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1. Introduction

We establish some notatioIl: {Zk, k _ O} is a homogeneous Markov chain
taking its values in a locally compact Hausdorff space $; we denote by 2 the
a-algebra of subsets of DC generated by the open sets; ca(2) is the Banach space
of totally finite regular measures on 2; and CO(XC) is the Banach space of real-
valued, bounded, continuous functions on SC which vanish at infinity. If
k G ca() is the probability measure of Zk then there exists a bounded linear
operator T on ca(2) into itself such that 4k+l = T4.k. If this operator can be
represented by a real-valued function P on the product space 9c X 2 with the
properties

(a) 0 _ P(x, F) _ P(x, 9C) = 1 for all x G X, F E
(b) for each x E 9$, P(x, *) ca(2);
(c)Lfor each F E 2, P(., F) is Z-measurable;

then the mapping of ca(Z) into itself takes the form

(1) Ik+1(F) = f 1k(dx)P(x, F)

for each F E Z. We define inductively a sequence of real-valued functions
Pr( * *) on $C X Z by the relations

P7+i(x, F) = f P,(x, dy) P1(y, F)

(2) $
PI(x, F) P(x, F).

We may identify the conditional probability P{Zt+, E FiZk = x} with the func-
tion P,(x, F), so that the rth iterate of the operator T may be written

(3) (Tr()(F) = f b(dx) P,(x, F).

A principal problem of ergodic theory has been to determine conditions under
which the sequence of operators n-1 E_r-o: Tr converges in some sense. The
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underlying Banach space on which T is defined induces various topologies on
the space of bounded linear operators. Since the norm of an arbitrary operator
S is well defined by IISII = sup JlIS/ll/llull we can ask whether there exists a
bounded linear operator T1 such that lim In r-

l T - Till = 0. A
weaker convergence requires the existence of an operator T1 such that
limn olI(n-1 ~En1 - TiMll = 0 for eachu C ca(2). Yosida and Kakutani
[12] call these the uniform ergodic theorem and the mean ergodic theorem
respectively, and they have proved that

(I) the uniform ergodic theorem holds if T is a quasi-strongly compact
operator, that is, if there exist a compact operator V and an integer p such that
[ITv - Vl < 1;

(II) the mean ergodic theorem holds if T is a quasi-weakly compact operator,
that is, if there exist a weakly compact operator V and an integer p such that
lTP -Vll < 1.
If an operator T is (weakly) compact then it satisfies condition (II) I auto-

matically. The problem of identifying a quasi-weakly compact operator is still
open. In this connection Kendall has shown [7] that if T is a bounded linear
operator on ca(2) into itself which sends positive elements into positive elements
of equal norm, and if T is the adjoint of an operator on Co($E), then T is not
quasi-weakly compact.

In section 2 we shall illustrate this theorem by means of an example from the
theory of queues. Yet, having exhibited an operator T to which the theorems
of Yosida and Kakutani do not apply, we may still ask if there is not some other
sense in which the sequence of operators n-1 E%zOl Tr converges. In section 3
we shall examine further our operator and show that (if the system is subject to
some small restraint) it possesses a unique stationary distribution r. Then the
ergodic theorem for Markov chains holds without any further restrictions on
the transition probability P(., .).
THEOREM (Doob [2]-Kakutani [4]). For each B E 2 there exists a set EB E 2

such that r(EB) = 0 and
1 n

(4) lim - P,(xo, B) = Q(xo, B)

for xo 2 EB, where Q is almost everywhere bounded, nonnegative, 2-measurable,
and invariant in the sense that Q(y, B) = P(y, dz) Q(z, B) for r-almost all y.

In section 4 we shall show that for our queuing example the transition prob-
ability P(x, *) is absolutely continuous with respect to the stationary distribu-
tion r(.); then the limit (4) becomes universal in xo and the set function Q(xo, *)
is a stationary distribution for all xo.

2. The transition operator
We shall discuss the queuing system usually denoted by M/G/1 whose primary

characteristics are:
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(i) the interarrival intervals, un, are assumed to be independent and iden-
tically distributed according to the law dA(u) exp(- au)a du, where
0 < u < X ;

(ii) the service times, v,,, are assumed to be independent of each other and of
the un, and to be identically distributed according to the law dB(v), where
0 < v < oo; B(O+) = 0. It will be found advisable to restrict the support D of
B(.). If B(V) = 1 and B(V - e) < 1 for some finite V and all E > 0, then we
define D as the closed interval [0, V]; if on the other hand B(V) < 1 for every
finite V we take D as the half-closed real line [0, oo).

We shall assume that 0 < a < x, and 0 < b =_ f vdB(v) < x. The traffic

intensity of this system is then defined to be p 9 ab. (Recent descriptions of this
system have been given by Cox [1], Gaver [3], Kendall [6], TakAcs [10], and
Wishart [11].)
Our discussion will center on the stochastic process {[N(t), y(t)], t _ 0}

where N(t) is the number of customers in the system at time t and y(t) is the
unexpended service time of the customer receiving service at time t. This process
takes its values in the phase space

(5) 9x = {(r, x): r = 0, 1, 2, * * *; x = 0 wheni r = 0, and x E D otherwise},
which was also introduced by Keilson and Kooharian [5]. We define certain
special subsets Xr C X: Xr e{(r, x): x E D} for r _ 1; Xo {(0, 0)}. The
general subset of $t is then of the form F = U Fr where Fr C Xr. We take as
the open sets of $t those sets F whose components Fr are open in the usual
topology for Xr. The compact sets in this topology are those sets F which are
the union of a finite number of sets Fr compact in the usual topology for Xr
(that is, Fr closed and bounded in Xr). With this topology $t is a locally compact
Hausdorff space. We shall denote by 2 (2r) the class of Borel subsets of DC (Xr):
that is, the smallest a-algebra of subsets of $X (Xr) containing the open sets.
We introduce now a class of bounded continuous functions on 9t which vanish

at infinity. For any real-valued function f on $ we define functions fr on Xr by
the relations f[(0, 0)] = fo, f[(r, xr)] = fr(xr). If we require that fr e CO(Xr)
with the usual supremum norm, and lim,. frIl = 0, and if we write
f = [fo, fi, f2, -*.] with linear operations defined termwise, then the linear set
thus defined is complete in the topology generated by the norm IflI = max {Ifol,
supr_1 1lfrIl}. It follows from the condition limr-o llfrll = 0 that the functions
of this set vanish at infinity, since if we are given e > 0 we can find N such that
lIfrll < e for all r > N and therefore the set {(r, x): fr(x) > e} is the union of
at most N compact subsets Fr C Xr that is, {(r, x): fr(x) _ e} is a compact
subset of 9$. We shall denote this normed linear space of bounded continuous
functions on X by Co(9$).

Because of the simplicity of the negative exponential input we shall make
extensive use of the linear subset g C Co($) spanned by functions of the form

(6) e = [1, ze-xl, z2e-8X2 z3e-8x3 . . . ,
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where (r, xr) E X, and s, z are real numbers satisfying 0 < s < oo, 0 S z < 1.
If
(7) e'= [1, zle,'x, z2 e 'x2, ]
we define ring multiplication in & by the convention

(8) ee' = [1, (zz1)e- (8+8')Z1, (ZZ1) 2e- (8+8')x, * * * ]

and with this definition 8 is an algebra. The elements of £ separate points in the
sense that if (n1, Yi) 0 (n2, y2) we can find an e E , such that z'ne-8sy $ zn,e 8-2.
Finally we observe that the elements of 8 have no common zero other than the
point at infinity of DC. Hence the elements of the closure of £ (in the strong
topology on Co(9C)) have no other common zero, and so, by an appeal to the
Stone-Weierstrass theorem [9], we can assert that 8 is dense in Co(SC) in the
strong topology.
The space [Co(9c)]* adjoint to Co(9C) is the space ca(2) of finite regular meas-

ures on 2. We may represent an element T E- ca(Z) in vector form I = [,
'1I, '2, *- * ], where -X0 < To <0 and I, E ca(2,) with the usual norm
II l'jI = total variation of I, over 2r. Then the norm of ' is given by II1* =

Il'ol + E'-. II'IrII < -0. We shall use the notation (',f) for the value at the
point f E Co(S) of the linear functional I which is isomorphic to the measure

i! E ca(): (,f) = 'iofo + Er_1 (,.,fafr) where (I,,'f,f) = fX f,d',. The
symbolf will denote the element of [Co(OC)]** which is isomorphic to the element
f E Co(9C) under the natural mapping ('I, f) = (f, I) for all I, and Co(9C) will
denote the natural embedding of Co($C) in [Co(9C)]**. If e is an element of 8 we
shall write 4'(s, z) = (*I, e).

Lastly we observe that if p, v are elements of ca(Z), then ,u is absolutely con-
tinuous with respect to v if and only if ,u is absolutely continuous with respect
to v, for all r. We shall use Halmos' notation and write ,u << v if and only if
1, << V, for all r.

It was noted by D. G. Kendall [6] that the process [N(t), y(t)] is Markovian
for all t 2 0. We have investigated elsewhere its behavior in continuous time
[11]. In this paper we shall confine our attention to the set of arrival epochs

(9) [ = {tk :N(tk) = N(tk - 0)+ 1, k=0, 1, 2,**-},
taking to = 0. Then, writing

(10) [Nk, Yk] = [N(tk - 0), Y(tk -0)],°e k,

the Markov chain {[Nk, yk], k = 0, 1, 2, * * * } is homogeneous with a transition
operator on ca(2) to itself which we shall denote by T: that is, if 4k E ca(2) is
the probability measure of [Nk, Yk] then 4k+l, the probability measure of [Nk+l,
Yk+l], is given by ch+l = T4lk. It is our purpose to show that T is the adjoint of
an operator on Co(9c).
We may represent this operator by a real-valued function P on the product

space 9 X 2 with the properties (a) to (c) enumerated in the introduction, so
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that the mnapping of ca(2) into itself which we have defined above takes the
form (1).
The function P also determines an operator T on the linear space

M C [ca(2)]* of bounded measurable functions into itself by the relation

(11) g-Tg= P(., dx)g(x), g
E

59,

and this mapping is the contraction to E of the mapping T* on [ca(2)]* to itself
defined by (h, Tp) = (T*h, p) for h E [ca(2)]* and every ju e ca(2l). T is a
positive operator of norm 1 leaving invariant the function which is constant
everywhere on 9C.

Since the Markov chain is homogeneous it will be sufficient to investigate a
single relation, 4q = T?o, say. The suffixes may be dropped and we shall from
now on write 4 and T for bo and 4, respectively, so that I = T4I. In the nota-
tion established above we have (p(s, z) = (cI, e) and 4,(s, z) = (T, e) for e E E.
It is illuminating to cast these functions into the same form; we have

(12) sn(s, z) = (4, e) = (d, 4)
and

(13) 4'(s, z) = (T, e) = (TN, e) = (e, T'b) = (N*e, 4b).
Since e C X, we have T*e = Te which, by equation (11), we can write as
(14) Tg = E[zNie-88Yi [No, yo]].
The last expression for 4,(s, z) is still not very useful. However, Te is a function
which we can calculate and we shall show that Tg E A. Since 8 is dense in Co(SZ)
we conclude that T* leaves Co(9C) invariant in [Co(X)]**. Consequently there is
an operator S on CO(S) to itself such that S* = T, and the element Tg in
Co(SC) is isomorphic to Se in Co(-J). Hence the expression (13) for #,(s, z) may be
rewritten as ,6(s, z) = (T4, e) = (1, Se) which we now proceed to compute.

Underlying the present study is the product space
(15) EXThl X'U2 X *-- X hX V2 X*
where 9C is the range space of [No, yo], 'Th is the range space of the random vari-
able ui and is a copy of the real line, and Vj is the range space of the random
variable vj and is a copy of D. The distribution of [No, yo] is 4 so we may set up
the product measure

(16) XAXAX*-- XBXBX* ,
since all the random variables are independent.

In order to evaluate
(17) E[zN1e-8ylNo = m, yo =x],
we suppose first that m 2 1, and we write V3 = v1 + * + vj. Then tt may
occur in one of the following nonoverlapping intervals (0, x), (x, x + vI), (x + v1,
x + vi + V2), * * *, (x + Vj, x + V,j), - * *, (x + Vm, -); with [N1, y1] taking
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the corresponding values (m + 1, x - ul), (m, x + v1 - ul), (m-1, x + v1 +
V2- U), * * *, (m-j, x + Vj+j - ul), * , (0, 0). We can therefore write
down the expectation of zN1 exp (-syl) with respect to the distribution of ul as
a sum of terms

(18) fox zm+le-8(z-u)e-aula du, + f-+V" zme-8(x+v1-u1)e-au1a du,

+ + g+V zle-a(z+vm-u-)e-cu1a du, + L;V uzOe-aua dul

Zm+ Za- (e8x - e-121) + zm a e_'z (e-8vl - e-atv)at- S a- S

+ * + z a e-ax-aV (e-VM - e-avm) + zoe-ax-aVm.a-s
If we now take the expectation with respect to the product measure in the space
'01 X ... X 'Om we obtain

(19) E[zNle-alINo = m, yo = x]

- zm+l a (e-z_ e-az)a-s

+ a e-z[B*(s) -B*(a)] E zr[B*(a)]-r + [B*(a)]m e-ax,

B*(s) = fo e-8 dB(v).

This is for m _ 1. If m = 0, t1 may occur in (0, vo) or in (vo, oo), so that [N1, Yi]
may take the values (1, vo - ul) or (0, 0) and we have therefore two terms only,

(20) z1 fv' e-s(v-u)e-auta du, + z° f e-o-"a du1,

and when we integrate with respect to vo we obtain

(21) E[zNle--YIjNo = yo = 0] = z a [B*(s) -B*(a)] + B*(a).

If we write e8,, for e and eo for the vector [1, 0, 0, *.*] then the equations (18)
and (21) may be written together in the form

(22) T*e ,, = a-zS - 6,.) + e4,B*(a)
+ za B*(s) - B*(a)
a- s z -B*(a) ''

+ {aS-s [B*(s) - B*(a)] + B*(a) - 1}6o.
Hence T*e is an element of 9 and since the e are dense in Co($E) it follows that T*
leaves Co($X) invariant in [Co(OC)]**. If we write S for the contraction of T* to
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CO(X) transfered to Co(S), then S (being a contraction of T*) is a bounded linear
operator. Also, for all f E Co(3C)

(23) (S*, f) = (¢, Sf) = (Sf, 4) = (T*f, 4)) = (f, T4) = (Tb, f)
holds. Therefore S* = T, and the element T*e which we have calculated is
isomorphic to the element Se in Co(92).
We have therefore shown that the transition operator T associated with the

Markov chain {[Nk, yk], k > O} is not quasi-weakly compact and consequently
that the ergodic theorems of Yosida and Kakutani cannot be applied to this
system.

3. The stationary distribution

Since T*4 is isomorphic with the element Se in Co(SC) we have seen that we
may write 4,(s, z) = (4), Se). Hence, regarding (16) as an operator equation in
8 and taking the inner product with respect to 4), we obtain

(24) #(s, z) = a -a[p(s, z) - ((a, z)] + 'p[Ia, B*(a)]

+ za B*(s) -B*()) {so(a, z) 4[a, B*(a)]}
a-s z -B*(a)

+ '4) {Za- [B*(s) - B*(a)] + B*(a) -1

where 'oo0 = [(0, 0)] = (4), eo) -

We seek solutions (if any) of the equation ' = Xp. The existence of a solution
of this equation implies the existence of an element 4) C ca(X) such that
(T' - X), e) = 0 for all e E 8, and since 8 is dense in Co(9C) we conclude that
4) satisfies T4) = X). If, further, 4>(F) > 0 for all F C 1, and 0 <4(XC) <CO
then 4) is readily normalized to a probability measure.
We set aside for the moment the question of positivity and investigate the

existence of solutions of the equation 4' = X,o which satisfy the condition
0 < so(0, 1) <o0. Putting first z = 0 we obtain (c(a, B*(a)) = 4o[l + X-
B*(a)], and inserting this in (24) we have

(25) (I- a -S) (S Z) = 4a-s [B*(s)0 z B*(a) + XJ}

+ 'p(a, z) za B*(s)
a - s Z - B*(a)

The function p(s, z) is a regular function of the complex variables s and z in the
region defined by the inequalities Re s > 0, and lzI < 1. Consequently the right
side of (25) must be zero at points sx defined by sx = a() - z) /X; substitution
in (25) enables us now to determine sp(a, z). We obtain
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(2600 [B(sx -B*()]z - 1 -X
+ j c,Z

B*(sx) - z(26) 0 = foX[*(A- B*(z)] - B*(a) z+ Ba(a,z) ( )
and introducing this into (19) we derive finally

(27) ( za-) =o) + za (z B*(s) - B*(sx) _
a8O a z-X) z - B*(sx))

Let us now assume that X $ 1, and impose the condition 0 < p(O, 1) <ci;
equation (27) yields (X -l)sc(O, 1)/Oo = X + (1- X - 1) = 0, which contra-
dicts our assumption. There exist therefore no characteristic values of T other
than X = 1 which can give probabilistically meaningful results. When X = 1
we have

(28) sp(s, z) = oO{++ az K B*(si)- 1
1 z

where we have written

(29) K(z) = B*(si) = o e-a(-z)v dB(v).

We note that K(1) = 1, and K'(1) = ab = p. We also have obtained the func-
tion so(s, z) in [11] as

(30) lim E[zN(t)e-y(t)].
t-.) Co

The power series expansion of K(z) has all its coefficients positive and
K(O) = B*(a) > 0, so that for real z it is a monotonically increasing function
passing through the point (1, 1). If p > 1, then K'(1) = p > 1, and there exists
a real zero of the function K(z) - z at a point zo < 1, say. Rouche's theorem
shows that z = zo is the only zero of K(z) - z properly inside the unit circle.
The right side of (28) has therefore a pole at z = zo, whereas the left side, by
construction, is regular for all z inside the unit circle. It is not therefore possible
that there exists a stationary distribution when p > 1.
We shall show that when p . 1 the right side of (28) is a regular function of

z everywhere inside the unit circle. For

(31) G(z) 1 K() = zr(k,+l + kr+2 +*
1 - z r=O

is a power series with positive coefficients and

(32) G(1) = lim 1-K(z) = p < I
S- 1 -z

When p < 1 it follows immediately from Rouche's theorem that 1 -G(z) has
no zeros inside the unit circle, since on Izi = 1, we have 1G(z)!I G(1) < 1.
When p = 1 we observe that G(1- E) < 1 for every e > 0, from which we can
conclude that 1 - G(z) has no zero inside any circle lzl = 1 - E < 1. Hence
1 -G(z) is regular and nonzero inside the unit circle when p < 1 and therefore
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[1 - G(z)]-b is also regular inside the unit circle when p ! 1, and our assertion
is proved.
We have thus obtained an invariant function p corresponding to a finite

measure which we will denote by r ( ca(Z). For this function to be proba-
bilistically meaningful we must normalize it, and this condition enables us to
evaluate oo (which from now on we must call ro). We require .i(O, 1) = 1: then
we obtain from (22)

(33) ro= 1 - p, p _.

(Note. Although we have shown that (22) is a regular function of z for p < 1,
the function (p(s, z) can only be said to exist when p < 1.)
We shall now establish the positivity of the set function r. We consider 'P(s, z)

given by (28) in the region of the real (s, z)-plane defined by the inequalities
0 _ z < 1, a < s < oo. Since si = a(l - z) we have also 0 < si _ a < s. We
saw above that G(z) = [1 - K(z)]/(l - z) is a power series with positive coeffi-
cients, and G(1) = p < 1. Then for 0 _ z < 1 we have G(z) _ p < 1, so that

(34) (1 -p) (1 _ 1 1 Kz( )} = p(z) = E PrZT

is absolutely convergent in the same half-open interval and has also positive
coefficients. Further,

B*(si) -B*(s) X e-81D - e-1 e(8-81)P
(35) s-Si J1 s dB(v) JO e dB(v)

= J|7 e"' {f e-(8-81) dt} dB(v)

=fo e-8t dt fj e-1(1-t) dB(v)

= J|7 e-" dt ea(1z)w dB(w + t)

= fo e-8t dt,zr f (a,)' ew dB(w + t)

= e-"I dt E zr/r(t),O r-O

say, where

(36) A (t) f (aw)' e- dB(w + t).

Consequently, the rth component of r has a density which we can write in the
form

r-i
(37) dr,(t) = a p,.8.(t) dt, 0O1 < oo;r 1.

n=0

#n(t) is positive for 0 _ t < X and we have shown that P(z) has a power series
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expansion with positive coefficients so that r, has a positive density with respect
to the Lebesgue measure on (Xr, 2r) for each r > 1. If D is the finite closed
interval [0, V] then we define

(38) 13r(t) = v [a(V -t)]r e-a(v-t) dB(v).

With this modification equation (38) remains correct for 0 < t < V. (In this
case it will be usual that /3r(t) > 0 for 0 _ t < V but 1r(V) = 0.) Also ro =
1 - p. Hence r(F;) _ 0 for every F E 2;, as was to be shown.
We have therefore shown in this section that

(i) X = 1 is the unique characteristic value of T;
(ii) there exist no solutions of #, = (p for p _ 1;

(iii) when p < 1 there exists a unique solution of 4t = , given by (28) with
ro = 1- p, and the inverse function r satisfies Tr = r;

(iv) r(F) : 0 for every F E 2.

4. Absolute continuity
In this section we prove that P(t, *) is absolutely continuous with respect to

r(-) for every t C 9.
Let us denote the transition probability P(Q, *) as an element of ca(2) by the

vector 7rt = [4rt7,7r2, * * * ]. Then our assertion is proved when we have shown
that 7r, << r, for each r and every t. With this notation the expression (19) may
be written as (7rt, e) where t = (m, x). Thus we must compare the coefficient of
zr in (19) with the coefficient of zr in (28).
We have already seen that when p < 1 there exists for each r _ 1 a Lebesgue

summable function gr such that

(39) dr, = grdxr, r _ 1,
where g,(u) > OforO < u < oo.
We treat the terms of (19) in the same way: the coefficient of zr, where

1 < r < m, is

(40) cae-z[B*(a)]m-r B*(a) -B*(s)-a

ae-ax[B*(Ca)]m-r e-8t dt f e-aw dB (w + t)

so that
(41) d7rt = f dXr,
where
(42) ft(t) = ae-z[B*(a)]m-r fo e-w dB (w + t), 0 _ t <e'; 1 < r . m,

is everywhere positive [the modifications necessary when D is bounded will be
clear from the remarks following equation (37)]; the coefficient of zm+l is
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(43) = f eetca(xt) dt

so that
(44) d7+i = e-a(z-xZ"+) dxm+i, 0 _ Xm+, _ X.

Also ird = 0 for r > m + 1. Hence

(45) dr = htrdr, r> 1,
where hM = f/gr. But ht will be indeterminate at infinity (if the support of B(.)
extends so far); it may be indeterminate at V if the support of B(.) is bounded.
In either case lim., ht(u) or limu-v hf(u) can be evaluated, so that for all t and
each r _ 1 the function ht is well defined, nonnegative, and r,-summable on X,.

There remains r = 0. We need to show that (7rk, eo) = 0 whenever ro = O.
But ro = 1 - p which is never zero since we are concerned here only with the
case p < 1. Hence the value of (7rt, eo) does not concern us and we can write
7 << r or P(Q, *) << r(-) for all t when p < 1.

Therefore, when p < 1, the sequence of partial sums Qn(x, F) =
n-l1 _=1 Pr(X, F) determined by (2) converges to a function Q(x, F) which is a
stationary distribution for each x. But the argument of the last section showed
that there is a unique stationary distribution F which is independent of the
starting point x. Since, also, it is clear that Q(x, DC) = 1 for all x, we can aver
that Q(x, F) 'r(F) for all x: that is,

1 n
(46) lim - £ P,(x, F) = r(F)

n-o r-

for all x.

I would like to thank Mr. David Kendall for his helpful comments and sug-
gestions in the preparation of this paper.

APPENDIX

Another Markov chain associated with the system M/G/1 is the waiting
time of the rth customer. In fact, if w(t) is the time a customer would have to
wait if he entered the system at time t, then {w(t), t _ 0} is a Markov process
(Takacs [10]). If we write w, = w(tr- 0), for t, £E H, then {w7, r _ 0} is a homo-
geneous Markov chain and Lindley has shown [8] that if Fr(x) = P{w, _ x}
then

(47) Fr+l(x) = Jo G(x - )F7(dy),

where

(48) G(t) = P{v, - u . t = {B(t) + e- e-" dB(v), t > 0=
tea'B*(at), t _ 0.



592 FOURTH BERKELEY SYMPOSIUM: WISHART

Our phase space in this case is the nonnegative real line (R, and (47) determines
a transformation T on the space of functions of bounded variation to itself. As
in section 2 the transition probability G(x - y) determines an operator T on
the space of bounded measurable functions to itself by the relation

(49) (Tg)(y) = Jo g(x)G(dx - y).
The functions of the form e,s(.) exp (-s.) are dense in CO(OR) and pursuing
our previous argument we can show that

(50) 8sB"'(a) a _ aB*(s) A
s - a s - a

It follows as before that T is the adjoint of an operator on CO(&R) and so is not
quasi-weakly compact. We can show also that X = 1 is the unique characteristic
value of T and obtain the well-known stationary distribution

(51) (e ) = (I- {1 - p bs

which exists when p < 1. Lastly,
(52) G(x - y) = P{wr < xlwr.1 = y}
is absolutely continuous with respect to the distribution function F(x), and so
the argument of section 4 may be repeated.
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