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1. Introduction

One of us has discussed the use of the logistic function

1

1.1) Pi:l_Qi:m

as a model for analyzing bioassay or other experiments with ‘“quantal”’ response,
and has studied the problem of estimating the parameters o and 8, in several
papers (see [1] and the references given therein). At each of k dose levels
Zi, + -+, 2 we perform n trials. It is assumed that the number R; of responses
among the trials at dose level z; has the binomial distribution with probability
of response P; given by (1.1), and that all trials are independent. On the basis
of the observed values r; of the random variables R; we wish to estimate the
parameters. The problem also arises in the one-parameter form, where g is taken
to be known and only a is to be estimated. It is solely with this one-parameter
problem that we are here concerned.

Various estimators for « may be proposed, on the basis of various general
principles, such as those of maximum likelihood and minimum chi-square, these
having certain desirable asymptotic properties. But realistically, what is of
interest is the performance of the estimates for small or moderate sample sizes.
In studying the actual performance of the estimates, it was considered necessary
to use specific numerical values for the quantities involved. In [1] the mean
square errors of several estimators were computed and compared for n = 10,
k=3 z,=—1,2,=0, r; = 1, and with 8 = log (7/3). This value of 8 was
chosen so that when @ = 0 we have P, = 0.3, P; = 0.5, P; = 0.7. Five different
values of « were taken, corresponding to P, = 0.5, 0.6, 0.7, 0.8, and 0.85, and
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78 FOURTH BERKELEY SYMPOSIUM: BERKSON AND HODGES

the mean square errors found for the maximum likelihood estimate, minimum
Pearson chi-square estimate, and minimum logit chi-square estimate, and to the
estimate obtained from the last by the averaging technique of Blackwell and
Rao. This estimate, the ‘“Rao-Blackwellized minimum logit chi-square estimate,”
we shall denote by B. The mean square errors of these estimates were compared
with each other, and with the so-called “information limit”’ 1/I(«), where I(c)
is the quantity called by Fisher the amount of information provided by the
experiment.

The total number of successes B = 3 R;, which is a sufficient statistic, has
the frequency function

(1.2) o(r,a) = (@1 Q2 Q) X (%)ﬂ“ﬂ(n,)(%)(na),

T J\T2 /\T3

where the sum is extended over all ry, 75, 73 for which 3 r; = r. The quantity

TABLE 1

VALUES OF THE FREQUENCY FUNCTION ¢(r, 0) AND OF SEVERAL ESTIMATES
The numbers in parentheses indicate power of 10

r #(r, 0) B H, H, H
15 1.53132(—1) 0 0 0 0
16 1.42383(—1) .13840 137 134 134
17 1.14393(—1) 27382 .275 .269 270
18 7.92859(—2) 41316 415 405 407
19 4.72756(—2) 55560 557 547 .548
20 2.41513(—2) .70256 704 686 .692
21 1.05109(—2) .85580 .856 .833 842
22 3.86735(—3) 1.01739 1.016 987 997
23 1.19081(—3) 1.18973 1.185 1.149 1.163
24 3.02683(—4) 1.37583 1.367 1.323 1.324
25 6.23369(~5) 1.57963 1.567 1.513 1.540
26 1.01316(—5) 1.80647 1.792 1.725 1.744
27 1.24973(—6) 2.06360 2.048 1.980 1.985
28 1.09862(—7) 2.35824 2.379 2.300 2.262
29 6.12775(—9) 2.67949 2.821 2.741 2.664
30 1.62889(—10) 3.37000 3.370 3.370 3.366

é(r, 0) is given in table I. From this, ¢(r, @) can be calculated easily by means of

e (Q1 Q2 Qo)
(1.3) $(r, @) = ¢(r, 0) 703y (0.5) (0.1

We define D(r, a) = 8 log ¢(r, @)/dc. Then I(e) is the variance of D(R, a),
easily calculated to be
(14) I(a) =N z P; Q.‘.

The values of B, the Rao-Blackwellized estimate, corresponding to r = 15

(1) 30, are given in table I. For values of R < 15 we have by symmetry B(R) =
—B(30 — R). It was found in [1] that B had the smallest mean square error




LOGISTIC FUNCTION 79

among the estimates compared for all values of « which were explored. Moreover
the ratio of the mean square error E(B — a)? to 1/I(a) was less than unity and
in fact never exceeded 0.9. Although this in itself appeared paradoxical to some
statisticians, while others accepted it as the limit of achievement of a small mean
square error, certain aspects of the analysis suggested the possibility of con-
structing an estimator with even a smaller mean square error. It is with the
exploration of this possibility that the present paper is concerned.

(We remark parenthetically that the value of this ratio, if calculated for still
larger values of « than that corresponding to P; = 0.9, which was as far as the
investigation [1] was extended, is found to rise again, reaching a maximum of
1.15 at o = 4.8 corresponding to P, = 0.992. However, this is entirely due to
the value of the estimate corresponding to B = 30, or 100 per cent response at
each z. The estimates for such responses were determined in [1] by a rule the
specific form of which is more or less arbitrary, the so-called 2n rule. If for the
particular sample B = 30, we let B(30) = 3.37 instead of the value 2.9444 used
in [1], the ratio has a maximum of (0.894 attained near o = 1. Values of « beyond
2 (for which P, = 0.88), not to say values beyond 4, are of no practical interest,
and no statistician would think of trying to estimate « from an experiment with
100 per cent response at each dose level. However, the mathematics is simplified
if we permit the infinite range of «, and we accordingly define B(30) = 3.37. The
values of this ratio, presently to be defined as Fp, are shown in table II.)

TABLE II

VALUES OF THE VARIANCE, THE Bias, aND THE Risk FuncTiON

P, a I(a) Fp —bo —b —bs —bs Fq F} F

5 0 6.7 8778 0 0 0 0 8380 .8380 .8497
6 40547 6.51025 .8818 .0339 .0254 .0351 .0322 .8371 .8371 .8509
N 84730 5.91094 8935 .0760 .0559 .0782 0712 8397 .8395 .8502
8 1.38629 4.80096 .8820 .1393 .1018 .1428 .1234 8643 .8515 .8492
.85 1.73460 3.99466 .8393 .1920 .1403 .1931 .1848 .8919 .8696 .8465
9 2.19722 296883 .7816 .2817 .2099 .2737 2781 .9040 .8661 .8469

95 294444 1.66484 7174 4887 4093 4731 .5045 .8120 .8531 .8421
.98 3.80182 71584 7859 .8700 .9008 9426 .9771 7739 .8682 .8335
99 459512 .36688 .8297 1.1882 1.4230 1.4480 1.4725 .8130 .8691 .8463
995 5.29330 18574 7922 7839  .8067 .7985

Assuming the general objective to be the attainment of a small mean square
error for our estimator, some relevant considerations invite attention before a
a definite plan can be laid out. If we accept the quantity I(«) as measuring, in
some relative sense, the amount of effective data available for making the esti-
mate of o, we may note (table IT) that it is largest for & = 0, and is progressively
smaller for larger values of a. There is, so to speak, better data to work with when
a is near zero. This is reflected in the general recognition that in a bioassay ex-
periment, the function in question can best be estimated if the dosages are
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symmetrically disposed around the position where P, = 0.5, and that dosage
arrangements very far removed from this are prohibited. This suggests that the
mean square error should be considered in relation to 1/I(«), and if the esti-
mator is to be used in a range of conditions in which () is not always the same,
what we should seek to minimize is the product () E(T — )2, where T is the
estimate. We shall refer to the quantity I(a) E(T — a)? as the “risk function”
of the estimate T, and denote it by Fr(a). In [1] the denominator 1/I(a) of
Fr(a) was thought of as the lower bound of the variance of an unbiased estimator.
It can also be thought of as the asymptotic variance of an asymptotically efficient
estimate. Fr(a) can be considered as the mean square error standardized to these
basic variances. Now, it is not to be assumed that Fr(«) will be the same for dif-
ferent values of a. If it is large for some values of o and small for others, which
shall we try to minimize? Obviously we cannot favor some one particular «, since
we do not know what the true value of a will be for any experiment, the object of
the experiment being just to estimate it. A principle which is applicable in these
circumstances is to avoid large values of the risk. Utilizing this principle for the
elaboration of a method, we shall seek to minimize the maximum value of Fr(a),
which is to say we will apply the minimax principle utilized extensively in the
works of Wald.

(We note, however, that « is a function of P,, that is, & = logit of P, which
is subject to control. Experiments as actually performed for an acceptable
bioassay are not done with P, far from P, = 0.5. If an experiment yields an
estimate of P, very far from 0.5, it is discarded and the lattice of dosages is
changed toward an acceptable arrangement. Thus, in practice, we can virtually
be sure that « is not extremely large.)

In contriving B, an estimate was achieved whose risk Fp never exceeded 0.894,
and we wish to develop an estimator which will do better. The question naturally
arises: Just how low is it possible for the maximum risk to be pushed? A main
purpose of this paper is to illustrate a computational technique that gives an
answer to this question. In section 2 we show that no estimate can have a maxi-
mum risk lower than 0.84. As a by-product of this investigation, we are able in
section 3 to produce by direct attack an estimate with 0.85 as its maximum risk.

The computational methods, both of producing a lower bound for the maxi-
mum risk and of providing an estimate with low maximum risk, are straight-
forward, if somewhat lengthy. We believe they may be used profitably in other
one-parameter estimation problems of practical interest.

2. A lower bound for the maximum risk

Our technique is the method of differential inequalities introduced in [7],
which is based on the famous lower bound for the variance of an estimate T,

@.1) RS [l%ﬂf
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where br(a) = Eo(T) — o is the bias function of the estimate T, and br(e) is the
derivative of br(a) with respect to . This formula is an 1mmedlate consequence
of the fact that the correlation must be between —1 and 1. Indeed, I(«) is the
variance of D(R, a), while 1 4+ b7(a) is the covariance of D(R, a) and T(X).
The lower bound for the variance of estimates has a long history, going back
at least to the memoir of Pearson and Filon in 1898 [8] and including the nota-
tion by Edgeworth [5]. As far as we know, the formula (2.1) was first published
by Fréchet in 1943 [6]. It was developed independently by Rao [9] and by
Cramér [4]. From formula (2.1) it follows that the risk function must satisfy

(2.2) Fr(a) 2 I(e)br(a) + [1 + b7(a)]%
Since R is a sufficient statistic, we need to consider only estimates which are
functions of R. Furthermore, because of the symmetry of the problem we can

restrict ourselves to symmetric estimates, that is, to estimates satisfying the
equation

(2.3) T(r) + T(3n — r) = 0.

This may be argued as follows. Suppose an estimate T does not satisfy (2.3).
Let T'(r) = —T(3n — r). Then Fr(a) = Fr(—a). The estimate T*(r) =
[T(r) + T'(r)]/2 is symmetric, so that Fr+(e) = Fr+(—a). Since the average of
two estimates has a mean square error not greater than the larger of the mean
square errors of the estimates averaged, we have Fr«(a) £ max{Fr(a), Fr(a)] =
max [Fr(a), Fr(—a)]. Thus the maximum risk of T* cannot exceed the maxi-
mum risk of T. In seeking estimates with low maximum risk, we therefore need
consider only symmetric estimates. They have the important property of being
unbiased at @ = 0.
Let us replace the differential inequality (2.2) by the differential equation

(24) ¢ = I(a)b7(a) + [1 + br(a) ]2,

where c is a positive constant less than 1. This equation, together with the side
condition b(0) = 0. determines the function b at least over a certain interval

centered at the origin. The solution starts with b’(0) = V¢ — 1; this determines
b(a) for small o, where (2.4) then determines b’(«), and so forth. If we set the
constant ¢ too small, —b'(0) will be too large, and the negative bias will grow
too rapidly, until at a finite point, say A(c), we shall have b'[A(c)] = —1 and
b[A(c)] = {c¢/I[A(c)]}'2. Then the solution can proceed no further, showing that
(2.4) does not have a solution over the infinite range. On the other hand, if ¢ is
large enough, —b(a) will grow slowly enough so that I(a), which tends to 0, can
eventually suppress the term I(a)b%*(e), and we get a solution for all a. Let ¢,
denote the dividing point, so that (2.4) can be solved for all « when ¢ > c,
but not when ¢ < .

The value of ¢y can be determined by numerical integration to any desired
degree of accuracy. We try ¢ = 0.8, and find that (2.4) rapidly explodes, showing
0.8 < co. We try ¢ = 0.85, and obtain a solution, so that ¢y < 0.85. Successively
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we find that ¢ = 0.83 fails but ¢ = 0.84 succeeds. As two figures is adequate for
our purposes, we take ¢o = 0.84. The corresponding bias function b, is shown in
table II. Since we can with each integration bisect the interval in which ¢, is
known to lie, it does not take many trials to pin down ¢, with considerable accu-
racy. In fact, three more integrations will show that 0.836 < ¢, < 0.837, though
the two-figure value 0.84 is used in the sequel.

The significance of ¢, is that it is a lower bound for the maximum risk of all
estimates, so that the numerical work just described tells us that no estimate for
« can have a maximum risk as small as 0.83 (more accurately, 0.836). Since
the estimate B has maximum risk Fp = 0.894 (table II) we now know that it
cannot be greatly improved.

The proof of the property claimed for ¢, is as follows. Let T be any symmetric
estimate. Its bias function by is an analytic function of & and has br(0) = 0.
Suppose, contrary to our claim, the maximum of Fr(e), say ¢, is less than c.
Then, by virtue of (2.2),

(2.5) I(a)b7(a) + [1 + b2(@)]* <

for all a. Thus b7(0) < b4(0) so that br < by < 0 in a neighborhood to the right
of @ = 0. Indeed, we can never have br(a) = by(a) for any a > 0. For if so, by
continuity there would be a first ¢/ > 0 with br(a’) = be(a’), and by Rolle’s
theorem an o'/, where 0 < o'’ < o/, with b7r(e’’) = by(a’”’) and br(a’”) < bo(a’’)
< 0, in violation of (2.5). But since ¢; < ¢, the solution b, of (2.4) with ¢ = ¢
explodes at A(c1), the still smaller by would have exploded still earlier. Thus no
estimate T can have maximum risk less than co.

It should be emphasized that we are not claiming that ¢, is the greatest lower
bound for the maximum risk, and in particular we do not assert that in the logis-
tic problem there exists an estimate whose maximum risk is as low as 0.84.
In the first place, we do not know whether there is any estimate T, whose bias
function exactly equals by. In the second place, the inequality (2.1) is sharp, as
Fréchet points out, only if the estimate 7' is a linear function of D(R, «); and in
our problem these linear functions all have rather high maximum risk.

It would be possible in fact to obtain a higher lower bound than ¢, by using the
differential inequality method with the Bhattacharyya bounds [2]. Even the
simplest of these, however, would involve the numerical integration of a second-
order differential equation with coefficients rather complicated to compute. As
we shall now produce directly an estimate with maximum risk 0.85, it hardly
seems worthwhile in this problem to engage in heavy computation to close further
the remaining gap.

3. Direct construction of an estimate with low maximum risk

The estimate B reflects in its development over a number of years the typical
history of statistical methods. Except in simple problems, it is customary for
various procedures to be proposed on intuitive grounds, or as consequences of
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“principles,” such as maximum likelihood or minimum chi-square. Then the

performances of these competitive procedures are evaluated on the basis of some
criterion of excellence. The final stage is an attempt to discover a method which
is optimum with regard to the accepted criterion, or at least nearly so.

We suspect that recent advances in computing technology will tend to curtail
this process, and that there will be developed methods for the direct attack on
practical statistical problems. By a mixture of theoretical, numerical, and ad hoc
devices, statisticians may attempt to construct methods having the character of
good performance. We shall in this section illustrate such an attempt and obtain,
as a by-product of the lower bound found in section 2, an estimate whose risk
function is comparable to that of the estimate B, and like it has a maximum
risk near to the lower bound co.

Our method rests on the fact that we have in b, a function which is an idealized
bias function. It is reasonable to hope that an estimate whose bias function is
be, or nearly so, will have a maximum risk nearly c,. The task of constructing
an estimate with a specified bias function, while not trivial, seems much easier
than that of constructing an estimate with specified maximum risk.

Several ways of producing an estimate with bias approximately b, could be
suggested. For example, we could consider a series expansion of odd powers of
(r — 3n/2), and determine the coefficients so that the bias is by at several values
of a. However, in this problem at least, a more simple-minded approach works
well enough. We want an estimate, say H, such that

3.1) E.HR) — a = by(a).
If H were linear, this would mean
(3.2) H[E.(R)] = a + bo(a),

where E,(R) = n Y P;. We pretend that H is linear, to obtain the estimate H,
defined by

(33) H1['n Z Pg] =a + bo(a)

when « takes on such values that n 3 P;is an integer. We plot a + by(«) against
n 3 P; for specific values of a = logit P,. By linear interpolation we assign as
H,(r) the value of a + bo(a) corresponding to integral values of n }_ P; = r.
The method breaks down for R = 3n, as ) P; < 3, so we employ the ad hoc
value H;(3n) = 3.37 used above, which is determined to control the risk for
large values of a. The estimate H, is shown in table I, and its bias function b,
in table II. We see that the bias agrees fairly well with b, unless « is quite large.

We can now improve the agreement by repeating the above procedure. We
plot the error b; — be against n 2~ P; and correct H; to obtain the estimate H,
(table I). Its bias b, (table IT) agrees with b, to within 0.008 over the range
0.1 < P; < 0.9. Further correction seems unnecessary.

The risk function F; of H, is shown in table II. We see that its maximum is
about 0.90 near P, = 0.9. The large value of the risk F; for extreme values of
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P, are however almost entirely due to the values of H, corresponding to large
R. We note that H,(29) = 2.741, well above the value of & = 2.19722 corre-
sponding to P, = 0.9. An ad hoc adjustment of H»(29) to the value 2.592 pro-
duces the risk function F3, with maximum of 0.870.

Our position is now this: starting with the idealized bias function corresponding
to constant risk ¢ = 0.84, we have produced an estimate whose risk is indeed
near 0.84 for small values of , but which rises to a maximum of 0.87 for large
a. The difficulty is of course that the lower bound on which the idealized bias
function is based, is not actually attained. In achieving the risk 0.84 for small «,
the estimate is too concentrated about 0, and as a result has larger risk for large a.

It is natural to think of trying a somewhat larger value of ¢, in the hope that
a lower maximum risk will result. We accordingly put ¢ = 0.85, and go through a
computation analogous to that outlined above. The result is the estimate H
given in the last column of table I, which has the risk function F shown in the
last column of table IT. The maximum risk has indeed been reduced from 0.87
to 0.85. We believe that, to two decimals, this is the minimax risk, though the
argument of section 2 shows only that the minimax risk is not less than 0.836.

We conclude by indicating an alternative technique that would produce a
similar result, and which might be advantageous in some problems. The equality
corresponding to (2.1) is

) I(e)p¥(T, D)

If we have found an estimate T which is nearly optimum, we may assume that
its correlation with D is nearly the same as that of the optimum estimate. We
can compute the factor 1/p2(T, D) and use (3.4) instead of (2.1) in the method of
differential inequalities. The whole procedure may then be iterated if desired.

4. Comparison of some estimators

In the paper by one of us previously mentioned [1], a comparison was made
between several estimators on the basis of their mean square errors. These esti-
mators were: the maximum likelihood, the minimum Pearson chi-square, the
minimum logit chi-square and the Rao-Blackwellized minimum logit chi-square.
It seems to the point to review this comparison against the background of the
estimator H developed here. In addition we will include the Spearman-Karber
estimator which has recently been studied in detail by Brown [3].

The maximum likelihood estimate yields « as estimate for a with the sample
r = 30. In the comparisons made previously, the samples yielding infinity by
maximum likelihood were omitted in computing the statistics of all estimators.
In the present development, for the estimators B and H, this sample was assigned
the estimate a = 3.37. Therefore, in the comparisons made here, in computing
the mean square errors, this same value was given to the maximum likelihood
and minimum x? estimates for the sample in question, and the total sampling
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population was included. The probability of the sample r = 30 increases as P,
and « are increased. It seems excessively artificial to consider dosage arrange-
ments in which the probability of this sample—for which the maximum likelihood
estimate is actually infinity and therefore must be omitted or the estimate given
an arbitrary value—is appreciable and which, in any case, is far outside the
range of an acceptable practical experiment. We therefore limit the comparisons
to dosage arrangements in which the probability of r = 30 is less than 5 per
cent. At P, = 0.95, this probability is 15 per cent, so P; = 0.9, « = 2.197, at
which the probability is 2 per cent, was the upper limit of the experiments
compared.

TABLE III

CoMPARISON OF ESTIMATORS

\Pz 0.5 0.6 0.7 0.8 0.85 0.9

. Risk Risk Risk Risk Risk Risk
Estimators [m.s.e. 7 m.s.e. F m.s.e. F m.s.e. 7 m.s.e. 7 m.s.e. F
H 1268 .8497(.1307 .8509(.1438 .8502|.1769 .8492(.2119 .8465( .2853 .8460
B 1310 .8778|.1354 .8818(.1512 .8935!.1837 .8820(.2101 .8393( .2572 .7816

Maximum
likelihood [.1578 1.0575|.1639 1.0673{.1867 1.1034[.2507 1.2038|.3189 1.2740| .4010 1.1904
Minimum
Pearson x? |.1385 .9281[.1436 .9346|.1622 .9589|.2124 1.0198|.2619 1.0461f — —
Minimum
logit x2 1366 .9152(.1422 .9260[.1593 .9413|.1975 .9482|.2281 .9109| .2787 .8271
Spearman-
Karber 0481 .3223/.0783 .5096(.1912 1.1300(.4955 2.3787|.8341 3.3319{1.5194 4.5108

The comparisons are shown in table III, which gives the values of risk function
F, and also the mean square errors. The maximum value for F, being lowest for
the estimator H(0.851 at P, about 0.6) is seen to be largest for the Spearman-
Karber estimate (4.5 at Pz about 0.9). [The value of F for the Spearman-Karber
becomes even larger for P, > 0.9, reaching a maximum of 5.6 at P; about 0.95.
However it is to be noted that the smallest value for F also is achieved by the
Spearman-Karber (0.32 at P; = 0.5)]. The maximum likelihood estimator has a
higher value of F, and also of the mean square error, than any of the other
estimators compared except the Spearman-Karber, over the entire range of
comparison 0.1 < P, = 0.9.

5. Summary

If some estimators T of a parameter 6 are to be compared as to relative worth,
an indefinite number of criteria are conceivable. A criterion classic in the history
of the theory of errors is the mean square error, m.s.e. = E(T — 6)2 If the m.s.e.
of T is smaller than the m.s.e. of T'; for all values of 8, then T, is, by this criterion,
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unequivocally better than T.. If, however, for some values of 8, T has the
smaller m.s.e., while for other values of 8, T has the smaller m.s.e., a question
arises as to how they may be compared. Conceivably, if one knew the a priori
probability distribution of 6, the mean of the m.s.e. of T, and of T, might serve
as the criterion. However, in any real situation, the a priori distribution of 6
is seldom definable, not to speak of being precisely  determinable. Another
criterion which suggests itself, related to that used extensively in the work of
Wald, is to minimize the largest value of some function of the m.s.e. (minimax
principle).

We consider estimating the logistic parameter «, with 8 known, for the case
with three equally spaced z, ten at each x. A risk function Fr(a) is defined as
the ratio of the m.s.e. of T to 1/I(e), where I () is Fisher’s amount of extractable
information, and the criterion considered for the choice of 7 is the maximum
value of Fr(e), for all possible a.

(1) A lower bound for the maximum of Fr(a) is evaluated. (2) An estimator H
is devised for which the maximum value of Fr(a) almost achieves this bound.
(3) The estimator H and several other estimators of interest are compared with
respect to their F' and their m.s.e.
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