above ratios
could be changing drastically. Another mass-action relationship that holds among
the concentrations, independent of the amounts of inputs, is

(10) (NHCO;-)(NH+) = K2,(Nco2) (NH12O)
where K2 is the equilibrium constant for the reaction C02 + H20 +-+ HC03 + H+.
The conventional method for determining the equilibrium composition is to find
the values of the five unknown x; that satisfy five equations, two of which are
nonlinear and are the two mass-action conditions given above, while the remain-
ing three are linear and express the mass balance in relation to the original inputs,
as illustrated earlier in table I. However, as noted earlier in this paper, we
have found it more convenient to bypass the mass-action relationships by finding
the equilibrium composition through direct minimization of the free-energy
function subject only to the mass-balance conditions. We wish now to demon-
strate the mathematical equivalence of these two methods.

In general for a chemical reaction represented by
(11) XlPl + X2P2+ -**X,P, + X2Pl +
the corresponding mass-action relationship is

(12) K = (N1)(N2) - -

where the Pj are the reactant species, the Pj are the product species, the X)
and X' are the corresponding numbers of moles of each species, K is the equili-
brium constant, and the Ni and Nj are the concentrations of the constituents
Pi and Pj. We may also state the mass-action law in logarithmic form by taking
logarithms of both sides. Thus,
(13) log K = (X1 log N' + X2 log N2 + ***)

- (X log N, + X2 log N2 + .

It is important to note that a chemical-reaction equation, denoted by (11),
is simply a relation among the column vectors PT of input elements aij associated
with each species Pj. Thus if we denote Pi = (aij, a23, * *, a,j), we have, cor-
responding to (11),
(14) x1T5 + X2P2+ *-- =XTh+ X2MP2 +
This is easily seen from an example. Suppose H+ and OH- are considered input
elements forming species H+, OH-, and H20. We form table V,
where the entry aij in row i and column j is the quantity of the input element i
found in the species j. It is clear that the chemical reaction H+ + OH- +-+ H20
is simply a statement about the corresponding column vectors in table V, namely,
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TABLE V

EXAMPLE; OF CHEMICAL-REACTION EQUATION AS A RELATION
AMONG COLUMN VECTORS Pi

Species
Input

Element H+ OH- H20

H+ 1 0 1
OH- 0 1 1

(15) [

We shall now show that the mass-action law holds for the values of xj that
minimize

n
(16) F(X) = xjj,

j=l

where in particular F3j is given by

(17) F = RT (cj + log ).

As noted earlier, this expression for Fj is essentially an approximation for dilute
solutions and ideal gases of the more general expression (18) below. It will be
assumed unless otherwise stated that
(18) F- = RT(cj + log a1),
where each a3, the "activity," is some function of the concentration xj/X; that
is to say, aj (and hence Fj, the free energy per mole of the jth constituent)
remains unchanged if all quantities xj are increased proportionally. We now
establish the following mathematical theorem:
THEOREM. If for every j, Fj = Fj(xj/x) is a function of xj/l only, then

(19) F = j = 1,*.*, n.

Because of (19), FP is commonly called the partial molar free energy of the jth
constituent. To prove this relation note first that the free energy F(X) is a
homogeneous function of degree one in the variables (xi, - * *, xn), and for any
homogeneous functions of degree one it is generally true that

(20) F(X) -F- .E l dx-
This relationship (20) is known as Euler's theorem for homogeneous forms of
the first degree. In words, it says that total free energy can be determined as if
OF/Oxj is the contribution of the jth constituent per mole.
The foregoing theorem is easy to prove. We shall establish it as follows.

From (18), the assumed homogeneity of degree zero for FP, for all t, we have
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(21) tF(xi, * * * X Xn,)--_F(txl, * * * , tx..).
Hence, taking the partial derivative of both sides with respect to t, we obtain

(22) F(x1, **., x.") _ ;F(txl , tx) Xi,i1 O(txj)
Setting t = 1 yields (20).
To establish (19) we now assume that F(X) is given by (16), where Fj=

Fj(xj/x), and take the partial derivative of F(X) with respect to xj. This yields

(23) OF= + E Xk - i = 1, * **, n,clxj k-1 -ay
where we have replaced OFk/lxJ by OFk/la since ax/lXk = 1. We now show
that the summation term vanishes. Multiplying both sides by xj and summing
on j yields, by relations (20) and (16),
(24) 0 = (X1 + X2 + * + X.)( E Xk d)

Since x >_ 0, and '2 1lx,> 0, the second factor of the product must vanish
and (19) follows from (23).
Having established that FP = OF/Oxj, let us turn to the main problem of mini-

mizing the free-energy function F(X) subject to mass-balance constraints
n

(25) oi(X) = E_ aijxj -bi = O, i = 1, ..

I*,m.
j=1

We now review the Lagrange method for minimizing a general function F(X)
subject to m general constraints, 4i(X) = 0, and later specialize the functions
,i. The first step is to assign unknown multipliers wri to the functions oi(X) and
seek the unconstrained minimum of the function
(26) G(X) = F(X) - irlqi(X) - wr242(X) - 7rmo.m(X).
If for some choice of wri, the point X = XI where the minimum of G(X) occurs
happens to satisfy the constraints 4 .(XO) = 0, then this unconstrained minimum
point XO for G(X) is the constrained minimum point for F(X). To see this, note
that min G(X) = G(XO) = F(XO), and that for all otherX that satisfy Oi(X) = 0
we have F(X) _ F(XO) because F(X) = G(X) > min G(X) = F(XO). When
F(X) possesses partial derivatives and assumes its minimum at some interior
point of the domain of definition, it can be shown that such multipliers always
exist. We now specialize oi(X) to be linear as given by (25). In this case we may
rewrite G(X) by collecting all terms with common xj, obtaining
(27) G(X) = F(X) - E (rPj)xj + 7rb,
where 7r = (7r1, 72, * , 7m) is a row vector, Pj = (a1;, a2i, * - *, aj,) is the col-
umn vector of coefficients associated with species j defined earlier, and b =
(b,, b2, * * * , bm) is the column vector of constants. The coefficient of xj is the
constant riPj and depends on the choice of ir. At an unconstrained minimum of
G(X), X satisfies
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(28) aF ( p 0

for any choice of 7r. Also for any given chemical reaction (11) we may multiply
the corresponding vector relation (14) by 7r, obtaining
(29) Xl(7rP,) + X2(rT32) + * - = 2(Th)+ 2(ir2) + *--
which holds for any choice of 7r. Thus, substituting OF/Oxj= rPj, we have

(30) O~~cF aFOFXIaF X ,OF(30) XI 49xl +tx Ox2 O+ x1 + 2 dx2
which holds for the X that minimizes G(X) for any choice of 7r. Since F has a
special form (16) that satisfies OF/axj = Fj, we also have, for any such X,

(31) l-rl + X2F2 + * T-= X + X2F2 + .
If we further set

(32) F; = RT(cj + log a3),
then upon substitution, rearranging of terms, and dropping of the common factor
RT, we get the relationship

(33) (Xlcl + X2c2 + * ) - (Xll + X2C2 + * )

= (Xi' log al'+±2 log a2 + * * *) - (Xilog a, + X2 log a2 +* *)
for all X that minimize G(X) for any choice of 7r. In particular, for that 7r that
yields X = XI satisfying the mass balances oi(X) = 0 and thereby minimizing
the free energy F(X), this same relationship must hold. But this holds even if
we start out with a different set of bi values since the expression is independent
of bi. If we define
(34) log K = (,cl + Xc2 **)*--(XlCl + X2c2 ...

then (33) establishes the mass-action law in logarithmic form and in terms of
activities. If the activities are given by aj = xj/X, then this is the same as the
mass-action law stated earlier in equation (13). If

(35) a1 = yj_'

where -yj is some constant, this also yields the mass-action law stated earlier
with an adjusted value for log K. In this manner, the cj values from the free-
energy function can be used to define the equilibrium constants, and conversely
as shown below.

3. Determining Cj values from equilibrium constants

As was noted earlier, the equilibrium constants for many common reactions
are tabulated in physical-chemical tables.
We wish to discuss how to adjust the cj values so that the equilibrium constants
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are directly applicable to the model. To be precise, we note that for those x that
satisfy the mass balances, the expression for F(X) may be replaced by

(36) F(X) = E Xj + log x-i) kibi,

where the ki are constants and the ej bear a direct relationship to the equili-
brium constants. The numbers ki were selected so that when multiplied by the
ith mass-balance equation and the m equations summed and subtracted from
F(X), m of the new coefficients of the xj, denoted cj, would vanish. In place of
the original function F(X) the function

(37) G(X) = E Xj ej + log x)
was minimized subject to the mass-balance constraints. Since the two functions
differ by a constant, _=lkibi the value of X = XI that minimizes F(X) also
minimizes (GX).
Any m of the ej can be made to vanish by suitably choosing the ki values,

provided that the square array of coefficients [aij] associated with these j is
nonsingular, that is, provided that their determinant 5 0.
For model I the cj values associated with species H+ and OH- in compartment

II, among others, were made to vanish
(38) CH+ = COH- = 0.
Now the equilibrium constant for water does not depend on whether we use
cj or ej values for its definition in (34), its value being the same since it must
yield the same right member of (33). Hence, for compartment II species,
(39) log KH2o = CH2O - CH+ - COH- = C2HO.
In other words, the value of e12 = CH2o can be directly obtained from the equili-
brium constant for water. In the next section the entire set of n - m remaining
cj values is evaluated in this manner from equilibrium constants.
No attempt was made in the construction of model I to determine the absolute

cj values as defined in terms of Fj values. All cj values shown are the relative
cj values as obtained from equilibrium constants.

4. Determination of free-energy values

So far we have described the operation of the model in terms of the several
compartments, the thermodynamics involved, the inputs, and the mass and
charge conservation constraints. We shall now discuss the numerous chemical
reactions involved, how they are represented in the model, and how the mass-
action or partial-molal free-energy constraint operates (with the others) to yield
an equilibrium solution. The mass-action equations describe the formation of
the molecular species of columns xi, - *, x30 in the three compartments, I:
Air Out, II: Arterial Plasma, and III: Red Cells, and relate similar species
occurring in more than one compartment (see table II).
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For example, the entry 1 in column 12, row 4, compartment II; the entry 1
in the same column, row 5, and the entry c12 in the bottom row together express
the chemical equation, H+ + 0H H20, in the mass-action form,

(40) log [H J0]11 = C12,

where c12 = log Kr,o and K. is the ionization constant for water on the mole-
fraction scale at 370 C. It was shown previously that constants such as c12 derived
from equilibrium constants may be used in the model with the same results as
if the individual FO/(RT) values for each species were obtained from tables and
used.

In a manner similar to that described for the water reactions, the other re-
actions involved are entered in the model. For the same species occurring in
both compartments II and III, the assumption is made that their original
energy coefficients c; (not necessarily c; values) are the same in both compart-
ments. This results, for example, in [02]II = [0211II. The other reactions and
their cj values are given in table VI. In this table the species are shown in square

TABLE VI

REACTIONS AND FREE-ENERGY VALUES FOR MODEL I, 370C

Column Mass Action Cj = log K

(1) log [02]II/[02]I -10.89
or III

(2) log [CO2]II/[CO2]I -7.69
or III

(3) log [N2]ii/[N2]i -11.49
or III

(12)(24) log [H+]II[OH-]II/[H20]II -39.23
or III or III or III

(4) log [H+]Ii[OH-]ii/[H20]I
or III or III

= c12 + log [H20]II/[H20]I -36.44
or III

(13)(25) log [C02]II[OH-]ii/[HCO3 ]II -21.20
or III or III or III

(29) log [02]III[HBl ]III/[HBl02 ]III
= cl + log [02]I[HBl-]iiI/[HBl02j]II -16.23

(14)(26) log [C02]ii[H20]II/[H2C0]3II 0
or III or III or III

(15)(27) log [C02]II[OH ]II/[C03 ]II[H+]ii 6.25
or III or III or III or III

brackets, indicating concentration in mole fraction. The cj values were calculated
from the K values shown in table VII all converted to the mole-fraction scale,
and are the adjusted ej values referred to earlier. The values of c, = 0 for all
the columns not listed in table VI.

It is important in applying these data to the model, that the K values from
the literature all be converted to the same scale (that is, molar, molal, or mole
fraction). Most K values are reported on the molal scale, some on the molar,
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TABLE VII

EQUILIBRIUM CONSTANTS

Column Equilibrium Constant Reference

(1) K = 0.0232 [6], p. 54
(2) K = 0.5672 [7], p. 1092
(3) K = 0.0127 [6], p. 54

(12)(24) log1o K = -13.55 [8], p. 152
(4) logio K = logio K. + logio [H20]ii/[H20]I,

or III
logio [H20]iI/[H20]I = 1.21396 [7], p. 1465

or III
(13)(25) logio K = loglo K.f - logo KiH,COJ

logio K1H,co.= -6.09 [4], p. 272
(29) log,o K = -7.0486 [6], p. 64

(14)(26) logio K = 0 [8], p.244
(15)(27) logioK = log10 [CO2,II[OH ]II/[HCO3-]iI(K2H2co,)I

log,o K2u,co, = -10.25 [7], p. 1198

and in some cases, unfortunately, the scale is not indicated. All K values were
converted to the mole-fraction scale for use in the model. It is also important
that the K values are those for the temperature of interest (310.18 Kelvin in
the model so far), or are converted to the value for Ks10.18 if the necessary thermo-
dynamic data permit. At a later stage the appropriate thernodynamic functions
can be introduced into the model, relating free energy to temperature and pres-
sure, and perhaps to electrical and gravitational fields and to surface effects.
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