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Let O denote the space of all infinitely differentiable real-valued functions
defined on the real line and vanishing outside a compact set. The support of a
function so E X, that is, the closure of the set {x: s(x) F 0} will be denoted by
s(,o). We shall consider 3D as a topological space with the topology introduced
by Schwartz (section 1, chapter 3 in [9]). Any continuous linear functional on
this space is a Schwartz distribution, a generalized function.

Let us consider the space O of all real-valued random variables defined on
the same sample space. The distance between two random variables X and Y
will be the Frechet distance p(X, Y) = E[X - Yl/(l + IX - YI), that is, the
distance induced by the convergence in probability.
Any C-valued continuous linear functional defined on a is called a generalized

stochastic process. Every ordinary stochastic process X(t) for which almost all
realizations are locally integrable may be considered as a generalized stochastic
process. In fact, we make the generalized process T((p) = f X(t),p(t) dt, with

sp E 1, correspond to the process X(t). Further, every generalized stochastic
process is differentiable. The derivative is given by the formula T'(w) = - T(p').
The theory of generalized stochastic processes was developed by Gelfand [4]
and It6 [6]. The method of representation of generalized stochastic processes by
means of sequences of ordinary processes was considered in [10].
A generalized stochastic process T is said to have independent values if the

random variables T(,p) and T(ik) are mutually independent whenever so-+ = 0.
It is obvious that the derivatives of ordinary processes with independent incre-
ments have independent values.

Let fl be a pseudonorm in D, that is, a nonnegative functional which is not
identically equal to 0 and satisfies the postulates lIapIl = jaI II pII, 11 + 411 _
IWp I + I114,1I where -X- < a < X and , 4P E 2D. A generalized stochastic process
T is said to be II-isotopic if all the random variables T(so), with IlPl I = 1, are
identically distributed. As an example we quote the first derivative of symmetric
stable processes with independent increments. Let p be a real number satisfying
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the inequality 0 < p _ 2 and let ,u be a finite on compact sets Borel measure on
the line. We call a stochastic process X(t) stable with parameters (p, ,) if it has
independent increments, if almost all its realizations are locally integrable and
for any interval I the characteristic function of the increment on I is given by
the expression exp [-,4 (I) ItP]. It is obvious that a stable process is homogeneous
if and only if the measure j, is proportional to the Lebesgue measure. Further,
the stable process with parameters (2, IA) is a normal process and, moreover, if
it is homogeneous, then it is a Brownian movement process. The first derivative
T of a stable process with parameters (p, j,) is a generalized process with inde-
pendent values and for any so E O the characteristic function 4(t) of the random
variable T(so) is given by

(1) D(t) = exp [-Jf X 1so(x)IPjA(dx)1tIPJ
Consequently, for 1 _ p < 2 the process T is II {l-isotopic with respect to the
LP-pseudonorm

(2) I1sl1 = [f. lo(x)IPM(dx)j']P
Every LP-pseudonorm is monotone, that is, satisfies the inequality II > 1,1j1,

whenever so(x) > 4,(x) > 0 for all x. In this paper we give a complete repre-
sentation of the class of all II II -isotopic generalized processes with independent
values in the case of monotone pseudonorms. Namely, we prove
THEOREM 1. Let II II be a monotone pseudonorm in 5D. If T is a fl I-isotopic

generalized process with independent values, then either T is equal to 0 or there exist
numbers p and c, with 1 _ p _ 2; c > 0, and a finite on compact sets Borel meas-
ure At such that T is the first derivative of a stable process with parameters (p, ,u) and

(3) 11Ph = c [f lP(x)1PM,(dx)j'P.
Before proving the theorem we shall prove two lemmas.
LEMMA 1. Let 11 1I be a pseudonorm in O and let p be a positive number. If

for any pair (p, 41 C D satisfying the condition p-4, = 0 we have the equality
IIS°IIP + II4IIP = 11< + 4,1lP, then either p > 1 or jIf!j + 11#11 = IIS° + P11 whenever

= 0.
PROOF. First let us assume that there exists a pair of functions so and 4 satis-

fying the conditions lljflj = 1%j11 = 1 and po4, = 0. Owing to the triangle in-
equality,
(4) 2 = Ij50I1p + 114,61P = IIS° + pIIP _ (11jj + IIjII)P = 2P

and, consequently, p > 1. Finally let us suppose that for any pair of functionis
sp, 4, EE O satisfying the condition sop4 = 0 we have either Ilpl I = 0 or 14,61I = 0.
Then

(5) o Iot +proo =(If. IIP + If.IIP)1'P = N,11 + 1l,6ll
which ponplgtes the proof.
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LEMMA 2. Let be a monotone pseudonorm in O satisfying the equality
(6) IIWVIIP + lilI4p = IIS° + 1I2P, p 2 1,
whenever (p = 0. There exist a finite on compact sets Borel measure v such that

(7) IIII= [ Ip(X)IV(dx)] 'P
for all sp EO

PROOF. For every compact set C we put X(C) = inf {|jpf|P p >_ Xe, f E DI
where xc denotes the indicator of C, that is, xc(x) = 1 if x E C and xc(x) = 0
if x C C. We shall prove that the set function X is a regular content on the class
of all compact sets. In other words, we shall prove that

(8) 0 _X(C) < ,
(9) X(C) _ X(B), whenever C C B,
(10) X(C) = inf {X(B): C C B°},
where BO denotes the interior of the compact B,
(11) X(Cl U C2) = x(C1) + 1X(C2) if C1 n c2 = o
and for any pair of compact sets C1 and C2
(12) X(Ci U C2) < X(C1) + X(C2).
Inequalities (8) and (9) are obvious. To prove (10) let us suppose that E is an
arbitrary positive number and let us choose a number 5, with 0 < a < 1, satis-
fying the inequality

(13) S-PX(C) < X(C) +

From the definition of the set function X it follows that there exists a function
,p from D for which the inequalities

(14) so _XIxS,IIP< X(C) + 2

hold. Putting B = {x: sp(x) > 3b we have B° D C and 6-'(p 2 XB. Consequently,
(15) X(B) _ 11-1'plIP = 6-11,lIP.
Hence from (13) and (14) we get the inequality

(16) (B) <s-P[X(C) + 2 ] = S_PX(C) + 2 < X(C) +e.

The arbitrariness of e implies the inequality

(17) inf {X(B): C C B°} _ X(C).
Hence, using (9), we obtain the equality (10).

Let C1 and C2 be disjoint compact sets. For any positive e we can choose two
functions 4p1, jO2 E D such that

(18) VV-P2 = 0,
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(19) lLlijIP _ X(C1) ± 2- l2II21P $ X(C2) + 2-' lt : XC,, P2 ? %C.-

The last inequalities imply p + p2 _ Xcl U Xc, and, consequently, X(C1 U C2) s
11oik + po2IIP. Hence, according to (6), (18), and (19), we get the inequality
(20) )X(C1 U C2) _ II'piflP + IIP211P _ X(Cl) + X(C2) + E.

Since e can be made arbitrarily small, we obtain
(21) X(C1 U C2) <- X(C1) + X(C2),
whenever C1 and C2 are disjoint. Further, for given e > 0 there is a function
4 e D such that 4 > uc and

(22) |I|iIIP .X(Cl U C2) + E.

It is clear that the function 4' can be written in the form 4 = 4 + 4'2 + 43,
where 4,i 2 XCI, 42 >- XC, 3 >- 0, and 4'1-42 = 0. Hence, and from (22), since

is monotone, we obtain the inequality
(23) X(Cl) + X(C2) _ 114111P + 114'21fP= Il4'i + 4'21V _ ||1II41 p X(Cl U C2) + e,

which implies, in view of the arbitrariness of e, the inequality X(C1) + X(C2) .
X(Ci U C2). Combining this inequality with inequality (21) we obtain equality
(11).

Further, from the definition of the set function X, it follows that for any pair
El and E2 of compact sets

(24) XlIP(E1 U E2) = inf {j|<|| : 2 XE,UEJ}
. inf {11oi. + IO211 : 'P _ XE, V2 > XE2}

_ inf {j1PII| + 1Iz211 : 'P > XE,, P2 >- XE}
= inf {IIoIPII : 'P > XE} + inf {11"j211 0P2 _ XE2}
= X'IP(E1) + XI"P(E2)-

Let C1 and C2 be two arbitrary compact sets and let E be an arbitrary positive
number. From (10) it follows that there exist two compact sets B1 and B2 such
that CiC B°, B1C B° and

(25) X(B2) <X'(CI) + e-

Since C1 n (B2 - B?) = 0 and C1 U (B2 - Bo) C B2, we have, in view of (9),
(11), and (25),

(26) X(C1) + X(B2 - B?) _ X(B2) < 1X(C1) + E.

Consequently,
(27) X(B2 - B?) <e.

Further, since B1 n (C2 - B°) = 0, we have, according to (9), (11), (25), and
the inclusion B1 C B2,
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(28) X[B1 U (C2- Ba)] X(B1) + X(C2- B')
S jf(B2) + X(C2) < X(C1) + X(C2) + e.

From the inclusion C1 U C2 C B1 U (C2- B20) U (B2- B?) and formula (24)
we obtain the inequality

(29) X"P(C1 U C2) _ X'IP[B, U (C2 - Bo)] + X1'P(B2- BO).
Hence, using (27) and (28), the inequality

(30) Xl'P(Cl U C2) . [X(C1) + X(C2) + E]1lP + el/P
follows. The arbitrariness of e completes the proof of formula (12). Thus the
set function X is a regular content. By a well-known theorem (sections 53 and
54 in [5]) there exists a Borel measure v such that its values on compact sets
coincide with the values of the content X.
Let 6' be an arbitrary function from a vanishing outside a compact set E.

We now prove the inequality

(31) 11|I| | 3 max 1#(x)I [v(E)]11P.
xEE

Given an arbitrary positive number f, there exists a function #,1 (E D such that
0i _ x, and

(32) 114'111 [v(E)]1'P +,e.
Setting M = maxxEE 16(x)1, we have the inequality -M#1 _., < M41,

which implies 0 < 6' + M4,1 < 2M#1. Hence, using (32), since is mono-
tone, we obtain the inequalities

(33) 11f11 <11.P + M41f1 + IIM#11 _< 3M|14#11 _ 3M[v(E)]lP + 3eM.
Since e can be made arbitrarily small, this inequality implies (31).
Now let (p be an arbitrary function belonging to D. For every positive number

e there exist compact sets CO, C1, * * *, C. such that all the sets C,, C2, - * , C. are
disjoint, the function s vanishes outside of the union Co U C1 U ... U C.,
(34) v(Co) < eg,
and

(35) | (x)IPv(dx) - <,lPv(C,) <2

where mi, M2, ***, mn is a system of real numbers satisfying the inequality

(36) max 1p(x) - m1l < j = 1, 2,**,n.

Let C be such a compact set that its interior contains the union
Co U C1 U ... U C.. We can choose a system (i (2,*P-* ,* p of functions
belonging to D and vanishing outside of the set C in such a way that

(37) so -'Pk = 0
whenever j 7 k; j, k = 1, 2,***, n; j = 1, 2, ,n,
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(38) (p > x j

(39) IliIV _ v(Cj) + 2 ) j = 1 2, .*, n,
2(1+ EIMjIP)

j=1~~~~~~7
n n

(40) _ (j(x) = 1 on C1U C2 U ... U Cn, and E, (pj _ 1.
3=1 j=1

The possibility of such a choice follows from a well-known theorem on the de-
composition of the unity (section 2, chapter 1 in [9]). Moreover, according to
(36), we can assume that

(41) E f(x)fj(x) - E mJtpj(x) < e
j=1 j=l

for all x. Since the sum F7,. i pj vanishes outside of the set C, the last inequality
and (31) imply the inequality

(42) |E sosj - E mj.j_ 34{v(C)]'p.
j=l =

By (40), the function (p - Sop pj vanishes outside of the set Co. Therefore,
in view of (31), (34), and (40), we have the inequality

n1 n

(43) p- oV .3emax -jE(xp(x)(E(x) [v(Co)]V1P
_ 6e max (P(X) I-

XEC

Combining this- inequality with inequality (42) we find

(44) ,(ol - 11IE mjgjI _ 3e {[v(C)]"1P + 2 max jV(x)j}.I j=1 xExC

From (6) and (37) we infer that
71 p

=
n

(45) | = ;E ImNll|P
j=1 11 j=1

and consequently, by (38) and (39),
n

< 1 n
M,

lp n e
(46) E ImA"Pv(cj) -|E j>_ E lmilPv(cj) + 2--

j=1 ~~j=1 j=12
Thus, according to (35),

(47) || (p(x)IPv(dx) -|E mjXpj|| < e.I 71 lpI

Hence and from (44), taking into account the arbitrariness of e, we obtain the
equality

(48) l(pfl = [f (P(X)IPV(dx)]P, ( E

which completes the proof of the lemma.
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PROOF OF THEOREM 1. Let dI'(t) denote the characteristic function of the ran-
dom variables T(sp), with JIpoI = 1. Of course, the characteristic function of
arbitrary random variable T(sp) is equal to ib(I Ipl t). Hence, in particular, it
follows that -I(t) corresponds to a symmetric probability distribution. Further,
if s ,p = 0, then T(so) and T(#,) are mutually independent and the characteristic
function of the sum T(<p) + T(4,) is equal to the product 4(IIpjIt)b(IIAI t). On
the other hand, this characteristic function is equal to t(Ilkv + 4,1It). Thus we
have the equality
(49) b(XIsI0)b110,6Xl4t)1 = C(Nls + 411t) if tjo-4 = 0.

Hence, b(t) is the characteristic function of a symmetric stable law and, conse-
quently, there exist constants a and p, with a > 0, 0 < p _ 2 (see p. 327 in [7]),
such that
(50) 4(t) = exp (-aItIP).
If a = 0, then T = 0. Now let us suppose that a > 0. From (49) and (50) we
obtain the equality
(51) II<IIP + II4IIP = IIv + 4'IIP whenever p- = 0.

By lemma 1 we may assume that p _ 1. From lemma 2 it follows that there
exists a finite on compact sets Borel measure ,u such that

(52) llll = c [f| I((x)IvP(dx)] I,

where c = a-'. Consequently, the characteristic function of T(w) is given by

(53) 45(|i|Iyt) = exp [-f Ip>(x)IPA(dx)ItIP].
Hence it follows that the convergence f .

o(x) PIu(dx) - 0 implies the con-

vergence in probability T(so) -4 0. In other words, the mapping T :DO- 'U is
continuous in the pseudonorm II 1. Consequently, it can be extended to a
continuous linear mapping from the space LP(,U) into the space 'O. Let to not be
an atom of the measure 1s. Put X(t) = T(x(t,t]) if t > to and X(t) = T(x(et,e]) if
t < to. For any pair t > u we have the equality X(t) - X(u) = T(x(u,t]). Since
for every system I,, I2, *-, I,, of disjoint intervals we can choose sequences
Plk, 02k, * * Onk, with k = 1, 2, ***, of functions belonging to D convergent to
XI XI , .* XI, in LP(M) respectively, and satisfying the condition (pik- (P,k = 0,
whenever j 5- r, the process X(t) has independent increments. Let X*(t) be a
measurable and separable modification of X(t) such that for any t we have
X(t) = X*(t) with probability 1 (see p. 61 in [3]). By (53), the characteristic
function of the increment of X*(t) in any interval I is given by the expression
exp [E(I)ItIP]. To prove that the process X*(t) is stable with parameters (p, J)
it is sufficient to show that almost all its realizations are integrable over every
finite interval. Levy has shown that a function h(t) can be chosen in such a way
that the process X*(t) - h(t) is centered, that is, roughly speaking, almost all
its realizations have unilateral limits (p. 407 in [3]). Moreover, as the function
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h(t) we can take the solution of the equation E arctg [X*(t) - h(t)] = 0. Since,
by the definition X*(to) = 0, the process X*(t) is symmetrically distributed and,
consequently, h(t) is identically equal to 0. Thus X*(t) is centered. Hence, ac-
cording to theorem 6.3 in [3] almost all realizations of X*(t) are bounded in
every finite interval and, consequently, locally integrable. From the definition
of X*(t) we obtain

(54) T(,p) = T [-f (p'(t) dt]

= T [-f| p'(t)x(to,t](x) dt] = - I ('(t)X*(t) dt.

Thus, T is the first derivative of the stable process X*(t).
It is well known that if X(t) is a Brownian movement process, then the gen-

eralized Stieltjes integrals f| f(t) dX (t) and f g(t) dX (t) are mutually inde-

pendent whenever f, g E L2 and f f(t)g(t) dt = 0 (see p. 153 in [8]). In the
language of generalized processes this result can be formulated as follows: if T
is the first derivative of a Brownian movement process and f .o(x)4,(x) dx = 0,
then T(so) and T(4,) are mutually independent. Using theorem 1 we give the
following characterization.
THEOREM 2. Let the inner product in D be given by the formula ((p, 4) =

f *p(x)#(x)A(dx), where ;A is a finite on compact sets Borel measure. If T is a

generalized stochastic process such that the random variables T(,p) and T(4') are
mutually independent whenever ((p, 4A) = 0, then T is the sum of the first derivative
of a normal process and a Schwartz distribution.

In the proof of this theorem we use a lemma. Throughout this paper every
symmetric, bilinear functional (,p, 4X) on X will be called an inner product. An
inner product cannot be strictly positive. Further, we assume that there exist
two functions so and 4' such that (sp, 4A) = 0 and (so, so) = (4A, 4') > 0.
LEMMA 3. Let (vp, 4') be an inner product in O and let T be a generalized sto-

chastic process. If the random variables T(p) and T(4') are mutually independent,
whenever (.j, 4A) = 0, then for any so E D, T(Vp) is a Gaussian random variable
with the variance depending only on the pseudonorm l1spll induced by the inner
product.

PROOF. Let 4 and 4, be a pair of functions satisfying the conditions (,o, 4') = 0
and IIYII = 1l4,l1. Since the functions 'p + 4' and p - 4, are also orthogonal, the
random variables T(4p) + T(4') and T(4o) - T(4') are mutually independent.
Taking into account the independence of T(Vp) and T(4,) and using the theorem,
which first was proved by Bernstein [1] under an assumption of the existence
of moments and in the general case without any restrictive assumption by
Darmois [2], we infer that T(40) and T(4,) are Gaussian random variables with
the same variance. Hence it follows that the variance of T(40) depends only on
the norm 1IIol.
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PROOF OF THEOREM 2. By lemma 3, for any y E X), T('p) is a Gaussian
random variable with the variance depending only on 11jP11, where 11 11 is the
pseudonorm generated by the inner product (s, 46). Let m(.p) denote the expec-
tation of T(,V). From the continuity of T in the topology of D it follows that the
linear functional m is also continuous, that is, it is a Schwartz distribution.
Putting To((p) = T(so) - m((p) we get a generalized stochastic process such that
for any so E D all the random variables To(so), with olII = 1, are identically
distributed and for any pair so and 4' of orthogonal functions To(,o) and To(4')
are independent. Since the relation so 4, = 0 implies (sp, 4') = 0, the process To
has independent values. Further, the pseudonorm

(55) IIsII = [f|00 lp(x)I2, dx)]11
is monotone. To(so) has symmetric Gaussian distribution for any so E aD. Con-
sequently, by theorem 1, the process To is the first derivative of a normal process.
The theorem is thus proved.
For any real number h, we denote by Tk the shift transformation TPrX = x + h.

We use the notation Trhp(X) = V(T-hX). A generalized process T is said to be
stationary if, for any so E a), the distribution function of the random variable
T(Tm) does not depend on h. A generalized process T is said to have almost
independent values if there exists a positive number q such that the random
variables T(,p) and T(4,) are mutually independent for every pair s, 4, EaD with
supports s(so) and s(4') distant one from another by more than q.
By aL' we shall denote, following Schwartz (see section 8, chapter 6 in [9]),

the space of all infinitely differentiable functions for which all derivatives are
square integrable. The convergence in a)L' is defined as follows: ( 0 if

f0Fdk 12
(56) lim | [di n(X)I dx = O

for every k = 0, 1,* -. Any continuous linear functional on this space is called
a square integrable distribution. The convolution r * (p of a square integrable
distribution r and a function p eE a is a square integrable function (see theorem
25, section 8, chapter 6 in [9]).
LEMMA 4. Let (sp, 4'), and (yP, 4')2 be two inner products in a) such that the

orthogonality relation (,p, 4)i = 0 implies (sP, 4')2 = 0. Then there exists a positive
constant c such that c((p, 4)i = (se, 4')2 for all (p, 4' E a).

PROOF. Let Ii lli and Ii 112 be the pseudonorms induced by the inner prod-
ucts (se, 4')i and (sP, 4')2 respectively. To prove our lemma it is sufficient to prove
that there exists a constant c such that cil III = 11 112. In other words, we
must prove that IlIP12 = 114'112 whenever 1pll|l = 1l4'l11. Let o, 4' E )D and 11pil =
11411li. Then there exist constants a and b and a function poo C D such that

(57) lIlllt = II(po0II, (, 'o)i = 0, 4' = asp + bqpo,
and consequently,
(58) a2 + b2= 1.
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Since (so, s00)2 = 0, we have the equality

(59) 114112 = aljIfl 12 + b2|Ipoj12--
Moreover, in virtue of (57), (v + soo, so-po)- = 0 and, consequently,
0 = (p + (Po, P - 'PO)2 = 21 2-Iioll. Hence, using (58) and (59), we obtain
the equality 114112 = 1I0112. The lemma is proved.
THEOREM 3. Let (p, 4') be an inner product in 51) and let T be a stationary gen-

eralized process with almost independent values. If the random variables T(Gp) and
T(4) are independent whenever (,p, 4k) = 0 then there exist the first derivative U of
a Brownian movement process and a square integrable distribution r such that T(V)
is the sum of U(r * <o) and a Schwartz distribution.

PROOF. From lemma 3 it follows that, for any v E X, we have T(V), a
Gaussian random variable. Setting To(wp) = T(p) - m(<p), where m(<p) is the
expectation of T(so), we have a symmetric process. Moreover, To is stationary
in the wide sense (see [6]), that is, its covariance functional (so, '/')o = ETo(.p) To(4')
is invariant under the shift transformation. If ET(o) is identically equal to 0,
then of course T = 0. Now let us suppose that ET(oo) > 0 for a function
(po E D. Then (so, O,)o can be regarded as an inner product in D. It is very easy
to see that the orthogonality relation (so, A') = 0 implies (sp, #,)o = 0. Thus, by
lemma 4, c(,p, A) = (so, ,6)o, where c is a positive constant. Consequently, there
exists a Schwartz distribution R which is not identically equal to 0 and such
that (sp, ,6) = R(Qp * {), where {(x) = ,6(-x) (see [6]). Since the process To has
almost independent values, the support of the distribution R is compact. Con-
sequently, the Fourier transform 1? of R can be extended to an entire function
of exponential type (theorem 16, section 8, chapter 7 in [9]). Further, R is a
positive definite distribution. Thus, by a theorem of Schwartz (theorem 20,
section 9, chapter 7 in [8]), R can be represented as a convolution r * r where
F is a square integrable distribution. Thus

(60) (so,A) = r * r( * ^) = f r * Vo(x) * r *4(x) dx.

For any square integrable function we define a random variable as follows. For
any function of the form r * 5, where ,o Ez D we put U(r * s) = To((o). Now
we show that the set {r * so: so E sD} is dense in the space of all square inte-
grable functions. Let g be a square integrable function orthogonal to r * So for
all so E X, that is,

(61) F r * $(x)g(x) dx = 0

for o Ez 1D. Hence, in view of the well-known relation of Parseval, we obtain the
equality

(62) f P(x) (x) dx = J r * p(x) (x) dx = 0.

Since R(x) = If(x)12, the Fourier transform 17(x) is a continuous function and,
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consequently, F(x)(x)E L2. Sinice the family of all Fourier transforms
f EO} is complete in 1,, we obtain, usinig (62), P(x)g(x) = 0 almost
everywhere. Thus J?(x)I (x)12 = 0 alimiost everywvhere. But R(x) is ani analytic
function. Therefore, the functioni y vanishes almnost everywhere. Thus the set

Pr * SD : pE V} is dense in L2. Hence it followvs that the mapping U can be ex-
tended to the whole L2 and, conse(luently, we obtain a omifinuous linear mapping
from L:2 into lhe space 'C sueh that the l(f) wvith

(63) f j2(x)d.= l

are symmetric Gaussian r-andom variables. Since the partial mappinig U t-oo
is also continuous and for fg = 0 the ralndonm variables U(f) and U(g) are un-
correlated and, consequently, mutually indepenideiit, by theorem 1, U is the
first derivative of a homogeneous normal process. The theorem is thus proved.
THEOREM 4. Let l! 11 be a pseudonorm in D induced by an inner product.

Every 1-isotopic stationary generalized process with almost independent values
is of the form T(sp) = U(r * p), where F is a squtare integrable distribution and U
is the first derivative of a Brownian movement process.

PROOF. For any pair sp and 4' there exists a number h such that TQ(O) and
T(Th4') are mutually independent. By 1(t) we denote the common characteristic
function of random variables T(sp) with pj = 1. The characteristic function of
the random variable T(y) 4 T(r,!4') is equal to 4,(Jlp zt Th4'flt). On the other
hand, it can be written in the form b(Ift)b(II4'IIt). Consequently,
¢(IIFIIt)¢(II4'It) = )(II rh4'IIt). Hence it follows that b(t) is the characteristic
function of a stable law. Of course, we may suppose that 7' is not identically
equal to 0. Then, there is a number p with 0 < p _ 2 such that

(64) II< i rh4jIP = ||Ij|-p+ II4j|p-
Moreover, we have the equality 11IrhyI = HI. In view of (64), and since
I I iT-4'jl = IIpII2 i 2(,, Th4) + 110112, we have (, Th4l) =0 and, consequently,

(65) (1GH112 + II4'12),' = (IjpII +jI-l,jljp)2.
Setting |pjj 14' 12P = 1 in the last formula, we obtain 4 = 2P, which implies
p = 2. Thus for any S CE we have T(so) is a symmetric Gaussian random
variable. Moreover, the pseudonorm jpjIo is proportional to the variance of T(<p)
and, consequently, (p, 41) = cET(o)T(4), where c is a positive constant. Thus
the othogonality relation (so, 4') = 0 implies the independence of T(<p) and T(4').
'rhe assertion of our theorem is now a direct conse(luence of theorem 3.
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