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1. Introduction

Let us consider two positive random variables, say T > 0 and r* > 0, repre-
senting respectively length of life of individuals, as measured from some suitable
starting point t = 0, in two hypothetical populations, one characterized by some
given set of conditions, say C, the other by a different set of conditions, C*. We
assume that each of the populations is homogeneous so that their members have
the same, though unknown, probability of surviving to future times. Let us call

(1) P, = P{T > t},
the survivorship function under C and
(2) Pt = P{T* > t},

the survivorship function under C*.
For example, T may represent the length of life in a population of children

afflicted with nephrosis at approximately the same age who did not receive
adrenocortical hormones and T* the length of life of similar children who however
have been subjected to adrenocortical hormone therapy. Or T may represent the
length of life of tumors implanted in mice when subject to a certain schedule of
irradiation, and r* represents the regression time of such tumors when the radio-
therapy is supplemented by the administration of some antimetabolite.
Our purpose in replacing the set of circumstances C by C* in both of these

examples is to inf.uence the length of life in the population. In the first example,
we would like to increase it; in the second, to decrease it. By what criteria should
we judge the change, that is, how should the distributions of survival times Pt
and Pt be compared?

In some branches of medical investigations, notably cancer research, a tradi-
tion has been developed by which a fixed value of t is selected, say to and a method
of management C* is judged superior to C if the observations seem to indicate
that P* is larger than Pb. There is by now a large statistical literature (see, for
example, [1] to [17]), supplying methods of estimating and comparing the sur-
vivorship functions at a preselected point, to suit different degrees of a priori
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knowledge about the functions on the one hand and different types of available
observations on the other.
The judicious choice of the single point to, however, often presents a difficult

if not insurmountable problem. It is clearly much less arbitrary to compare the
survivorship functions simultaneously at several different time points, especially
since the investigator can usually choose a set of points, say t = 1, *--, T in
such a way that observations taken at these points provide him with an adequate
picture of the entire course of the curves. Let us suppose that this is indeed the
case. Then, in analogy to the multiple comparisons of Scheff6 in the analysis of
variance [18], one would like to obtain joint confidence intervals for all true
differences Pt - P*, with t = 1, * * , T. In this paper we present an asymptotic
solution to this problem. The confidence intervals obtained are such that as the
number of observations is indefinitely increased, their joint confidence coefficient
is in the limit at least 1 - a, where a > 0 has been selected in advance. In ex-
tending Scheff6's method to our case we shall make use of some recent results
of Gold [19] concerning the theory of discrete, finite Markov chains.

2. The simplest case

Let us assume that at t = 0, the time from which survival is measured, we
have available a random sample of N = M + M* individuals drawn from a
homogeneous population and randomly allocated to conditions C and C*. Let
M be the number of individuals under C and M* under C*. The simplest version
of our problem arises if at each time point t = 1, * * *, T we are in a position to
establish for each individual whether he is dead or alive. Then we can classify
the individuals into T + 1 exclusive classes, by putting an individual into class
RT+1 if he survives beyond T and into class Rj if he is alive at t = j - 1 but dead
at t = j, for j = 1, - - *, T. Let P(Rj) be the probability of Rj for an individual
under C and P*(Rj) under C*, for j = 1, * , T + 1. Clearly

T+1 T+1

(3) Pt= E P(Rj), P = P*(R),
j=t+l j=t+l

so the differences P - Pt* are linear functions of two sets of multinomial class
probabilities. To obtain confidence intervals for them, we need the following
result, proved in [19], concerning multinomial trials.

Let us consider s independent sequences of multinomial trials, the ith sequence
having class probabilities Pij > 0, for j = 1, * * *, vi; i = 1, * * *, s, such that
_j Pij = 1. Let the number of trials in the ith sequence be Mi, let the number

of outcomes in class j of the ith sequence be ni, and put the relative frequencies

(4) ,N, = pij; s; j =l,**,v.

Let N = {-. M, increase indefinitely in such a way that the proportions Mi/N
approach some constants, at least in probability.
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THEOREM 1. For any system of real numbers

(5) {bij,j= 1,* ,Vi;i= 1,) *..
let
(6) L = , bi,Pij, L = E b jPij.

i,ji

Further, denote by aL the variance of L and by a£ the value of az at Pi, = Pij. Then
as N X-+ o in the manner described above,

(7) lim p IL LI < K for all L simultaneously} _ 1- a,

where K is the positive square root of the (1 - a)th percentile of the x2-distribution
with Etl- (vi- 1) degrees of freedom.

This theorem can be directly applied to our problem in the simple experimental
setup described, with s = 2, Pli = P(R,), P2j = P*(Rj), M1 = M, M2 = M*,
nij = ni = number of individuals observed to die between t = j - 1 and t = j
under C, and n2i = n* = number of individuals observed to die between t =
j - 1 and t = j under C*,

(8) P(Rj) = nM-, P*(Rj) = M*M
The particular linear functions we wish to estimate, namely Pt - Pt, for

t = 1, ,T, are of the form
T+1

(9) P -Pt = E (P1-IP2j),
j=t+l

with
T+1

(10) -Pt =P* (P1i - P2j)
and

1 T+1 nM T+l nM) + TM*nE*n T+l n*j
(11) = U _ MJM* j=t+lIM'1

Thus, in the limit as the number of observations increases indefinitely, the values
of the functions Pt - P* simultaneously satisfy the inequalities

(P - P) -Kp-P
(12)~~~~~~P -P P* < (P, - PI) + Kap t t = 1, * ,T,

with probability at least 1 - a. Here K is the positive square root of the upper
(1 - a)th percentage point of the x2 distribution with 2T degrees of freedom.

3. A Markov chain model

While observations of the kind described may sometimes be available, for
example, in studies on laboratory animals or institutionalized populations, this
is not generally the case. Let us suppose for example that we are dealing with a
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clinical study in which the subjects- of the investigation may enter or leave ob-
servation at times of their own choice. Among the M + M* individuals under
observation at time 0, there may be at each subsequent observation time t some
whose whereabouts have become unknown during the period t - 1 to t and
about whom it is impossible to establish whether they are dead or alive at t.
These people are usually called "lost." Under these circumstances, it has been
proposed by Neyman [8], [10] and others [11], [15] that one consider the ob-
servations as sample functions from a chain, say {ft, t = 1, * , T} with states
0, 1, 2, 0*, 1*, 2*, by putting for an individual from C,

= 0, if he is alive and present at t,
= 1, if he is dead and present at t,
= 2, if he is lost at t;

and for an individual from C*,
rt = 0*, if he is alive and present at t,
= 1*, if he is dead and present at t,

£ = 2*, if he is lost at t.
Denote by pijt = P{¢t = ilrt-i = j} the probability that an individual is in
state i at time t, given that he was in state j at time t - 1, for i, j = 0, 0*, 1, 1*,
2, 2*; t = 1, * * *, T. We shall assume that once an individual is lost, he is lost
forever, so that the set of transitions for which 0 < pijt < 1, for t = 1, * * *, T,
is given by {00, 01, 02, 0*0*, 0*1*, 0*2*}. It is easy to see that if the parent popu-
lations are homogeneous then {ft} is a Markov chain.

It is important to note, as emphasized in [8], [15] that the probabilities of
being present and alive at t, which are simple functions of the pijt, are not identi-
cal with the probabilities Pt and P* of surviving to time t. Thus, if one hopes to
draw inferences about Pt and P* from observations on {ft}, one must postulate
some functional relationship between Pt and P*, on the one hand and the pijt on
the other. Several such relationships have been suggested (see [20], [4], [8], [11],
[15]), reducing our problem of simultaneously estimating (Pt - P*t), where
t = 1, * * *, T, to that of the joint estimation of some specified functions of the
transition probabilities in a Markov chain. This problem may also arise in other
experimental situations, for example when not only survivorship but also specific
causes of death are of interest, or in industrial life testing. Our solution is based
on some results from the theory of Markov chains which are discussed in the
next section.

4. Some results concerning Markov chains

Let {%, t = 0, 1, * * *, T} be a Markov chain with state space S = {1, * , m}
and let pijt be the conditional probability that t = j, given that i=i

(13) °-pijt 1, E Pijt, = 1, i,j E S; t = 1, ,T.

Let (i, j, t) denote a triple of indices, i, j E S, t = 1, * , T, and let

(14) I = {(i, j, t): 0 < pi, < 1}.
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Let p denote the vector of transition probabilities

(15) p = {pijt, (i, j, t) E I}.
For each fixed i, t eliminate one of the pi,, through the relation Es pijg = 1 and
denote by f the number of remaining components of p.

Consider N independent sample functions of {%}, to be called "individuals."
For any t, let ni(t) be the number of individuals in state i at t, let ni;t be the
number of individuals entering state j at time t among those having been in
state i at t - 1, and let

(16) ~~~~~~~~~~~nil'(16) pijt = ni(t - 1)
for ni(t - 1) $ 0, and (i, j, t) E I. Let p denote the vector p when its compo-
nents have been replaced by Pijt.
We shall be concerned with the asymptotic behavior of the chain when N is

infinitely increased but the proportions of individuals occupying the various
states at time 0, that is, ni(O)/N, with i = 1, ... , m, either remain constant or
tend, at least in probability, to a set of constants independent of N.
Under these conditions, the limiting behavior of the chain simulates that of

independent sequences of multinomial trials in some important respects. In par-
ticular, the following facts are implied by the results of Neyman [21] and of
Anderson and Goodman [22]:

(a) The joint distribution of the variables [Eni(t - l)]1/2(Pij, - p,t), (i,j, t) E
I, tends to the f-dimensional normal distribution with 0 means and covariance
matrix atp,.vie.'I 1, where
(17) ait,sjt = piit(l - pijt), Oijt,ikt = -Pijtpikt, j k,
and
(18) = 0, i i and/or t' $ t.

(b) The random variable

(19) E ni(t- 1) (Pit A Pij') = X2(N)
I Pi.t

is asymptotically distributed as x2 with f degrees of freedom.
(c) If F(p) is any function of p possessing continuous partial derivatives at

least up to the second order, and if R is the remainder after linear terms of the
Taylor expansion of F(p) about p, then p lim VNW R = 0.

(d) The distribution of the variable v7N[F(P) - F(p)] tends to a normal
distribution with zero mean and variance
(20)

= y [E N- ) pip kt)](20) _~E~NP1k_ _

which is independent of N and where (i, j, t) E I and (i, k, t) E I.
It has also been shown [19] that theorem 1 can be extended to Markov chains.
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THEOREM 2. For any system of real numbers {bijt, (i, j, t) E I} let

(21) L = pijt L = bijtp2jt.

Denote by aor the variance of the limiting distribution of V\N(L - L) and let DL be
the value of oj when p is replaced by p. Then as N -X o in the manner described
above,

(22) lim P {vNN D Li < K for all L simultaneously} > 1- a,

where 0 < a < 1 is arbitrarily selected and K is the positive square root of the
(I - a)th percentile of the X2 distribution with f degrees of freedom.
REMARK. Let e > 0 be given and let N be so large that

(23) P { ID < K, for all L}> 1-a-e.

Then, if {/30ijt, (i, j, t) E I} is any set of functions of the observation vector p,
the linear functions L = E, itpijt are certainly included among all possible L
referred to in the inequality, with
(24) L = E ij,Aj
and

( 25) D L=En (tN [ Ji ( Iktpikt)2].

We now extend theorem 2 to permit us to deal with a wider class of functions.
THEOREM 3. For any finite collection offunctions of the transition probabilities,

FV(P), v = 1, . , h, which possess continuous partial derivatives at least up to
the second order, let F, = FV(P), let a24 be the variance of the asymptotic distribution
cf \/N(F,, - F,) and let D, be the value of ao, when p is replaced by p. Then under
the liwriting conditions described,

(26) lim P{NIF < K, v = 1 h > 1-a,

where 0 < a < 1 is arbitrarily selected and K is the positive square root of the
(1 - a)th percentile of the X2 distribution with f degrees of freedom.
PROOF. Expanding F,(p) in a Taylor series about p,

(27) F,,(p) = F,(P) + E aF, (P) (pijt - pij) + Rv = Lv + R,
I 9psijt lp=

where L,, = L,(p) is a linear combination of the components of p with coefficients
depending on the observations and such that L,(P) L, = F,, and where
p lim x/N R, = 0 by (c).

Calculating DL. from (25), we see that

(28) DL. = D,,
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It follows that
(29) p lim DL, = p lim D, = ap,,

by a theorem of Slutsky [23], and that

(30) plim D, v 1, h.
N-.o DL. =,**h

Now, given any E > 0,

(31) P{ NJF;- F, < K v =1, ,h}

>P{XVN LtLD + D I< K, v =1, **h}

> P {IILD , <KK-f \DJ,, < Ie v =1***,h}
By the remark following theorem 2 and by (28), for any arbitrary 71 > 0 and
N > NX,

(32) p{ VNIL-Lt I < K-f, v = 1, - h

> P{X2(N) < K -E} > 1 - a - 5(e)-
where 5(e) 0 as e -*0. On the other hand, for any N > N( ,h),

(33) p{VNIRvI <e, v 1, *-- ,h> 1-e

by (30). Finally, for N > max [N,, N(e,h)] we have

(34) p DNr Fv < K, v = 1, h > 1-a-6(e) e 'o,

which establishes the theorem.
A similar extension of theorem 1 can be obtained by the same argument.

5. Joint estimation of survival rates in a clinical follow-up
We shall illustrate the applicability of theorem 3 to our problem in the case

of a clinical follow-up as described by the Markov chain {ft} of section 3, assum-
ing that the functional relationship between the survivorship functions and the
transition probabilities of the chain is given by the so-called "actuarial" model
or "half-rule." We choose this model because it is very widely used (see, for ex-
ample [4]), leaving aside entirely questions of its justification. Following the
notation conventional in this model, we put for t = 0,1, T - 1, for an
individual in C,

at = po,l,t+i = conditional probability of dying under observation by t + 1,
given alive and present at t;
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t = pO,2,t+1 :-- conditional probability of being lost to observation at t + 1,
given alive and present at t;

1 - t- wt = pO,O,t+ = conditional probability of being alive and present at
t + 1, given alive and present at t; and for an individual in C*, the symbols 611,
At, and 1 - - At are analogously defined. Let

(35) qt = 1 - p XA 1 - Pp t = 0, 1, T--,T1,

be the conditional probabilities of dying by t + 1, given that the individual was
alive at t, for the members of C and C* respectively. With this notation, the
actuarial formulas state that

(36) qt = / q* t_oJ2 t = 0,1, T-, -1,(36) qt=~1 co/2' ~ 1 -/A2'
and

v-1 v-i

(37) PI,- P* = H (1 -qt) - 1 (1 - qt), V=1,*- T.
t=O t=0

Let F, = P- P*, for v = 1, * , T. By theorem 3, in the limit as N- ,
the probability is at least 1 - a that the functions (P, - P*) simultaneously
satisfy the inequalities
(38) (P-P*)-KS, _ P,-P* _ (P-P*) + KSv,
where K is the positive square root of the (1 - a)th percentile of the x2 distri-
bution with 4T degrees of freedom and S, is defined by

v-i 1

(39) E n-t=O no(t)

tA(1 ) +6,\((16t)('Fv - 28A6t daF cF`tj
v-i 1

t=o no(t)

*t(1 - + 28(1- Ft)Ia) -Fvl
The values of the derivatives are

(40) OF,j = r.

2-- -2

(41) dXtl- 2
-

1-U) (i -

a- st)

(42) dF, p-
12
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(43) #3FI| (
SIP__(__ )-

Here t =O, 1, ***,v-1; v = 1,***,T, and

as 8dt * dt
( ' ~~~~~~~~no(t)'S n*0(t)'(44)no)

Wt * t
&' no(t) ' n*o(t)'

with
d, = number of individuals dead and present at t + 1 among those alive and

present at t under conditions C;
wt = number of individuals lost by t + 1 among those present and alive at t

under conditions C; and dt and w* are correspondingly defined for individuals
under C*.
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