GENERALIZED STOCHASTIC PROCESSES WITH INDEPENDENT VALUES

K. URBANIK

UNIVERSITY OF WROCLAW

AND

MATHEMATICAL INSTITUTE
POLISH ACADEMY OF SCIENCES

Let $\mathfrak D$ denote the space of all infinitely differentiable real-valued functions defined on the real line and vanishing outside a compact set. The support of a function $\varphi \in \mathfrak D$, that is, the closure of the set $\{x : \varphi(x) \neq 0\}$ will be denoted by $s(\varphi)$. We shall consider $\mathfrak D$ as a topological space with the topology introduced by Schwartz (section 1, chapter 3 in [9]). Any continuous linear functional on this space is a Schwartz distribution, a generalized function.

Let us consider the space $\mathfrak V$ of all real-valued random variables defined on the same sample space. The distance between two random variables X and Y will be the Fréchet distance $\rho(X, Y) = E|X - Y|/(1 + |X - Y|)$, that is, the distance induced by the convergence in probability.

Any $\mathbb D$ -valued continuous linear functional defined on $\mathfrak D$ is called a generalized stochastic process. Every ordinary stochastic process X(t) for which almost all realizations are locally integrable may be considered as a generalized stochastic process. In fact, we make the generalized process $T(\varphi) = \int_{-\infty}^{\infty} X(t)\varphi(t) \, dt$, with $\varphi \in \mathfrak D$, correspond to the process X(t). Further, every generalized stochastic process is differentiable. The derivative is given by the formula $T'(\varphi) = -T(\varphi')$. The theory of generalized stochastic processes was developed by Gelfand [4] and Itô [6]. The method of representation of generalized stochastic processes by means of sequences of ordinary processes was considered in [10].

A generalized stochastic process T is said to have independent values if the random variables $T(\varphi)$ and $T(\psi)$ are mutually independent whenever $\varphi \cdot \psi = 0$. It is obvious that the derivatives of ordinary processes with independent increments have independent values.

Let $|| \ ||$ be a pseudonorm in \mathfrak{D} , that is, a nonnegative functional which is not identically equal to 0 and satisfies the postulates $||a\varphi|| = |a| \ ||\varphi||, \ ||\varphi + \psi|| \le ||\varphi|| + ||\psi||$, where $-\infty < a < \infty$ and $\varphi, \psi \in \mathfrak{D}$. A generalized stochastic process T is said to be $|| \ ||$ -isotopic if all the random variables $T(\varphi)$, with $||\varphi|| = 1$, are identically distributed. As an example we quote the first derivative of symmetric stable processes with independent increments. Let p be a real number satisfying

the inequality $0 and let <math>\mu$ be a finite on compact sets Borel measure on the line. We call a stochastic process X(t) stable with parameters $\langle p, \mu \rangle$ if it has independent increments, if almost all its realizations are locally integrable and for any interval I the characteristic function of the increment on I is given by the expression $\exp\left[-\mu(I)|t|^p\right]$. It is obvious that a stable process is homogeneous if and only if the measure μ is proportional to the Lebesgue measure. Further, the stable process with parameters $\langle 2, \mu \rangle$ is a normal process and, moreover, if it is homogeneous, then it is a Brownian movement process. The first derivative T of a stable process with parameters $\langle p, \mu \rangle$ is a generalized process with independent values and for any $\varphi \in \mathfrak{D}$ the characteristic function $\Phi(t)$ of the random variable $T(\varphi)$ is given by

(1)
$$\Phi(t) = \exp\left[-\int_{-\infty}^{\infty} |\varphi(x)|^p \mu(dx) |t|^p\right].$$

Consequently, for $1 \le p \le 2$ the process T is $|| \quad ||$ -isotopic with respect to the L^p -pseudonorm

(2)
$$||\varphi|| = \left[\int_{-\infty}^{\infty} |\varphi(x)|^p \mu(dx) \right]^{1/p}$$

Every L^p -pseudonorm is monotone, that is, satisfies the inequality $||\varphi|| \ge ||\psi||$, whenever $\varphi(x) \ge \psi(x) \ge 0$ for all x. In this paper we give a complete representation of the class of all || ||-isotopic generalized processes with independent values in the case of monotone pseudonorms. Namely, we prove

THEOREM 1. Let || || be a monotone pseudonorm in \mathfrak{D} . If T is a || ||-isotopic generalized process with independent values, then either T is equal to 0 or there exist numbers p and c, with $1 \leq p \leq 2$; c > 0, and a finite on compact sets Borel measure μ such that T is the first derivative of a stable process with parameters $\langle p, \mu \rangle$ and

(3)
$$||\varphi|| = c \left[\int_{-\infty}^{\infty} |\varphi(x)|^p \mu(dx) \right]^{1/p} .$$

Before proving the theorem we shall prove two lemmas.

LEMMA 1. Let || || be a pseudonorm in $\mathfrak D$ and let p be a positive number. If for any pair $\varphi, \psi \in \mathfrak D$ satisfying the condition $\varphi \cdot \psi = 0$ we have the equality $||\varphi||^p + ||\psi||^p = ||\varphi + \psi||^p$, then either $p \ge 1$ or $||\varphi|| + ||\psi|| = ||\varphi + \psi||$ whenever $\varphi \cdot \psi = 0$.

PROOF. First let us assume that there exists a pair of functions φ and ψ satisfying the conditions $||\varphi|| = ||\psi|| = 1$ and $\varphi \cdot \psi = 0$. Owing to the triangle inequality,

(4)
$$2 = ||\varphi||^p + ||\psi||^p = ||\varphi + \psi||^p \le (||\varphi|| + ||\psi||)^p = 2^p$$

and, consequently, $p \ge 1$. Finally let us suppose that for any pair of functions $\varphi, \psi \in \mathfrak{D}$ satisfying the condition $\varphi \cdot \psi = 0$ we have either $||\varphi|| = 0$ or $||\psi|| = 0$. Then

(5)
$$||\varphi + \psi|| = (||\varphi||^p + ||\psi||^p)^{1/p} = ||\varphi|| + ||\psi||,$$

which completes the proof.

LEMMA 2. Let || || be a monotone pseudonorm in D satisfying the equality

(6)
$$||\varphi||^p + ||\psi||^p = ||\varphi + \psi||^p, \qquad p \ge 1,$$

whenever $\varphi \cdot \psi = 0$. There exist a finite on compact sets Borel measure ν such that

(7)
$$||\varphi|| = \left[\int_{-\infty}^{\infty} |\varphi(x)|^{p_{\mathcal{V}}} (dx) \right]^{1/p}$$

for all $\varphi \in \mathfrak{D}$.

PROOF. For every compact set C we put $\lambda(C) = \inf \{||\varphi||^p : \varphi \geq \chi_C, \varphi \in \mathfrak{D}\}$, where χ_C denotes the indicator of C, that is, $\chi_C(x) = 1$ if $x \in C$ and $\chi_C(x) = 0$ if $x \notin C$. We shall prove that the set function λ is a regular content on the class of all compact sets. In other words, we shall prove that

$$(8) 0 \le \lambda(C) < \infty,$$

(9)
$$\lambda(C) \leq \lambda(B)$$
, whenever $C \subset B$,

(10)
$$\lambda(C) = \inf \{ \lambda(B) : C \subset B^0 \},$$

where B^0 denotes the interior of the compact B.

(11)
$$\lambda(C_1 \cup C_2) = \lambda(C_1) + \lambda(C_2) \quad \text{if} \quad C_1 \cap C_2 = 0$$

and for any pair of compact sets C_1 and C_2

(12)
$$\lambda(C_1 \cup C_2) \leq \lambda(C_1) + \lambda(C_2).$$

Inequalities (8) and (9) are obvious. To prove (10) let us suppose that ϵ is an arbitrary positive number and let us choose a number δ , with $0 < \delta < 1$, satisfying the inequality

(13)
$$\delta^{-p}\lambda(C) < \lambda(C) + \frac{\epsilon}{2}.$$

From the definition of the set function λ it follows that there exists a function φ from $\mathfrak D$ for which the inequalities

(14)
$$\varphi \ge \chi_C, \qquad ||\varphi||^p < \lambda(C) + \frac{\epsilon \delta^p}{2}$$

hold. Putting $B = \{x : \varphi(x) > \delta\}$ we have $B^0 \supset C$ and $\delta^{-1}\varphi \ge \chi_B$. Consequently,

(15)
$$\lambda(B) \leq ||\delta^{-1}\varphi||^p = \delta^{-p}||\varphi||^p.$$

Hence from (13) and (14) we get the inequality

(16)
$$\lambda(B) < \delta^{-p} \left[\lambda(C) + \frac{\epsilon \delta^{p}}{2} \right] = \delta^{-p} \lambda(C) + \frac{\epsilon}{2} < \lambda(C) + \epsilon.$$

The arbitrariness of ϵ implies the inequality

(17)
$$\inf \{\lambda(B) : C \subset B^0\} \leq \lambda(C).$$

Hence, using (9), we obtain the equality (10).

Let C_1 and C_2 be disjoint compact sets. For any positive ϵ we can choose two functions $\varphi_1, \varphi_2 \in \mathfrak{D}$ such that

$$\varphi_1 \cdot \varphi_2 = 0,$$

$$(19) ||\varphi_1||^p \leq \lambda(C_1) + \frac{\epsilon}{2}, ||\varphi_2||^p \leq \lambda(C_2) + \frac{\epsilon}{2}, \varphi_1 \geq \chi_{C_1}, \varphi_2 \geq \chi_{C_2}$$

The last inequalities imply $\varphi_1 + \varphi_2 \ge \chi_{C_1} \cup \chi_{C_2}$ and, consequently, $\lambda(C_1 \cup C_2) \le ||\varphi_1 + \varphi_2||^p$. Hence, according to (6), (18), and (19), we get the inequality

(20)
$$\lambda(C_1 \cup C_2) \leq ||\varphi_1||^p + ||\varphi_2||^p \leq \lambda(C_1) + \lambda(C_2) + \epsilon.$$

Since ϵ can be made arbitrarily small, we obtain

(21)
$$\lambda(C_1 \cup C_2) \leq \lambda(C_1) + \lambda(C_2),$$

whenever C_1 and C_2 are disjoint. Further, for given $\epsilon > 0$ there is a function $\psi \in \mathfrak{D}$ such that $\psi \geq \chi_{C_1 \cup C_2}$ and

$$(22) ||\psi||^p \le \lambda(C_1 \cup C_2) + \epsilon.$$

It is clear that the function ψ can be written in the form $\psi = \psi_1 + \psi_2 + \psi_3$, where $\psi_1 \ge \chi_{C_1}$, $\psi_2 \ge \chi_{C_2}$, $\psi_3 \ge 0$, and $\psi_1 \cdot \psi_2 = 0$. Hence, and from (22), since || || is monotone, we obtain the inequality

$$(23) \qquad \lambda(C_1) + \lambda(C_2) \le ||\psi_1||^p + ||\psi_2||^p = ||\psi_1 + \psi_2||^p \le ||\psi||^p \le \lambda(C_1 \cup C_2) + \epsilon,$$

which implies, in view of the arbitrariness of ϵ , the inequality $\lambda(C_1) + \lambda(C_2) \leq \lambda(C_1 \cup C_2)$. Combining this inequality with inequality (21) we obtain equality (11).

Further, from the definition of the set function λ , it follows that for any pair E_1 and E_2 of compact sets

(24)
$$\lambda^{1/p}(E_1 \cup E_2) = \inf \{||\varphi|| : \varphi \ge \chi_{E_1 \cup E_2} \}$$

$$\le \inf \{||\varphi_1 + \varphi_2|| : \varphi_1 \ge \chi_{E_1}, \ \varphi_2 \ge \chi_{E_2} \}$$

$$\le \inf \{||\varphi_1|| + ||\varphi_2|| : \varphi_1 \ge \chi_{E_1}, \ \varphi_2 \ge \chi_{E_2} \}$$

$$= \inf \{||\varphi_1|| : \varphi_1 \ge \chi_{E_1} \} + \inf \{||\varphi_2|| : \varphi_2 \ge \chi_{E_2} \}$$

$$= \lambda^{1/p}(E_1) + \lambda^{1/p}(E_2).$$

Let C_1 and C_2 be two arbitrary compact sets and let ϵ be an arbitrary positive number. From (10) it follows that there exist two compact sets B_1 and B_2 such that $C_1 \subset B_1^0$, $B_1 \subset B_2^0$ and

$$\lambda(B_2) < \lambda(C_1) + \epsilon.$$

Since $C_1 \cap (B_2 - B_1^0) = 0$ and $C_1 \cup (B_2 - B_1^0) \subset B_2$, we have, in view of (9), (11), and (25),

(26)
$$\lambda(C_1) + \lambda(B_2 - B_1^0) \leq \lambda(B_2) < \lambda(C_1) + \epsilon.$$

Consequently,

$$\lambda(B_2 - B_1^0) < \epsilon.$$

Further, since $B_1 \cap (C_2 - B_2^0) = 0$, we have, according to (9), (11), (25), and the inclusion $B_1 \subset B_2$,

(28)
$$\lambda[B_1 \cup (C_2 - B_2^0)] = \lambda(B_1) + \lambda(C_2 - B_2^0)$$

$$\leq \beta(B_2) + \lambda(C_2) < \lambda(C_1) + \lambda(C_2) + \epsilon.$$

From the inclusion $C_1 \cup C_2 \subset B_1 \cup (C_2 - B_2^0) \cup (B_2 - B_1^0)$ and formula (24) we obtain the inequality

$$\lambda^{1/p}(C_1 \cup C_2) \leq \lambda^{1/p}[B_1 \cup (C_2 - B_2^0)] + \lambda^{1/p}(B_2 - B_1^0).$$

Hence, using (27) and (28), the inequality

(30)
$$\lambda^{1/p}(C_1 \cup C_2) \leq [\lambda(C_1) + \lambda(C_2) + \epsilon]^{1/p} + \epsilon^{1/p}$$

follows. The arbitrariness of ϵ completes the proof of formula (12). Thus the set function λ is a regular content. By a well-known theorem (sections 53 and 54 in [5]) there exists a Borel measure ν such that its values on compact sets coincide with the values of the content λ .

Let ψ be an arbitrary function from $\mathfrak D$ vanishing outside a compact set E. We now prove the inequality

(31)
$$||\psi|| \le 3 \max_{x \in E} |\psi(x)| [\nu(E)]^{1/p}.$$

Given an arbitrary positive number ϵ , there exists a function $\psi_1 \in \mathfrak{D}$ such that $\psi_1 \geq \chi_{\overline{B}}$ and

$$||\psi_1|| \leq \lceil \nu(E) \rceil^{1/p} + \epsilon.$$

Setting $M = \max_{x \in E} |\psi(x)|$, we have the inequality $-M\psi_1 \leq \psi \leq M\psi_1$, which implies $0 \leq \psi + M\psi_1 \leq 2M\psi_1$. Hence, using (32), since || || is monotone, we obtain the inequalities

$$(33) ||\psi|| \le ||\psi + M\psi_1|| + ||M\psi_1|| \le 3M||\psi_1|| \le 3M\lceil \nu(E)\rceil^{1/p} + 3\epsilon M.$$

Since ϵ can be made arbitrarily small, this inequality implies (31).

Now let φ be an arbitrary function belonging to \mathfrak{D} . For every positive number ϵ there exist compact sets C_0, C_1, \dots, C_n such that all the sets C_1, C_2, \dots, C_n are disjoint, the function φ vanishes outside of the union $C_0 \cup C_1 \cup \dots \cup C_n$,

$$(34) \nu(C_0) < \epsilon^{\nu},$$

and

(35)
$$\left| \int_{-\infty}^{\infty} |\varphi(x)|^p \nu(dx) - \sum_{j=1}^n |m_j|^p \nu(C_j) \right| < \frac{\epsilon}{2},$$

where m_1, m_2, \dots, m_n is a system of real numbers satisfying the inequality

(36)
$$\max_{x \in C_i} |\varphi(x) - m_j| < \frac{\epsilon}{2}, \qquad j = 1, 2, \dots, n.$$

Let C be such a compact set that its interior contains the union $C_0 \cup C_1 \cup \cdots \cup C_n$. We can choose a system $\varphi_1, \varphi_2, \cdots, \varphi_n$ of functions belonging to \mathfrak{D} and vanishing outside of the set C in such a way that

$$(37) \varphi_i \cdot \varphi_k = 0$$

whenever $j \neq k; j, k = 1, 2, \dots, n; j = 1, 2, \dots, n$

$$(38) \varphi_j \ge \chi_{C,j}$$

(39)
$$||\varphi_{j}||^{p} \leq \nu(C_{j}) + \frac{\epsilon}{2\left(1 + \sum_{j=1}^{n} |m_{j}|^{p}\right)}, \qquad j = 1, 2, \dots, n,$$

(40)
$$\sum_{j=1}^{n} \varphi_j(x) = 1 \quad \text{on} \quad C_1 \cup C_2 \cup \cdots \cup C_n, \quad \text{and} \quad \sum_{j=1}^{n} \varphi_j \leq 1.$$

The possibility of such a choice follows from a well-known theorem on the decomposition of the unity (section 2, chapter 1 in [9]). Moreover, according to (36), we can assume that

(41)
$$\left| \sum_{j=1}^{n} \varphi(x)\varphi_{j}(x) - \sum_{j=1}^{n} m_{j}\varphi_{j}(x) \right| < \epsilon$$

for all x. Since the sum $\sum_{j=1}^{n} \varphi_{j}$ vanishes outside of the set C, the last inequality and (31) imply the inequality

(42)
$$\left\| \sum_{j=1}^{n} \varphi \cdot \varphi_j - \sum_{j=1}^{n} m_j \varphi_j \right\| \leq 3\epsilon [\nu(C)]^{1/p}.$$

By (40), the function $\varphi - \sum_{j=1}^{n} \varphi \cdot \varphi_{j}$ vanishes outside of the set C_{0} . Therefore, in view of (31), (34), and (40), we have the inequality

(43)
$$\left\| \varphi - \sum_{j=1}^{n} \varphi \cdot \varphi_{j} \right\| \leq 3\epsilon \max_{x \in C_{0}} \left| \varphi(x) - \sum_{j=1}^{n} \varphi(x) \varphi_{j}(x) \right| [\nu(C_{0})]^{1/p}$$
$$\leq 6\epsilon \max_{x \in C} |\varphi(x)|.$$

Combining this inequality with inequality (42) we find

(44)
$$\left| ||\varphi|| - ||\sum_{j=1}^{n} m_{j}\varphi_{j}|| \right| \leq 3\epsilon \left\{ [\nu(C)]^{1/p} + 2 \max_{x \in C} |\varphi(x)| \right\}.$$

From (6) and (37) we infer that

(45)
$$\left\| \sum_{j=1}^{n} m_{j} \varphi_{j} \right\|^{p} = \sum_{j=1}^{n} |m_{j}|^{p} ||\varphi_{j}||^{p},$$

and consequently, by (38) and (39),

Thus, according to (35),

$$\left| \int_{-\infty}^{\infty} |\varphi(x)|^p \nu(dx) - \left\| \sum_{j=1}^n m_j \varphi_j \right\|^p \right| < \epsilon.$$

Hence and from (44), taking into account the arbitrariness of ϵ , we obtain the equality

(48)
$$||\varphi|| = \left[\int_{-\infty}^{\infty} |\varphi(x)|^p \nu(dx) \right]^{1/p}, \qquad \varphi \in \mathfrak{D},$$

which completes the proof of the lemma.

PROOF OF THEOREM 1. Let $\Phi(t)$ denote the characteristic function of the random variables $T(\varphi)$, with $||\varphi||=1$. Of course, the characteristic function of arbitrary random variable $T(\varphi)$ is equal to $\Phi(||\varphi||t)$. Hence, in particular, it follows that $\Phi(t)$ corresponds to a symmetric probability distribution. Further, if $\varphi \cdot \psi = 0$, then $T(\varphi)$ and $T(\psi)$ are mutually independent and the characteristic function of the sum $T(\varphi) + T(\psi)$ is equal to the product $\Phi(||\varphi||t)\Phi(||\psi||t)$. On the other hand, this characteristic function is equal to $\Phi(||\varphi + \psi||t)$. Thus we have the equality

(49)
$$\Phi(||\varphi||t)\Phi(||\psi||t) = \Phi(||\varphi + \psi||t) \quad \text{if} \quad \varphi \cdot \psi = 0.$$

Hence, $\Phi(t)$ is the characteristic function of a symmetric stable law and, consequently, there exist constants a and p, with $a \ge 0$, 0 (see p. 327 in [7]), such that

$$\Phi(t) = \exp\left(-a|t|^p\right).$$

If a = 0, then T = 0. Now let us suppose that a > 0. From (49) and (50) we obtain the equality

(51)
$$||\varphi||^p + ||\psi||^p = ||\varphi + \psi||^p \quad \text{whenever} \quad \varphi \cdot \psi = 0.$$

By lemma 1 we may assume that $p \ge 1$. From lemma 2 it follows that there exists a finite on compact sets Borel measure μ such that

(52)
$$||\varphi|| = c \left[\int_{-\infty}^{\infty} |\varphi(x)|^p \mu(dx) \right]^{1/p},$$

where $c = a^{-1}$. Consequently, the characteristic function of $T(\varphi)$ is given by

(53)
$$\Phi(||\varphi||t) = \exp\left[-\int_{-\infty}^{\infty} |\varphi(x)|^p \mu(dx)|t|^p\right].$$

Hence it follows that the convergence $\int_{-\infty}^{\infty} |\varphi(x)|^p \mu(dx) \to 0$ implies the convergence in probability $T(\varphi) \to 0$. In other words, the mapping $T: \mathfrak{D} \to \mathfrak{V}$ is continuous in the pseudonorm || ||. Consequently, it can be extended to a continuous linear mapping from the space $L^p(\mu)$ into the space v. Let t_0 not be an atom of the measure μ . Put $X(t) = T(\chi_{(t_0,t]})$ if $t \ge t_0$ and $X(t) = T(\chi_{(t,t_0)})$ if $t < t_0$. For any pair t > u we have the equality $X(t) - X(u) = T(\chi_{(u,t]})$. Since for every system I_1, I_2, \dots, I_n of disjoint intervals we can choose sequences $\varphi_{1k}, \varphi_{2k}, \cdots, \varphi_{nk}$, with $k=1, 2, \cdots$, of functions belonging to \mathfrak{D} convergent to $\chi_{I_1}, \chi_{I_2}, \dots, \chi_{I_n}$ in $L^p(\mu)$ respectively, and satisfying the condition $\varphi_{jk} \cdot \varphi_{rk} = 0$, whenever $j \neq r$, the process X(t) has independent increments. Let $X^*(t)$ be a measurable and separable modification of X(t) such that for any t we have $X(t) = X^*(t)$ with probability 1 (see p. 61 in [3]). By (53), the characteristic function of the increment of $X^*(t)$ in any interval I is given by the expression $\exp \left[\mu(I) |t|^p \right]$. To prove that the process $X^*(t)$ is stable with parameters $\langle p, \mu \rangle$ it is sufficient to show that almost all its realizations are integrable over every finite interval. Lévy has shown that a function h(t) can be chosen in such a way that the process $X^*(t) - h(t)$ is centered, that is, roughly speaking, almost all its realizations have unilateral limits (p. 407 in [3]). Moreover, as the function h(t) we can take the solution of the equation E arctg $[X^*(t) - h(t)] = 0$. Since, by the definition $X^*(t_0) = 0$, the process $X^*(t)$ is symmetrically distributed and, consequently, h(t) is identically equal to 0. Thus $X^*(t)$ is centered. Hence, according to theorem 6.3 in [3] almost all realizations of $X^*(t)$ are bounded in every finite interval and, consequently, locally integrable. From the definition of $X^*(t)$ we obtain

(54)
$$T(\varphi) = T \left[-\int_{x}^{\infty} \varphi'(t) dt \right]$$
$$= T \left[-\int_{-\infty}^{\infty} \varphi'(t) \chi_{(t_0, t]}(x) dt \right] = -\int_{-\infty}^{\infty} \varphi'(t) X^*(t) dt.$$

Thus, T is the first derivative of the stable process $X^*(t)$.

It is well known that if X(t) is a Brownian movement process, then the generalized Stieltjes integrals $\int_{-\infty}^{\infty} f(t) dX(t)$ and $\int_{-\infty}^{\infty} g(t) dX(t)$ are mutually independent whenever $f, g \in L^2$ and $\int_{-\infty}^{\infty} f(t)g(t) dt = 0$ (see p. 153 in [8]). In the language of generalized processes this result can be formulated as follows: if T is the first derivative of a Brownian movement process and $\int_{-\infty}^{\infty} \varphi(x)\psi(x) dx = 0$, then $T(\varphi)$ and $T(\psi)$ are mutually independent. Using theorem 1 we give the following characterization.

THEOREM 2. Let the inner product in $\mathfrak D$ be given by the formula $(\varphi, \psi) = \int_{-\infty}^{\infty} \varphi(x) \psi(x) \mu(dx)$, where μ is a finite on compact sets Borel measure. If T is a generalized stochastic process such that the random variables $T(\varphi)$ and $T(\psi)$ are mutually independent whenever $(\varphi, \psi) = 0$, then T is the sum of the first derivative of a normal process and a Schwartz distribution.

In the proof of this theorem we use a lemma. Throughout this paper every symmetric, bilinear functional (φ, ψ) on $\mathfrak D$ will be called an inner product. An inner product cannot be strictly positive. Further, we assume that there exist two functions φ and ψ such that $(\varphi, \psi) = 0$ and $(\varphi, \varphi) = (\psi, \psi) > 0$.

LEMMA 3. Let (φ, ψ) be an inner product in $\mathfrak D$ and let T be a generalized stochastic process. If the random variables $T(\varphi)$ and $T(\psi)$ are mutually independent, whenever $(\varphi, \psi) = 0$, then for any $\varphi \in D$, $T(\varphi)$ is a Gaussian random variable with the variance depending only on the pseudonorm $||\varphi||$ induced by the inner product.

PROOF. Let φ and ψ be a pair of functions satisfying the conditions $(\varphi, \psi) = 0$ and $||\varphi|| = ||\psi||$. Since the functions $\varphi + \psi$ and $\varphi - \psi$ are also orthogonal, the random variables $T(\varphi) + T(\psi)$ and $T(\varphi) - T(\psi)$ are mutually independent. Taking into account the independence of $T(\varphi)$ and $T(\psi)$ and using the theorem, which first was proved by Bernstein [1] under an assumption of the existence of moments and in the general case without any restrictive assumption by Darmois [2], we infer that $T(\varphi)$ and $T(\psi)$ are Gaussian random variables with the same variance. Hence it follows that the variance of $T(\varphi)$ depends only on the norm $||\varphi||$.

PROOF OF THEOREM 2. By lemma 3, for any $\varphi \in \mathfrak{D}$, $T(\varphi)$ is a Gaussian random variable with the variance depending only on $||\varphi||$, where || || is the pseudonorm generated by the inner product (φ, ψ) . Let $m(\varphi)$ denote the expectation of $T(\varphi)$. From the continuity of T in the topology of $\mathfrak D$ it follows that the linear functional m is also continuous, that is, it is a Schwartz distribution. Putting $T_0(\varphi) = T(\varphi) - m(\varphi)$ we get a generalized stochastic process such that for any $\varphi \in \mathfrak D$ all the random variables $T_0(\varphi)$, with $||\varphi|| = 1$, are identically distributed and for any pair φ and ψ of orthogonal functions $T_0(\varphi)$ and $T_0(\psi)$ are independent. Since the relation $\varphi \cdot \psi = 0$ implies $(\varphi, \psi) = 0$, the process T_0 has independent values. Further, the pseudonorm

(55)
$$||\varphi|| = \left[\int_{-\infty}^{\infty} |\varphi(x)|^2 \mu \ dx \right]^{1/2}$$

is monotone. $T_0(\varphi)$ has symmetric Gaussian distribution for any $\varphi \in \mathfrak{D}$. Consequently, by theorem 1, the process T_0 is the first derivative of a normal process. The theorem is thus proved.

For any real number h, we denote by τ_h the shift transformation $\tau_h x = x + h$. We use the notation $\tau_h \varphi(x) = \varphi(\tau_{-h}x)$. A generalized process T is said to be stationary if, for any $\varphi \in \mathfrak{D}$, the distribution function of the random variable $T(\tau_h \varphi)$ does not depend on h. A generalized process T is said to have almost independent values if there exists a positive number q such that the random variables $T(\varphi)$ and $T(\psi)$ are mutually independent for every pair $\varphi, \psi \in \mathfrak{D}$ with supports $s(\varphi)$ and $s(\psi)$ distant one from another by more than q.

By \mathfrak{D}_{L^2} we shall denote, following Schwartz (see section 8, chapter 6 in [9]), the space of all infinitely differentiable functions for which all derivatives are square integrable. The convergence in \mathfrak{D}_{L^2} is defined as follows: $\varphi_n \to 0$ if

(56)
$$\lim_{n \to \infty} \int_{-\infty}^{\infty} \left[\frac{d^k}{dx^k} \varphi_n(x) \right]^2 dx = 0$$

for every $k = 0, 1, \dots$. Any continuous linear functional on this space is called a square integrable distribution. The convolution $\Gamma * \varphi$ of a square integrable distribution Γ and a function $\varphi \in \mathfrak{D}$ is a square integrable function (see theorem 25, section 8, chapter 6 in [9]).

Lemma 4. Let $(\varphi, \psi)_1$ and $(\varphi, \psi)_2$ be two inner products in $\mathfrak D$ such that the orthogonality relation $(\varphi, \psi)_1 = 0$ implies $(\varphi, \psi)_2 = 0$. Then there exists a positive constant c such that $c(\varphi, \psi)_1 = (\varphi, \psi)_2$ for all $\varphi, \psi \in \mathfrak D$.

PROOF. Let $|| \ ||_1$ and $|| \ ||_2$ be the pseudonorms induced by the inner products $(\varphi, \psi)_1$ and $(\varphi, \psi)_2$ respectively. To prove our lemma it is sufficient to prove that there exists a constant c such that $c|| \ ||_1 = || \ ||_2$. In other words, we must prove that $||\varphi||_2 = ||\psi||_2$ whenever $||\varphi||_1 = ||\psi||_1$. Let $\varphi, \psi \in \mathfrak{D}$ and $||\varphi||_1 = ||\psi||_1$. Then there exist constants a and b and a function $\varphi_0 \in \mathfrak{D}$ such that

(57)
$$||\varphi||_1 = ||\varphi_0||_1$$
, $(\varphi, \varphi_0)_1 = 0$, $\psi = a\varphi + b\varphi_0$, and consequently,

$$(58) a^2 + b^2 = 1.$$

Since $(\varphi, \varphi_0)_2 = 0$, we have the equality

$$||\psi||_2^2 = a^2||\varphi||_2^2 + b^2||\varphi_0||_2^2.$$

Moreover, in virtue of (57), $(\varphi + \varphi_0, \varphi - \varphi_0)_1 = 0$ and, consequently, $0 = (\varphi + \varphi_0, \varphi - \varphi_0)_2 = ||\varphi||_2^2 - ||\varphi_0||_2^2$. Hence, using (58) and (59), we obtain the equality $||\psi||_2 = ||\varphi||_2$. The lemma is proved.

THEOREM 3. Let (φ, ψ) be an inner product in $\mathfrak D$ and let T be a stationary generalized process with almost independent values. If the random variables $T(\varphi)$ and $T(\psi)$ are independent whenever $(\varphi, \psi) = 0$ then there exist the first derivative U of a Brownian movement process and a square integrable distribution Γ such that $T(\varphi)$ is the sum of $U(\Gamma * \varphi)$ and a Schwartz distribution.

PROOF. From lemma 3 it follows that, for any $\varphi \in \mathfrak{D}$, we have $T(\varphi)$, a Gaussian random variable. Setting $T_0(\varphi) = T(\varphi) - m(\varphi)$, where $m(\varphi)$ is the expectation of $T(\varphi)$, we have a symmetric process. Moreover, T_0 is stationary in the wide sense (see [6]), that is, its covariance functional $(\varphi, \psi)_0 = ET_0(\varphi)T_0(\psi)$ is invariant under the shift transformation. If $ET_0^2(\varphi)$ is identically equal to 0, then of course T=0. Now let us suppose that $ET_0^2(\varphi_0)>0$ for a function $\varphi_0 \in \mathfrak{D}$. Then $(\varphi, \psi)_0$ can be regarded as an inner product in \mathfrak{D} . It is very easy to see that the orthogonality relation $(\varphi, \psi) = 0$ implies $(\varphi, \psi)_0 = 0$. Thus, by lemma 4, $c(\varphi, \psi) = (\varphi, \psi)_0$, where c is a positive constant. Consequently, there exists a Schwartz distribution R which is not identically equal to 0 and such that $(\varphi, \psi) = R(\varphi * \tilde{\psi})$, where $\tilde{\psi}(x) = \psi(-x)$ (see [6]). Since the process T_0 has almost independent values, the support of the distribution R is compact. Consequently, the Fourier transform \hat{R} of R can be extended to an entire function of exponential type (theorem 16, section 8, chapter 7 in [9]). Further, R is a positive definite distribution. Thus, by a theorem of Schwartz (theorem 20, section 9, chapter 7 in [8]), R can be represented as a convolution $\Gamma * \tilde{\Gamma}$ where Γ is a square integrable distribution. Thus

(60)
$$(\varphi, \psi) = \widetilde{\Gamma} * \Gamma(\varphi * \widehat{\psi}) = \int_{-\infty}^{\infty} \Gamma * \varphi(x) \cdot \Gamma * \psi(x) dx.$$

For any square integrable function we define a random variable as follows. For any function of the form $\Gamma * \varphi$, where $\varphi \in \mathfrak{D}$ we put $U(\Gamma * \varphi) = T_0(\varphi)$. Now we show that the set $\{\Gamma * \varphi : \varphi \in \mathfrak{D}\}$ is dense in the space of all square integrable functions. Let g be a square integrable function orthogonal to $\Gamma * \varphi$ for all $\varphi \in \mathfrak{D}$, that is,

(61)
$$\int_{-\infty}^{\infty} \Gamma * \varphi(x) g(x) \ dx = 0$$

for $\varphi \in \mathfrak{D}$. Hence, in view of the well-known relation of Parseval, we obtain the equality

(62)
$$\int_{-\infty}^{\infty} \hat{\Gamma}(x)\hat{\varphi}(x)\overline{\hat{g}(x)} dx = \int_{-\infty}^{\infty} \widehat{\Gamma} * \varphi(x)\overline{\hat{g}(x)} dx = 0.$$

Since $\hat{R}(x) = |\hat{\Gamma}(x)|^2$, the Fourier transform $\hat{\Gamma}(x)$ is a continuous function and,

consequently, $\hat{\Gamma}(x)\overline{\hat{g}(x)} \in L^2$. Since the family of all Fourier transforms $\{\hat{\varphi}: \varphi \in \mathfrak{D}\}$ is complete in L^2 , we obtain, using (62), $\hat{\Gamma}(x)\overline{\hat{g}(x)} = 0$ almost everywhere. Thus $\hat{R}(x)|\hat{g}(x)|^2 = 0$ almost everywhere. But $\hat{R}(x)$ is an analytic function. Therefore, the function g vanishes almost everywhere. Thus the set $\{\Gamma * \varphi : \varphi \in \mathfrak{D}\}$ is dense in L^2 . Hence it follows that the mapping U can be extended to the whole L^2 and, consequently, we obtain a continuous linear mapping from L^2 into the space V such that the U(f) with

(63)
$$\int_{-\infty}^{\infty} f^2(x) \ dx = 1$$

are symmetric Gaussian random variables. Since the partial mapping $U: \mathfrak{D} \to \mathfrak{V}$ is also continuous and for fg = 0 the random variables U(f) and U(g) are uncorrelated and, consequently, mutually independent, by theorem 1, U is the first derivative of a homogeneous normal process. The theorem is thus proved.

Theorem 4. Let $|| \cdot ||$ be a pseudonorm in $\mathfrak D$ induced by an inner product. Every $|| \cdot ||$ -isotopic stationary generalized process with almost independent values is of the form $T(\varphi) = U(\Gamma * \varphi)$, where Γ is a square integrable distribution and U is the first derivative of a Brownian movement process.

PROOF. For any pair φ and ψ there exists a number h such that $T(\varphi)$ and $T(\tau_h\psi)$ are mutually independent. By $\Phi(t)$ we denote the common characteristic function of random variables $T(\varphi)$ with $||\varphi|| = 1$. The characteristic function of the random variable $T(\varphi) \pm T(\tau_h\psi)$ is equal to $\Phi(||\varphi \pm \tau_h\psi||t)$. On the other hand, it can be written in the form $\Phi(||\varphi||t)\Phi(||\psi||t)$. Consequently, $\Phi(||\varphi||t)\Phi(||\psi||t) = \Phi(||\varphi \pm \tau_h\psi||t)$. Hence it follows that $\Phi(t)$ is the characteristic function of a stable law. Of course, we may suppose that T is not identically equal to 0. Then, there is a number p with 0 such that

$$(64) \qquad ||\varphi \pm \tau_h \psi||^p = ||\varphi||^p + ||\psi||^p.$$

Moreover, we have the equality $||\tau_h\varphi|| = ||\varphi||$. In view of (64), and since $||\varphi \pm \tau_h\psi||^2 = ||\varphi||^2 \pm 2(\varphi, \tau_h\psi) + ||\psi||^2$, we have $(\varphi, \tau_h\psi) = 0$ and, consequently,

(65)
$$(||\varphi||^2 + ||\psi||^2)^p = (||\varphi||^p + ||\psi||^p)^2.$$

Setting $||\varphi|| = ||\psi||^{2^p} = 1$ in the last formula, we obtain $4 = 2^p$, which implies p = 2. Thus for any $\varphi \in \mathfrak{D}$ we have $T(\varphi)$ is a symmetric Gaussian random variable. Moreover, the pseudonorm $||\varphi||$ is proportional to the variance of $T(\varphi)$ and, consequently, $(\varphi, \psi) = cET(\varphi)T(\psi)$, where c is a positive constant. Thus the othogonality relation $(\varphi, \psi) = 0$ implies the independence of $T(\varphi)$ and $T(\psi)$. The assertion of our theorem is now a direct consequence of theorem 3.

REFERENCES

- [1] S. Bernstein, "Sur une propriété caractéristique de la loi de Gauss," Trans. Leningrad Polytech. Inst., Vol. 3 (1941), pp. 21–22.
- [2] G. Darmois, "Sur une propriété caractéristique de la loi de probabilité de Laplace," C. R. Acad. Sci. Paris, Vol. 232 (1951), pp. 1999–2000.

- [3] J. L. Doob, Stochastic Processes, New York, Wiley, 1953.
- [4] I. M. Gelfand, "Generalized stochastic processes," Dokl. Akad. Nauk SSSR, Vol. 100 (1955), pp. 853-856.
- [5] P. R. Halmos, Measure Theory, New York, Van Nostrand, 1950.
- [6] K. Irô, "Stationary random distributions," Mem. Coll. Sci. Univ. Kyolo, Ser. A, Vol. 28 (1954), pp. 209-223.
- [7] M. LOÈVE, Probability Theory, New York, Van Nostrand, 1955.
- [8] R. E. A. C. Paley and N. Wiener, "Fourier transforms in the complex domain," Amer. Math. Soc., Collog. Series, New York, 1934.
- [9] L. Schwartz, Théorie des Distributions, Paris, Hermann, 1950.
- [10] K. Urbanik, "Generalized stochastic processes," Studia Math., Vol. 16 (1958), pp. 268-334.