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1. Introduction

The characteristic of a mortality study is that the basic event, the death of
an individual, is not repetitive. Suppose we wish to assess the congenital mal-
formation as a cause of infant death; how shall we count the malformed child
who dies of tuberculosis in his first year of life? The risk of death due to the
congenital malformation no longer exists, but neither can he survive the condi-
tion until his first birthday. It is clear that the evaluation of congenital mal-
formation as a cause of death must allow for the effect of all causes operating in
the human population. To take a second example, perhaps the problem is to
estimate the length of time between diagnosis and death due to coronary heart
disease. A study group of diagnosed cases is formed, but a number of them will
die from other diseases before the observation period is ended. How can we cor-
rect our estimate for the competing risks? In another study, we may be interested
in the susceptibility of individuals with a certain chronic condition to other
diseases. Is a diagnosed case of arteriosclerotic heart disease more likely to die
from cancer than a person without the heart condition? How can we take into
account the competition between arteriosclerotic heart disease and cancer for
the life of the heart patient?
To answer these and similar questions, the investigator may explore three

general types of probabilities of death with respect to a specific risk: (1) the crude
probability, (2) the net probability, and (3) the partial crude probability. Sym-
bolically, they are defined as follows. To describe death from a specific risk,
say Rk, we have the crude probability

Qzk = P{an individual alive at time x will die in the interval (x, x + 1) from
risk Rk in the presence of all other risks in the population};

the net probabilities
qxk = P{an individual alive at x will die in the interval (x, x + 1) if Rk is the

only risk of death acting in the population},
qz.k = P{an individual alive at x will die in the interval (x, x + 1) if Rk iS

eliminated as a risk of death from the population};
This investigation was carried out during the tenure of a Special Research Fellowship from
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and the partial crude probabilities
Qzk.l = P{an individual alive at x will die in the interval (x, x + 1) from Rk

if R1 is eliminated from the population},
Qk*.12 = P{an individual alive at x will die in the interval (x, x + 1) from Rk,

if R1 and R2 are eliminated from the population}.
When risk of death is not specified, we have the probabilities

p- = P{an individual alive at x will survive the interval (x, x + 1)};
qX = P{an individual alive at x will die in the interval (x, x + 1)};

and obviously p. + q. = 1. These probabilities are basic to the study of survival
and analysis of the life table. In the human population the net and the partial
crude probabilities are not observable except as they are related to the crude
probability. A study of their relationships is part of the problem of competing
risks.
The notion of net and crude probabilities is not new and their relationships

have been discussed variously in the literature. An early theoretical approach to
the problem was made by Bernoulli [9], and in 1874 Makeham explored some
practical applications of the theory [8]. Interesting investigations have also been
made by Karn [6], Fix and Neyman [4], Cornfield [3], Kimball [7], and Jordan
[5]. Formulas expressing relations between net and crude probabilities were
developed either under the assumption of a constant force of mortality (instan-
taneous death probability) for a given risk or under the assumption of a uniform
distribution of deaths. We shall review these relations under a weaker assump-
tion.

Partial crude probabilities have not received as much attention as they deserve
in view of their usefulness in the study of cause-specific mortality, to which they
are sometimes indispensable. Relations between the partial crude and the cor-
responding crude probabilities will be developed in this paper. The problem of
estimation will also be treated. A brief account will be made of the medical
follow-up study to illustrate an application of the theory of competing risks.

2. Relations between crude, net, and partial crude probabilities
Suppose there are c risks (or causes) of death acting simultaneously on each

individual of a population and let these risks be denoted by R1, - * *, R,. For
each risk Rk there is a corresponding force of mortality, vTk, with the probability
v1kAr + O(AT) that an individual alive at time T will die in the infinitesimal time
interval (r, T + Ar), for k = 1, * - *, c. The sum

(1) V71 + * * * + Vfc = A,

is the total force of mortality. While for each risk Rk, the force of mortality vrk
is a function of time Tr we shall assume that, within the time interval (x, x + 1),
the ratio

(2) - rk, x < _T< x + 1; k = 1, c,
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is independent of time r, but is a function of the interval (x, x + 1) and risk Rk
only. Assumption (2) permits the absolute magnitude of the cause-specific force
of mortality to vary at any instant, but requires that it remain a constant pro-
portion of the total force of mortality throughout an interval.

Consider death without specification of cause. Using the pure death process
[1 ] it is easy to show that the probability that an individual alive at x will survive
the interval (x, x + 1) is given by

(3) px = exp (-|Z+l u,dr)
and the probability of death in the interval is q. = 1 - p.. Similarly, when Rk
is the only risk in effect, the net probability of death in the interval is given by

(4) qzk = 1 - exp (- VTk dT), k = 1, *.. ,c.

The crude probability of death from Rk may be written as

(5) Qzk = J exp (-| &rdT) v,kdT, k = 1, ...* c,

where the first factor of the integrand is the probability of surviving from x to r
when all risks of death are acting and the second factor is the instantaneous
death probability from risk Rk at time r. Using assumption (2) of a constant
relative risk, we have

(6) Qzk = 1 exp f- AT dT)M, dr

Pk - exp (- A d)] = Pk qx
or

(7) = QXk x < x+ 1; k =1,**,c.
/.'r qx

Equation (7) is obvious also from an intuitive viewpoint. If the ratio of the cause-
specific force of mortality to the total force is a constant throughout an interval,
this constant should also be equal to the ratio of the corresponding probabilities
over the entire interval. Equations (6) and (1) imply also a trivial equality,

(8) Q., + -- + Q.c = qz.
Now the net probability of death as defined in (4) is rewritten as

r1;X+1
(9) qzk =1-exp _.Ar.4 dr)I
Using equation (7), we have from (9) the relation between the net and the crude
probabilities
(10) qzk =1-pQz/2, k =1,***,c.
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The net probability of death when cause Rk is eliminated can be derived in the
same way. By reason of symmetry we have

(11) qz.k = 1 - exp (-Ix+ (.T - Vrk) dr)
-(Q/ k = 1, - --, c.

Although relations (10) and (11) have been known for quite some time, their
derivation is usually based on the assumption of a constant force of mortality
or of a uniform distribution of deaths in the interval (x, x + 1). These assump-
tions are often violated. In the first year of life, for example, the force of mor-
tality tends to be a concave function of time; it starts with a maximum value
at birth and decreases rapidly with increasing age. The assumption of a constant
force of mortality is certainly not realistic in this case and the validity of any
relationship based on such an assumption must also be questionable. It is com-
forting to note, therefore, that relations (10) and (11) still hold under the rela-
tively weak assumption in (2).
The following observations may be of interest. First, because of the absence

of competing risks, the net probability qzk is always greater than the correspond-
ing crude probability Q-k. The inequality Vk < p, implies

(12) exp (-fr VTkdT) > exp (-| ATdT)
whatever may be x < T < x + 1; hence

(13) qk = |1 exp (-fTkr dT) V,k dr

> |
1

exp ( _l ATdT) Vk d, = Qzk-

Second, if two risks Rh and Rk are such that the corresponding crude probabilities
have the relation Qxh > Q,k, it is easily seen from (10) and (11) that the corre-
sponding net probabilities will have the relations qzh > qxk and q..h < qr.k. Third,
the probability of surviving more than one interval is the product of the prob-
abilities of surviving the subintervals. The probability of surviving the interval
(0, y) when risk Rk is eliminated, for example, may be computed from

(14) exp [- (f A - VTk) dT] = fi (1 - q..k) = JJ PX2zQxk)/Qz.

And fourth, if a constant relative risk (2) is assumed over the entire interval
(0, y), then the net and crude probabilities over the interval (0, y) will have
relationships similar to (10) and (11). Thus the probability of surviving the in-
terval (0, y) when risk Rk is eliminated is given by

(15) exp [-17 (
,VTk) dT] = O

)

where Poy, the probability of surviving from 0 to y when all risks are acting, is
given by
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(16) Poy = exp (-f0fu7dr),
and Qoyk is the crude probability of death in the interval (0, y) from risk Rk in
the presence of competing risks in the population. Clearly (15) is a special case
and may be rewritten in the form of (14). Since po, is equal to the product
pop, ... py-l and since in the present case (7) implies the equalities

1 - POY- QOzk qx
- Qxk(17) 1-Pol, qx Qz X 1X

the right side of (15) becomes
8-1 (1Ay-osk/(lsy) v-1

(18) p(l-Poy-Qovk)/(lAP1u) - 1:(PQ) [II p(q-Qzk)/1q.
X=0 ~~~~~~x=0

which is identical with the last expression in (14).
Suppose now that R1 is eliminated from the population as a risk of death, and

let Qxk.l be the partial crude probability that an individual alive at time x will
die in the interval (x, x + 1) from risk Rk in the presence of all other risks, for
k = 2, * * *, c. We wish to express Qzk.1 in terms of the probabilities px, qx, and
the crude probabilities Qzl and Qk- Using the multiplication and addition theo-
rems as in (5), we have

(19) Qxk.1 = | exp [-f (UT - vT1) dT] P,k dT.

To simplify (19), we note from (7) that the ratio Vrk/(Mr- V,1) is equal to
Q.kl(q - Q.,) and is independent of time T, for x < T _ x + 1. Now the partial
crude probability may be rewritten as

(20) Qxk.1 Vk i exp - (YT - VT1) dT vT) dTr

Q_ {1 - exp [_J (/r - V,1) dT]} = QkQ_ qz

Substituting (11) for k = 1 in (20) gives the final relation

(21) Qzk.1 = - [1 pz ] k = 2, c*, c.

The sum of Qk.1, for k = 2, . , c, is equal to the net probability of death
when risk R1 is eliminated from the population, for equation (8) implies

c

(22) EQ = qx - Qxl;
k=2

hence

(23) L Qxk.l= f Q[1 - pz ] = 1p =qz.l
s oeihh k=2eqx-iQxi

as one might have anticipated.
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Generalization of formula (21) to apply to cases in which more than one risk
is eliminated is straightforward. If, for example, both R1 and R2 are eliminated
as risks of death, the partial crude probability that an individual alive at time
x will die in the interval (x, x + 1) from risk Rk is given by

(24) Qk.12 qx- Q21- Qz2 x k = 3, *-* , c.
In the discussion of these three types of probabilities, it is assumed that

both qz and pz are greater than zero but less than unity. For if qz were zero
(p. = 1), then Qxk will also be zero, for k = 1, * * *, c; therefore the ratios Qxk/q,
Q.k(q - Q.,), and (qx - Qzl)/q, and consequently formulas (10), (11), (21),
and (24), will all cease to be meaningful. In other words, if an individual were
certain to survive an interval, it would be meaningless to speak of his chances
of dying from a specific risk. On the other hand, if pz were zero (qx = 1), we can
see from (3) that the integral f+1 /X, dr would approach infinity, which is for-
tunately an unrealistic outlook for the human population. Thus the crude, net,
and partial crude probabilities are defined only for positive values of px and q,.
REMARK 1. An important assumption made in this paper is that the forces

of mortality are additive [equation (1)]. It is assumed that risks of death act
independently of each other and that the elimination of one disease has no effect
on the force of mortality of other risks. How true this assumption is must depend
in part on the disease in question and its complex relationship with other diseases
in the particular host population. While the proper experimental verification of
the assumption is not practicable in the human population, the following dis-
cussion may indicate how this important aspect of the problem might be ap-
proached.

Consider two groups of individuals. Each individual in the first group is known
to be free from disease R1 at the beginning of the time interval (x, x + 1),
although he may contract RI and die before the interval ends. The forces of
mortality operating in the group are denoted by PTk and the corresponding prob-
abilities of death by qx, qk, q.,k, and Qk.1, for k = 1, * * *, c. These probabilities
are similarly defined and have the same relations as in equations (1) through (21).
The second group consists of individuals each of whom is known to be affected
with disease R1 at the beginning of the interval (x, x + 1), and each is subject
to the forces of mortality 4,l2, for k = 1, - * *, c. The sum

(25) 42+* + VT2 = I41
is the total force of mortality. The net probabilities qz1t2 and qglJ, the crude prob-
ability QX(W, the partial crude probability QX(21, and the probabilities qz") and p(l)
have the same relations as those in the first group; for example, the net prob-
ability of death if risk Rk acts alone is given by

(26) q(i2 = 1 - exp [-7 VTk dr 1 [pz]0) , k = 1, c,
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where

(27) q<j) = 1 _-(=1- exp [-fx+l (1) dr],

and Qx'k) is the corresponding crude probability.
Our interest is in the relative changes in the forces of mortality due to some

other risk operating in the two groups, say in a comparison of v,2 and v.2', or q.2
and q,(2) due to risk R2. From a practical viewpoint, this may determine whether
an individual affected with one disease (R1, in this case) is more likely to die from
a second disease (R2) than an individual not affected with R1. Theoretically, if
q_J2 is shown to be equal to q4, then it may indicate that elimination of R1 from
the population will have little effect on the force of mortality of R2. If the equality
qxk"=qxkholds whatever may be h #! k, for h, k = 1, c, then the assump-
tion of additivity as given in (1) probably is not too strong.

Actually, for a particular risk in question, R1 say, assumption (1) is not neces-
sary. In order that relations (10) and (11) hold for k = 1, it is only necessary
that the total force of mortality be partitioned into two additive components:
the component associated with R1 and the component not associated with R1.
Symbolically,
(28) ,Ax = vxl + (mz- Vxl).
Similarly, the necessary assumption for relation (21) to hold for k = 2 is that

(29) Auz = Vzl + VzA + (JAz - Vzl - vP2).

Some indication for the validity of these assumptions may be obtained from the
comparison between q2.. and q'%, and between Q4., and QMx2.

3. Estimation of the crude, net, and partial crude probabilities
Consider a group of N. individuals alive at time x, who are to be observed over

the interval (x, x + 1). By the end of the interval there will be s. survivors and
Dmk deaths from cause Rk, for k = 1, * * *, c; or a total of

(30) Dxl + * + Dxc = D.
deaths from all causes. Obviously
(31) sm + D.1 + + D = N.
and the sum of the corresponding probabilities [compare equation (8)]
(32) Pz + Qxl + * *- + QXC = 1.
It follows that the number of survivors and the number of deaths from each cause
have a multinomial distribution, and the probabilities in (32) will have the esti-
mators

(33) P -, x
= I

N..N
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and

(34) Dxk= D.k k = 1,.* , c,
with variances

(35) CA = = Pz

and

(36) Q.= NQzk(l- Qk), k = 1, --- c;

and covariances

(37) 0Px,ask = -N p2Q2k, k = 1, ... c,

and

(38) Q-N k h # k; h, k = 1,* , c.

REMARK 2. In the above discussion Nz is treated as a constant. If the problem
is visualized from a point in time prior to x, then the number of individuals sur-
viving to x is a random variable. In this case, the estimators in (33) and (34)
remain unchanged, but the quantity 1/N. in formulas (35) through (38) for the
variances and covariances of the estimators should be replaced by its expectation
E(1/Nz) as shown in [1]. Further, if two or more time intervals are considered
simultaneously, it will be more convenient to have an explicit formula for the
generating function of all the random variables, sz, Dz, ... , Dxc for x =
O, * ,w, say,

(39) G = E [I1 {tX A t;k}INo at x =O
Z=0 k=1

where sz = Nz+l, the number of individuals alive at the beginning of the interval
(x + 1, x + 2). It is easy to show by induction (see also [1]) that the generating
function (39) is given by

(40) G = E Qoktok + E [ pt. ( E Qyktyk + H pjt
k=1 v=l X=0 k=1 2=0

Direct computation from (40) gives the joint probability function

(41) ftS,D~w Nx! SD.!PQDt ... QDse(41) zId sz!DZ,l!...Dx,! XSQz **Q

and the joint moments; for example,
(42) NN,IN. = NOPOY(1 - Po), 0 < x _ y,
where POx, the probability of surviving from 0 to z, is given by (16). Although
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the random variables Nz and NV are linearly correlated, the estimators of the
probabilities over two time intervals are not. For example, the estimators P. and
P, have a zero covariance, but they are not independently distributed. A detailed
discussion on this point is given in [1].
To derive formulas for the estimators of the net and the partial crude prob-

abilities, we substitute (33) and (34) in formulas (10), (11), (21), and (24). As a
result we obtain

(43) qk 1 (s k = 1, . c,

(44) q.k = 1- (S )(D-Dz)/D k = c,

(45) Qzk1 = DD=, [ ( D) i)D] k = 2, c,

and
Dxk )z\(Dz-D.1-D.2) /D.

(46) Qzk.12 = D - [1 (z) k = 3, * * , c.

Here again, the sum of the estimators Qzk.1, for k = 2, * , c, is equal to the
estimator q.,

(47) E Q E D 1

(S \(D.-Dz./D A

= 1-tN ) = qz.i.
Although formulas (43) through (46) for the estimator of the net and the

partial crude probabilities are quite simple, the exact formulas for their variance
and covariance are difficult to derive. Approximate formulas, however, can be
developed by the delta method; for example, for the variance of the estimator
qzk, we first write

(48) 2 4.k4±.. z2°xk2+k + 2 J 4Q.kj zIfOQk j + fWo Zj VzxQkA O

where the partial derivatives are taken at the true point (Qzk, plz). Using formulas
(35), (36), and (37) for the variance and covariance, we have after simplification

(49) 1 -= [p. log (1 - qzk) log (1 - qz.k) + Q2k],
k =1,***,c.

Using the same approach, we obtain the covariances

(50) = (1 - qz)-(1 qzk) [p. log (1 - q.h) log (1 - qzk) -QhQzk]
h # k; h,k = 1, *-,c;
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and

(51) N.(1qzk)Q2k k = 1, ** ,c.

Approximate formulas for the variances and covariances of the estimators 4z.k
and Q1k., can be obtained in the same way. For the sake of completeness, they
are listed below.

(52) 2 = ( k) [Pz log (1 - qzk) log (1 - qz.k) + (qz - QZk)],N.p.q.
k = 1, *** c,

(53) Qq.-z q= - (1 .h) (1 - qz.k)

[p. log (1 - qzh) log (1 - qzk) - (q. - Qzh)(q. - Qzk)]
hzck; h,k=l,y. ,c,

(54) (1 - qz.k)(qz - QZk) k c,

(55) -q - Ql- Qk
(55) a4Ok.l N.(q. - Q.1)Q.k Qx.

+ [Qzkl(q. QX1) -Qk]2 [(q - Q.) + Q1p. f°g p}]'
k l= ...* ** c,

Qh.Qh.zQk.1
(56) O*OzA.1.&Zk.1 = N.(q3, - Q.,)

+[Q.h.l(q.- Q.,) - Qxh] [Qxk.1(qz - Qxi) - Qzk]
NZpqp(q. - Q.,)

[(qz - Qzl) + Qzlp2{l-}2] k = 1, *.. c,

and
(57) = [Qz - Qzk (gz - QJ1)], hh k; h, k = 2, *.- *c.

Since the sum of the estimators Q_,k., for k = 2, * , c, is equal to 4.i [equa-
tion (47)], the following relations should hold for the variances and covariances

(58) _2.,., + 2 h_ F . = .,k-2 h=2 k=h+l
and

c

(59) kE O-Ok.,..^ = aop
When (52), (54), (55), (56), and (57) are substituted into (58) and (59), we have
two identities which can be proven by direct computation.
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4. An application to the follow-up study

The application of the theory of competing risks to a medical follow-up study
was illustrated with actual data taken from the files of the Tumor Registry of
the California State Department of Public Health [2]. A brief account of the
problem is given below.

In a medical follow-up study conducted over a number of years, patients are
admitted continuously over the entire study period and are observed until
death or until the study is terminated, whichever comes first. The time of ad-
mission is taken as the common point of origin for all patients; x is the exact
number of years since admission and N. the number of patients who survive to
the end of x years of follow-up. The number of survivors will decrease as x in-
creases, not only because of deaths, but also because of withdrawals consequent
to the closing of the study.

Consider a typical interval (x, x + 1). The Nzsurvivors who begin the interval
can be divided into two mutually exclusive groups according to their date of
admission into the study. First we have a group of mz patients who entered the
study more than x + 1 years before its closing date. Out of these, 5. will die dur-
ing the interval and s. will survive to begin the next interval as N.+,. The B.
deaths will be further divided into c groups according to the cause of death. The
second group of n. patients entered the study less than x + 1 years before its
termination, and hence are all counted as withdrawals in the interval (x, x + 1),
because for them the closing date of the study precedes their x + 1 anniversary
date. Let us say that w. will survive to withdraw alive and ez will die before the
closing date. The ef deaths will again be divided into c groups by cause.

Clearly, the estimation of the probabilities discussed in the present paper
should be based on information regarding both the cause of death and the with-
drawal status of the patient. This was done in [2]. Under the assumption of a
constant force of mortality for each risk of death and uniform distribution of
the n. withdrawals within the interval (x, x + 1), the estimators of p., q., and
the crude probabilities QZk turned out to be

(60) P { +[2(Nz_ -z)( ) 1 -

and

(61) =D.* k=l,---,c.

Here DAk is the number of deaths from cause Rk in the entire group N. and the
total number of deaths

(62) Dx = Dxl + ** + Dxc = &x+ e.

Substituting (60) and (61) into (10), (11), (21), and (24) gives the estimators
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of the net and partial crude probabilities. They are similar to (43) through (46)
except that s1/N, will be replaced with P., as given in (60).
Approximate formulas for the variances and covariances of these estimators

are similar in form to equations (35) through (38) and (49) through (57) in the
ordinary case, with the difference that N. is replaced by M. where

(63) = mX + + + p1/2;
for example, the approximate formula for the variance of P. is given by

(64) = 1
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