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1. Introduction

There is a huge literature on the stationary behavior of different types of
queueing processes but only a few papers deal with their transient behavior. An
extensive bibliography of the theory of queues by A. Doig [9] contains about
seven hundred papers, most of which deal with stationary queues. The theory of
stationary queues is very important because most of the queueing processes are
ergodic, that is, starting from any initial state the process tends toward equilib-
rium irrespective of the initial state. In the state of equilibrium the process
shows only statistical fluctuation with no tendency to a certain state. Many
queueing processes rapidly approach equilibrium and this explains why we can
apply with success the stationary approximation. However, the investigation of
the transient behavior of queueing processes is also important, not only from the
point of view of the theory but also in the applications. For instance, if we apply
the stationary solution instead of the transient solution we are interested in the
error of this approximation, and further, even in the case of the stationary
process the linear least squares prediction presupposes a knowledge of the tran-
sient behavior of the process.
The mechanism of queueing processes is very simple. Customers are arriving

at a counter according to a certain probabilistic law (Poisson input, Erlang
input, recurrent input, and so forth). The customers will be served by one or
more servers following a certain principle (service in order of arrival, random
service, priority service, last come first served, batch service, and so forth).
The service times are random variables governed by a given probabilistic law.
After service the customers depart.
We shall always use the above terminology. Every conceivable process can

always be described in this terminology. For instance, in the case of a telephone
traffic process the calls, lines, and holding times are replaced by customers,
servers, and service times, respectively.
A part of this paper was prepared in the spring of 1959 at the Research Techniques Division

of the London School of Economics and Political Science. The paper was completed at
Columbia University with the partial support of the Office of Naval Research under Contract
Number Nonr-266(33), Project Number NR 042-034.
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Of course there are several v,ariants of the above-mentionied queucing )roc-
esses, for example, queueiig with balking, queue with repeated arrivals, queueing
with feedback, queue with batch arrivals, and so forth. Further, it is interesting
to investigate the interaction of different queues, for instance, queues in parallel,
queues in series, and so on.
The three most important characteristics in the theory of queues are as fol-

lows:
The waiting time of each customer.
The busy period, that is, the time iitterval during which onie or more servels

are busy.
The queue size, that is, the nunmber of customers in the system.
The waiting time concerns the customers, the busy period concernls the serv-

ers, and the queue size is important from the point of view of the design of the
system, for example, the size of the waiting room or the waiting facility in tele-
phone exchanges.
The theory of queues, like the theory of probability, gives abstract models

which are applied in many different fields. One of the most important models
is as follows.

Customers arrive at a counter at the instants Ti, T2, *, , . The custom-
ers will be served by m servers in the order of their arrival. Let us denote by Xn
the service time of the nth customer and write n,, = r.+1- Tn. It is supposed
that the interarrival times {6.} and the service times {xn} are independent
sequences of identically distributed positive random variables with respective
distribution functions P{6n _ x} = F(x) and P{xn 5 x} = H(x). Such a queue-
ing process can be described by the triplet [F(x), H(x), m].
The simplest particular case of the above process is the following: F(x) = 1-

exp (-Xx) for x _ 0, H(x) = 1 - exp (-Ax) for x _ 0, and m = 1, that is,
the input is a Poisson process, the service times have an exponential distribution,
and there is a single server. The transient behavior of this process was investi-
gated by A. N. Kolmogorov [13], W. Lederman and G. E. H. Reuter [15],
N. T. J. Bailey [1], D. G. Champernowne [5], A. B. Clarke [6], B. W. Conolly
[7], and S. Karlin and J. McGregor [12]. In paper [12] the case of many servers
is also investigated.
The transient behavior of the above-mentioned process in the case when

F(x) = 1 - exp (-Xx) for x > 0, H(x) is arbitrary, and m = 1 was investi-
gated by V. E. Benes [2], F. Pollaczek [17], E. Reich [20], [21], J. T. Runnen-
burg [22], F. Spitzer [23], and the author [24].
The case when F(x) is arbitrary, H(x) = 1 - exp (-IAx) for x >_ 0, and

m = 1 was investigated by B. W. Conolly [8] and the author [25].
The transient behavior of the process [F(x), H(x), 1], where either F(x) or

H(x) has a Gamma distribution, is investigated by the author in papers [26]
and [27].

In the present paper I shall consider a modification of the process [F(x), H(x),
1], supposing that each customer arriving at a time when the server is not avail-
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able leaves the queue without being served with probability q. I shall deal only
with the particular case F(x) = 1 - exp (-Ax) for x 2 0, that is, when the
input process is a Poissoni process.

2. The process considered

Let us consider a counter with a single server, at which customers are arriving
in the instants Ti, T2, - - , Tn * - - . Suppose that the interarrival times -rn-
where n = 1, 2, * * *; ro = 0, are identically distributed independent positive
random variables with distribution function Pfrn- T4_1 _ x4 = F(x), where

F(x)
~ ~ ~~_0,

(1) F(x) = { e < 0,

that is, the input process is a homogeneous Poisson process with density X. If a
customer arrives at the counter at an instant when the server is idle then his
service starts immediately. If he arrives at an instant when the server is busy
then he may or may not join the queue. Suppose that the event of joining the
queue is independent of any other events. Let p be the probability that he joins
the queue and q = 1 - p that he does not. If a customer joins the queue then
his service starts immediately after the departure of the preceding customer in
the queue. Suppose that the durations of the successive service times are identi-
cally distributed independent positive random variables with distribution func-
tion H(x) and further that they are also independent of {mr}.
Denote by n(t) the virtual waiting time at the instant t, that is, the time which

a customer would wait if he joined the queue at the instant t. Denote by t(t) the
queue size at the instant t, that is, the number of customers waiting or being
served at the instant t. We say that the system is in state Ek at the instant t if
t(t) = k.

Let us denote by l, T2, .** Thn * the instants of successive departures.
Further define Fqn = q(Tn- 0), that is, q. is the waiting time of the nth
customer if he joins the queue at all and let $,n = t(T/ + 0), that is, (, is the queue
size immediately after the nth departure.

In the following we shall determine the transient behavior of the stochastic
processes {r/(t)} and {t(t)} and that of the stochastic sequences {On} and {t,n}.
Further we shall determine the asymptotic behavior of these processes and the
stochastic law of the busy period.

In the particular case where p = 1 the transient behavior of the process {71(t)}
has Lieen investigated earlier by the author [24], V. E. Benes [2], E. Reich [20],
[21] and J. T. Runnenburg [22] and the transient behavior of the sequence {t,n}
by F. Pollaczek [17], [18] and F. Spitzer [23]. Further, we mention the paper of
D. P. Graver [11], in which the case 0 . p _ 1 is also mentioned.
The present generalization for 0 5 p . 1, has been motivated by the fact

that in several queueing processes (for example, in telephone traffic) the arriving
cii-tomers (callers), unaware of the size of the queue, know only whether the.
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server is idle or busy and their decision to join the queue depends solely on this
eventuality.

3. Notation

Let {xn} be a sequence of identically distributed independent random vari-
ables with distribution function P{xn _ x} = H(x) and suppose that {xn} is
independent of {fr} also. Further define a sequence of random variables {fE} as
follows: Ef = 1 if the nth customer joins the queue and ef = 0 otherwise.

Let

(2) I/(s) = fo e-z dH(x),
which is convergent if Re(s) _ 0, and

(3) a = f x dH(x).

Define

W(t, x) = P{ q(t) _ x},

(4) W.(X) = P{n : X}
Pij(t) = P{N(t) = iA( =)=i
PN(t) = P{W(t) = j}.

Finally, introduce the transforms

Q(t, s) = E{e-"(t)} =fo e-8x d! W(t, x),

Qn(s) = E{e"-} = Jo e-azdW.(x),
whenever Re(s) > 0 and write
(6) 0(s) = E{e-"(0)} = Q(0, s).

4. An auxiliary theorem

Throughout this paper we use
LEMMA 1. If Re(s) 2 0 and Iwl _ 1 then z = Sy(s, w), the root of the equation

(7) z = w4,[s + xp(l- z)]
which has the smallest absolute value, is

(8) 'Y(s, w) =w E ( !) dyi -7)I)

This is a regular function of s and w if Re(s) 2 0 and Iwl . 1 and further
z = 'y(s, w) is the only root of (7) in the unit circle IzI < 1 if Re(s) 2 0 and twl < 1
or Re(s) > 0 and lwl 5 1 or Re(s) 2 0 and Iwl ! 1 and Xpa > 1. Specifically,
W = 'y(0, 1) is the smallest positive real root of the equation
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(9) W = 4,{Xp(l -W)I
If Xpa > 1 then w < 1 and if Xpa < 1 then w = 1.
PROOF. If Re(s) _ 0 and lwl < 1 or Re(s) > 0 and Iwl < 1, then by Rouch6's

theorem it follows that (7) has one and only one root in the unit circle lzl < 1.
For in this case Iw#[s + Xp(1- z)]I < 1 if Izi = 1. Similarly, if Re(s) 2 0,
lwl . 1, and Xpa > 1, then by Rouch6's theorem it follows that (7) has exactly
one root in the circle lzl < 1 - e where E is a sufficiently small positive number.
For in this case lwut[s + Xp(1- z)]l _ ,6(e) < 1 -f if zl = 1 - eand E > O is
small enough. Let us denote this root by z = -y(s, w). This can be obtained in the
form of an infinite series by Lagrange's theorem. (See, for example, E. T.
Whittaker and G. N. Watson [28], p. 132.) Clearly z = y(s, w) is that root of (7)
which has the smallest absolute value and is a regular function of s and w in
this domain.
On the other hand, if z = y(s, w) is that root of (7) which has the smallest

absolute value, then y(s, w) is defined uniquely for Re(s) 2 0 and lwl _ 1 as an
inverse function of s = Vl(z/w) - Xp(1- z) for fixed w, or as an inverse func-
tion of w = z/iI[s + )Xp(l - z)] for fixed s. It can be shown that the function
z = 'Y(s, w) is a regular function of s and w if Re(s) > 0 and lwi 5 1. Since this
function agrees with the earlier one in the domain Re(s) _ 0 and lwl < 1 or
Re(s) > 0 and lwl . 1 or Re(s) _ 0 and lwl . 1 if Xpa > 1; consequently the
latter function is the analytical continuation of the former one to the domain
Re(s) _ 0 and lwi _ 1 and it is defined by (8).
We have always 1-y(s, w)l _ 1 if Re(s) _ 0 and lwl _ 1. Note also that (7)

has at most one root (possibly double) on the unit circle lzl = 1, namely z = 1
is a root if w4&(s) = 1.

It remains only to prove the second half of the lemma. Clearly for real x
the function it(x) is monotone decreasing if 0 < x <co and ,/'(0) = -a. Conse-
quently, if Xpa > 1 then (9) has only one real root in the interval (0, 1) and if
Xpa < 1 then w = 1 is the only real root of (9). Furthermore, the equation
z = 4#[Xp(l - z)] has only one root in the unit circle lzl < 1 if Xpa > 1 and has
no root if Xpa < 1. This latter statement can be proved by probabilistic reason-
ing. (See remarks 6 and 8.) This completes the proof of the lemma.
We introduce the notation y(s) = y(s, 1) and g(w) = y(O, w). Clearly w =

aY(0) = g(l).
Finally let us note that if w = 1, then by using (7) we get

1 xap <l
(10) 7-'(0) Xa2p

0, Xap = 1

and

(1]) g'(1){1 XXap
, Ba~Xcp = 1.
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REMARK 1. The function t(s, w) = s + Xp[1 - y(s, w)] satisfies the equa-
tion t = (Xp + s) - Xpuq'(t) if Re(s) > 0 and lwl g 1. Conversely, if Re(s) > 0
and lwl g 1 or Re(s) _ 0 and lwl < 1, then by Rouch6's theorem it follows that
this equation has only one root r = t(s, w) in the domain Re(f) 2 0. For 1+,(r)
< I(Xp + S- r)/Xpwj if Re(t) = 0 or Re(f) _ 0 and 1P1 is sufficiently large.

5. The distribution of the virtual waiting time

The stochastic behavior of the process {X1(t), 0 < t < oo} can be described as
follows: a(O) is the initial occupation time of the server. If 1(0) = 0 then the
server is idle at time t = 0. If q(O) 0 0 then q(0) gives the instant when the
server ceases to be busy for the first time if no new customer joins the queue. In
the instants Tn where n = 1, 2, - * * the value of 17(t) has a jump of magnitude Xn,
if the nth customer joins the queue. The value of 1(t) decreases linearly with
slope -1 until it jumps or reaches 0. If at the instant t the r(t) reaches 0 then
it remains 0 until a customer arrives at the counter. (Compare figure 1.)

11(t)i

x6

0 T7 2 T3 T4 S T6 T7 t
FIGURE 1

Graph of the stochastic behavior of the process {77(t), 0 _ t <
where i7(t) is the virtual waiting time at instant t.

The process described by the family of random variables {71(t), 0 < t < oo } is
a so-called continuous parameter Markov process of the mixed type. The change
of state may happen continuously or by jumps. Processes of this type have been
investigated by A. N. Kolmogorov [14] and W. Feller [10].
THEOREM 1. The Laplace-Stieltjes transform of the distribution function of

the virtual waiting time is given by
(12) Q(t, s) = exp {st - [1 - 4t(s)]Xpt}

((s)- {s + X(1- p)[1 - #(s)]} f exp {-su + [1 - 4,(s)]Xpu}Po(u)du),
where Po(t) = P{71(t) = 0} can be obtained by the Laplace transform
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(13) f e-S' Po(t)dt = 7{s + Xp[1 - Y(s)]}
if Re(s) > 0 and z = y(s) is the root with the smallest absolute value of equation

(14) z = 46[s + 1ip(1- z).
PROOF. Denote by a tthe number of customers arriving at the counter durinig

the time interval (t, t + At). By assumption

(15) P{bwt = j} = e xA(t)i j = 0, 1, 2,*--.

Using the theorem of total probablilty we can write

(16) Q (t + At, s) = E{e-"(t+AL)}

P'S{& = j}E{e-8(t+At)6t= j}-

Since P{eS,A = 0} = 1 - XAt + o(At), while P{6At = 1} = XAt + o(At) and
P{% > 1} = o(At), we have

(17) Q(t + At, s) = (1 - Xt)E{e-87(t+^tM5At = 0}

+ XAtE{e-"(t+t)l6MS = 1} + o(At).
Under the condition &S = 0 we have

(18) r/(t + At) = {7 (t)-At r1(t) < At,
whence

(19) E{e-t7(t+,u)JI5M = 0} W(t, At) + eA f e-sxdzW(t, x).
Since W(t, x) is right-continuous in x,

(20) W(t, At) = W(t, 0) + O(At),

whence

(21) 0° f " xd. W(t, x) _ At[W(t, At) - W(t, 0)] = o(At).

Thus

(22) E{e-"('+,u)ISu = 0} = (1 + sAt)Q(t, s) - sAtPo(t) + o(At),

since W(t, 0) = Po(t).
On the other hand, if y > At,

(23) E{e(tt+A0J6,u = 1,7(t) = Y} = [(1- p) + p#(s)]e-(Y-)
for the customer arriving during the time interval (t, t + At] joins the queue
with probability p or goes away with probability 1 - p.

If y _ At, then
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(24) E{e-80(t+At)&J 1, (t) = y}

- it[(1 -p) + pH(At -y) + pf ea8(X+y-,) dH(x)]

+ H(Z) + j e-(-)dH(x)]dz,
for the arrival instant of the customer is distributed uniformly in the interval
(t, t + At) and if it takes place in (t, t + y], then the customer joins the queue
with probability p, and if it takes place in (t + y, t + At), then with probability 1.
Thus

(25) E{e-"(t+'u)J3at = 1, 77(t) = y}
[(1- p) + p4,W(s)]e-u(l + sAt) + o(At), y > At,

9(s) + At (1 - p)[l - ip(s)] + O(At), y < At,

and dropping the condition q(t) = y we get
(26) E{e-8n(t+&')J,m = 1} = Q(t, s)[(1- p) + p4p(s)] + 4'(s)Po(t) + O(At).
By (17), (22), and (26),
(27) Q(t + At, s) = Q(t, s) + sAt[Q(t, s) - Po(t)] - XAt(t, s)

+ XAt(t, s)[(1 - p) + pW(s)] + o(At),
and letting At 0 we get

(28) an(t, s) = {s - Xp[l - p(s)]}Q2(t, s) - {s + W(1 - p)[l - p(s)]}Po(t)
at

The solution of this differential equation is (12).
It remains only to determine Po(t). This can be done by probabilistic methods

(compare section 8) or by the theory of functions of a complex variable.
Let us write s = t in (12) and form the Laplace transform of Q(t, t) with

respect to t, then we have

N) -){ + X(1- p)[ - i(s)]} f0 e-aPo(t)dt
(29) J e-t82(t, O)dt = s- + Xp1 - OM]

If Re(s) > 0 and Re(r) _ 0 then (29) is a regular function of ¢.
By Rouch6's theorem it follows that the denominator of the right side of

(29) has one and only one root r = c(s) in this domain. By lemma 1 we have

(30) c(s) = s + Xp[l - y(8),
where z = y(s) is the root of the equation
(31) z = p[s + Xp(l - z)]
that has the smallest absolute value. Accordingly r = c(s) must be a root of the
numerator of the right side of (29). Hence
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(32) e-,"Po(t)dt =
c(s) - (1 - p)s

Putting (30) into (32) we obtain (13).
REMARK 2. The distribution function W(t, x) satisfies the integro-differential

equation

(33) aW(t, X)
at

=W, x)- Xp [W(t, x) - f H(x - y)dvW(t, y)] + X(1- p)Po(t)H(x)

for almost all x 2 0 and t > 0.
By the theorem of total probability we can write that

(34) W(t + At, x) = (1 - XpAt)W(t, x + At)

+ xAt {p f0O H(x -y)dvW(t, y) - (1 - p)Po(t) [1 - H(x)]} + o(At).
For the event q(t + At) . x may happen in several mutually exclusive ways.

(1) In the time interval (t, t + At] no customer arrives at the counter and
rq(t) : x + At, the probability of which is

(35) (1 - XAt)W(t, x + At) + o(At).

(2) In the time interval (t, t + At] one customer arrives at the counter, he joins
the queue and his service time is less than x - q(t) + tAt, where 0 < t < 1,
the probability of which is

(36) XAt [p f x
H(x - y)d,W(t, y) + (1 -p)H(x)Po(t)] + o(At).

(3) In the time interval (t, t + At] one customer arrives at the counter, he
does not join the queue and q(t) _ x + At, the probability of which is

(37) X(1- p)At[W(t, x + At) - Po(t)] + o(At).

(4) In the time interval (t, t + At] more than one customer arrives at the
counter, the probability of which is o(At).
REMARK 3. Let us denote by a(t) the average waiting time at the instant t,

that is, a(t) = E{Jq(t)}. We have

(38) a(t) = a(O) + [1 - X(1 - p)a] fl Po(u)du - [1 - Xa]t.

Denote by v(t) the number of customers joining the queue in the time interval
(0, t] and define t(t) = 1 if the server is busy at the instant t and t(t) = 0 if the
server is idle at the instant t. We can write

(39) 1(t) = 11(0) + ET fnX- t(u)du.
0n<, <t °
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Now

E{_ ixn} = aE{ F_ Q = E{v(t)}

(40) = a f3 {Po(u)X + [1 - Po(u)]Xp}du,

EJf' t(u)du} = f0 E{j(u)}du = f| [1 - Po(u)]du,

whence (38) follows.
EXAMPLE 1. Let us suppose that the distribution function of the service

time is

(41) H() =1-e-, x > ,

0, x <O.

In this case Vb(s) = ,u/(, + s). If we suppose that initially the queue size is i then

(42) a(s) = E{e-(}= (A+s

By theorem 1 we obtain

(43) ' =(s + Xp + )-[(s + Xp + A)2 - 4Xp A112= ~~~~2Xp
and

(44) e--'Po(t)dt = X +[s -Y(s) = [1 -y(s)][j&+ X(1-p)y(s)]
+ s-nf( i{R - [-.)XIt,+W- P)I} Y(s)l~

)I + X(1 P)nl JUA }[0()

if Re(s) > 0. If we use

(45) fo0 e-,,gn(X)dx = (S)]n

where

(46) gR(X) = A ) I2ec+xx

(n-l)/2e(,A) 2
,U ) e(/%V(Xp {II-j[2(,pA) 112x] - I.+1[2(XpIA) I12X]}

and

j727
(47) In(X)n= 12..= r!(n + r)!' 0,1,2,
is the modified Bessel function of order n, then we obtain from (44) by inversioii
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(48) Po(t) + x( 1
_p E - [ ( nJ )(i+n- 1)/2[A+ n(1=-p)~ /AL Jf iP

{In+i-1 [2(Xp,)"12t] - In+i+1 [2(Xp,)1 2t]}

Xp

+ ()(i+) 2[ + J Ii+1[2(Xpg)"12t]

+ E( {(-=i+2-

-[1-X(1 -p)2][X( P)] Ir[2 (Xpg)12t])

By (29) we have

(\( i-i [ + s + X(1 -p)][z(S)]
(49) e7l"R(t, ')dt A + r s + X1i - ()]

and by inversion W(t, x) can be expressed explicitly by Bessel functions.

6. The distribution function of the waiting time of the nth customer

The random variable q.n gives the waiting time of the nth customer if he joins
the queue. Clearly
(50) p+ (1 -p)P {7n =O}
is the probability that the nth customer joins the queue, and

(51) (1 -p)P{r7n > 0}
is the probability that he departs without being served. Now we can write

(52) 7n+1 = [77n + EnXn -n]X
where t9n = 7+ - mn for n = 1, 2, 3, *, and fn = 1 if the nth customer joins
the queue and en = 0 if not. The {xn} and {fn} are independent sequences of
identically distributed independent random variables with distribution functions
P{x, _ x} = H(x) and P{t _! x} = F(x) = 1- exp (- Xx) if x > 0.
We need the following
LEMMA 2. Let ta and t be nonnegative independent random variables for which

(53) P{ ={xx} =
x < 0,

then we have for Re(s) _ 0,
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AE{ee41 --sE {e-X4' s d
(54) E{e-s[t-0+}= XX-s

tEfte-141 + E{e-11}, s =X,
and

(55) P{t- ]+ = O} = E{e-xt}.
PROOF. For nonnegative x values we have

rXe-x -se-x

(56) E-e-811-11+lt = x} = x - s

Le-Xz + Xxe-x, S = X,

Pl[t-0]+ = Olt = x} = e-X,
and unconditionally we obtain (54) and (55).
THEOREM 2. The Laplace-Stieltjes transforms

(57) Q.(s) = E{e-811-}, n = 1, 2, 3, .

are given by the generating function

(58) Qn(S)W"
n=1

(x - s)wQi(s) + wsP{711 = 0}- {s + WX(1 -p)[1 -#(s)]} E P{7n = O}wn
n=l

x -s-wx(l- p) + pk(s)]
where

h(w)P{fl = 0} + w[X - h(w)]&i[h(w)]
(5) n={,,=0}1w h(w) - X(l - p)(1 - w)

and s = h(w) is the only root of the equation

(60) X- s = wx[(1- p) + pk(s)]
in the domain Re(s) _ 0 and Iwl < 1.

PROOF. It is easy to see that

(61) E{e-8("+e-x-)j = [(1 - p) + p'(S)]Qin(S) - (1 - p)[1 - 4t(s)]P{'7n = 0}-
By using (52) and lemma 2 we obtain

(62) (X - s)gn+,(s)
= X[(1 - p) + pO(s)]4n(s) - X(1 - p)[l - 6(8)]P{7n = 0} - sP{X17+l = 0}-

Forming the generating function of (62) we get (58). The left side of (58) is a

regular function of s if Re(s) _ 0 and lwl < 1. By Rouch6's theorem it follows
that the denominator of the right side of (58) has exactly one root in this domain.
For,

(63) 1(1-p) +p(s) < wx
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if Re(s) = 0 or Re(s) _ 0 and jsl is sufficiently large. Let us denote this root by
s = h(w). By lemma 1 this can also be expressed as

(64) h(w) = X(1 -p)(1-w) +Xp{1-y[X(1 p)1 -w),w]},

where y(s, w) is defined by (8). Accordingly s = h(w) must also be a root of the
numerator of the right side of (58). So we obtain (59). This completes the proof
of the theorem.
Now let us denote by q,* the waiting time of the nth customer joining the

queue. We can see easily that

(65) 77n= [21n + Xn -n

where {x*n} and {a*} are independent sequences of identically distributed inde-
pendent random variables with distribution functions P{x* _ x} = H(x) and
P{*n < x} = 1 - exp (-Xpx) if x 2 0.
THEOREM 3. The Laplace-Stieltjes transforms

(66) Q*(s) = E{e-1"*-}, n = 1, 2,

are given by the generating function

(67) EQ*(S)Wn = W [1 - g(W)(10p - s)Q2(s) - sg(w)QIl{Xp[1 - g(w)]}
n._ [1 - g(w)][(Xp - s) - wXpt(s)]

where z = g(w) is the root with smallest absolute value of the equation

(68) z = w4{Xp(l- z)].
PROOF. By using (65) and lemma 2 we have

(69) (Xp - s)0*n+1(s) = 4p94*(s)(s) - sP{,In+l = O}
and forming the generating function for lwl < 1 we get

(Xp - s)wQ*(8) - s , P = O}w
(0*(S)Wn = n=2

(70) n=1n (xp - s) - WXpp(s)
The left side of (70) is a regular function of s if Re(s) _ 0 and lwl < 1. In this
domain the denominator of (70) has exactly one root s = Xp[1- g(w)], where
z = g(w) is the root with the smallest absolute value of equation (68). This root
must also be a root of the numerator of the right side of (70). So we obtain

(71) 00£2 P{X1n =0pWn = wg(W)Q {Xp[1 - g(W)]}(71) ~ n=2 1 - g(w)
Putting (71) into (70) we get (67), which was to be proved.
Now let us denote by vn the number of customers joining the queue among the

first n customers. We shall prove
THEOREM 4. The generating function E{Iz"} is given by

1 - (1 - p)(l- z) E P{n = 0}E{Z"n-'Ivn = 0}wn
(72) E E{Z'm}wl = n=1

n-0 1W[('1-p) +pz]
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where

(73) E P{7t- 0}E{z--lt17. = O}wn
n-I

w[X - h(w, z)]Ql[h(w, z)] + h(w, z)P{aql = 0}
h(w, z)- X(1-p)(l-w)

and s = h(w, z) is the only root of the equation

(74) X- s = wx[(l- p) + pz#(s)]
in the domain Re(s) 2 0, lzl < 1, and jwl < 1.

PROOF. We have

(75) Vn = Vn-1 + En n = 1, 2,.**,
where vo = 0 and, by (52),
(76) 77n+1 = [t7n + EnXn - tn]+, n = 1, 2, .

If Re(s) > 0 and lzl _ 1, then let us define
(77) gn(s, z) = E{e-so-z--}.
By using lemma 2 we get
(78) (X - s)E{e-1"-+1zvu} = XE{es8("n+enx-)zP-RI+f6} -sE{e-x(l)-+ex-)z"-l+e}
where

E{e-a(n-+ex%)z;,-l+} = z4(S)P{(tn = O}E{Z"'*-l1tn = O} +
(79) [(1 - p) + pZ4(8)][Qn(Z, s) - P{(n = 0}E{ZPll1jqn = 0}]

E{e-)-+ex-)z;'-.1+e-} = P{7n+l = O}E{zv-1'in+l = 0}.
Hence

(80) (X - s)f2t+i(s, z)
= X[(1 - p) + PZ4l(s)]Qn(8, z) - W(1 - p)[l - zW8(s)]P{(tn =0}

E{Z^f-'l11n = O} = SP{tIn+l = 0}E{ZvIi71n+l = 0}.
Forming the generating function we get

.0

(81) X j2n(S, z)wn {(X - s) - wX [1 - p) + pZ4#(S)]}-n=l

(w(X -s)2%(s, z) + sP{'ii = 0}

- {s+ Xw(1 - p)[l -z#()]} i P{'n =O}E{Z="-'1'7n = O}w)
n-I

The left side of (81) is a regular function of s if Re(s) > 0, IzI _ 1, and Iwl < 1.
By the Rouche theorem it follows that the denominator of the right side of (81)
has exactly one root in this domain. For,

(82) 1(1 - P) + Pz#(s)il < I Xw
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if Re(s) = 0 or Re(s) 2 0 and isl is sufficiently large. Let us denote tllis root by
s = h(w, z). We can also write
(83) h(z, w) = X(1 - p)(l - w) + Xp{l - 'y[AX(1- p)(l -w), zw]},
where 'y(s, w) is defined by (8). Accordingly s = h(w, z) must be a root of the
numerator of the right side of (81) also. So we obtain

e0

(84) pf,7 = O}E{z"--17. = O}wn
n-1

w[X - h(w, z)]Q2[h(w, z), z] + h(w, z)P{fi = 0}
h(w, z)-X(1-p)(1-tw)

This proves (71). Finally, putting s = 0 in (81) we get (72). This completes the
proof of the theorem.

7. The stochastic law of the busy period

It is clear that the time of the server is composed of alternating idle and busy
periods. The durations of the successive idle periods and busy periods are inde-
pendent random variables. The distribution function of the length of an idle
period is clearly F(x) = 1 - exp (- Xx) if x 2 0. If q(0) = 0 then the process
starts with an idle period and the length of every busy period has the same
distribution function, say G(x). If q(0) 6 0 then the process starts with a busy
period. In this case denote by G(x) the distribution function of the length of the
initial busy period. The distribution function of the lengths of the other busy
periods are G(x). If 7(0) = 0 then we agree to write G(x) = 1 if x > 0 and
O(x) = 0 if x <O.

In order to determine G(x) let us consider a customer who arrives at the
counter when the server is idle. Denote by x the duration of this service time.
We have P{x : x} = H(x). Further denote by v the number of new customers
joining the queue during the service time of this customer. Clearly we have

(85) P{v = ilx = y}= e-'1 (Xp )'
whence

(86) P{v== = f e-xpv (-p) dH(y).
fo

THEOREM 5. Define {O,} as a sequence of identically distributed independent
random variables having the distribution function G(x) and suppose that {0i} is
independent of v and x also. We have

(87) G(x) = P{x +O1+ 02 + + 0 _ X},
where the empty sum is 0 when v = 0.

PROOF. First of all let us note that from the point of view of the server it
is perfectly indifferent whether or not the customers are served in the order
of their arrival. This affects the customers only. The distribution function of the
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waiting time of a customer is changed by this fact, but the distribution function
of the busy period remains unaltered. We shall consider a special system of
serving in which the busy period is composed of the serving of the first cus-
tomer, the length of which is x, and if during the service time of the first customer
v customers join the queue, then it contains v further phases, the lengths of
which are denoted by0l, 02, ... ,0,*. Let us suppose that the first phase starts
with the serving of one of the above-mentioned v customers and continues
with the serving of the new arrivals as long as they come. When there are no
more new arrivals the second phase starts with the serving of one of the re-
maining v - 1 customers and this procedure is continued through all the v
phases. Thus the duration of the busy period is x + 01 + 02 + * * * + 0,, where
clearly 0,, 02, . * - , 0n, * * * are independent random variables with distribution
function P{,, x} = G(x) and the sequence {0,,} is independent of x and v
also. This completes the proof of (87).
Now let us introduce the Laplace-Stieltjes transforms

(88) a(s) = fo e-PzdG(x)
and

(89) ^l(s) = f| e-8-dG(x)
for Re(s) _ 0. We shall prove
THEOREM 6. The Laplace-Stieltjes tranmfrm -y(.,) is the r (t with srrallest

absolute value in z of the equation

(90) z =#[s + Xp(l-Z)]
for Re(s) _ 0. We have
(91) lim G(x) =

where w is the root with smallest absolute value in z of the equation
(92) z = 4'[Xp(l - z)].
If Xpa _ 1 then w = 1 and G(x) is a proper distribution function, while if Xpa > 1
then X < 1 and G(x) is an improper distribution function, namely, in this case the
busy period will be infinite with probability 1 -.

The Laplace-Stieltjes transform j(s) can be obtained as follows,

(93) -'(s) = C4s + Xp - Xpy(s)].
If Xpa _ 1 then G(ao) = 1 and if Xpa > 1 and iq(O) # 0 then G(°°) < 1.

PROOF. Denote by Gi(x) the distribution function of the random variable
01 + 02 + * * * + Oj for j = 0, 1, 2, * * *, that is, Gj(x) is the jth iterated convo-
lution of G(x) with itself. By (87) we have

(94) P{x + 01 + *0, xlx =y}
=P{01 + *-- + , _< z-YX = y} = .e-)P(y) Gi(x- y),



SINGLE SERVER QUEUEING PROCESS 551

where 01 + * *+±0 is a sum of a random number of random variables. Uncondi-
tionally we have

(95) G(x) = e- (PY) Gj(x- y)dH(y).

Passing from equation (95) to the Laplace-Stieltjes transform we obtain for
Re(s) > 0 that

(96) 'y(s) =; y(s)] el(8+ P)s(I) dH(y)
j=0)

= f ea[-+XP-XP1'(8)hdH(y) = 4t[s + Xp - Xpy(s)].
that is, z = y(s) satisfies (90). If Re(s) > 0 then -y(s) < 1 and (90) has exactly
one root in this domain. Consequently, if Re(s) > 0 then z = y(s) is the root
with smallest absolute value of equation (90). The required result for Re(s) > 0
can be obtained by analytical continuation. Clearly G(oo) = y(O) = co where co is
given by lemma 1.

If P{q(0) _ x} = W(x) then the distribution function of the length of the
initial busy period is

(97) G(x) = e-" (Xpy) Gj(x-y)dV(y).
Jo =O 3.

For, to obtain G(x), we can apply word for word the proof of (87) except that
x is to be replaced by the initial occupation time 7a(O) and v is to be defined as the
number of customers joining the queue in the time interval (0, 4(0)]. Forming
the Laplace-Stieltjes transform of (97) we obtain (93). Since
(98) lim G(x) = lim I(s) = n[xp(1 - w)]

we obtain that G(oo) = 1 if Xpa < 1 and G(oo) < 1 if Xpa > 1 and 0(0) = 0.
Now denote by Gn*(x) the probability that the busy period consists in servicing

n customers and its length is at most x. Write

(99) rP,(s) = fO e-szdG*(x)
if Re(s) > 0. We shall prove
THEOREM 7. If Re(s) > 0 and |wl < 1 then

(100) E ~rn(S)Wn = y(s, w),
n=1

where z = -y(s, w) is the root with smallest absolute value in z of the equation

(101) z = w4V[s + Xp(l - z)].
PROOF. A reasoning similar to the proof of (87) shows that

(102) G*(x) =P{x +O + + , <_ x; Si + * * + = n- 1},

where 81, 2, *. *, 3 denote the numbers of customers joining the queue during
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the 1st, 2nd, * *, vth phases of the busy period, respectively. By (102) we have

(103) G*(x)= | G-* (x-y) *G*(x-y)dH(y),
Y+nl+-- +ni-n-l 2

whence

(104) rn(s) rE 1(s) ... rnF(s) f ejI(xp+')y(PY)
j+nl+ -+ni=n-1 it dHy)

Multiplying both sides of this equation by wn and summing over n = 1, 2, * -
we obtain that

(105) 'y(s, w) =Ern(S)Wn
n=1

satisfies the equation z = w4t[s + Xp(l- z)]. Clearly y(s, w) is a regular func-
tion of sand wand Jy(s, w)J < 1 whenever Re(s) > 0, and 1wl < 1. If Re(s) > 0
then (101) has one and only one root in the unit circle and hence this is the re-
quired y(s, w). By analytical continuation we see that the theorem is also valid
in the case Re(s) > 0.
REMARK 4. Now we shall give another proof of theorem 7. Denote by

Gnk(x) the probability that the busy period consists of at least n services, that at
the end of the nth serving k customers are present in the queue, and that the
total service time of the first n customers is at most x. Clearly
(106) G*(x) = Gno(x).
Gnk(x) can be determined by the recurrence formula

(107) Gnk(X) = E to Gn._l(x - -x (k r + 1)! dH(Y),n = 2, 3, **,

if we start from

(108) Glk;(z) = feX (XP) dH(y).

Write

(109) rnk(s) = Jo e-xdGfk(x).

Then clearly

( 110) rno(s) = rn(s) -
Forming the Laplace-Stieltjes transforms of (107) and (108) we obtaiii

k+1 f C (py)kr+lPrk(s) = E P,-1,r(s) I e-(XP+a)y - r dH(y),

rlk(s) = | (e(xP+8)V (Xpy)k dH(y).

If we introduce the generating function
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(112) CG(s, z) = IFk(3)Zk,
k-0

then we have

(113) zCn(S, z) = #6[s + X,p(1 - z)][C"._(s, z) - rn_1(8)],
CQ(s, z) = j[s + Xp(l -Z)],

whence

x wipEs + Xp(l - z)] [z - E rI(s)Wn]
(114) E Cn(s, z)wn= z - wP[s + Xp(1 - z)]

The left side of (114) is a regular function of z if Izi _ 1, Re(s) _ 0, and lwl < 1.
If Re(s) > 0 and lw[ < 1 then the denominator of the right side has one root
z = 1y(s, w) in the unit circle izi < 1. This must also be a root of the numerator.
Therefore

(115) E rn(S)Wn = Py(S, W)
n-I

if lwl < 1 and it is also true for !wl = 1, which can be seen by analytical contin-
uation.
THEOREM 8. Denote by IA the expectation of the length of the busy period. We have

(116) ,u=1 Xpa
if Xpa < 1 and u = X if Xpa _ 1.

PROOF. NOW

(117) = xdG(x)
and by (87) we have

(118) E{X + 01 + + 0V}.
Since E{x} = a and E {v} = Xpa, therefore

(119) A = a + Xpa,u.

There are two possibilities: A < oo or IA = oc. If Xpa < 1 then u = a/(1 -Xpa)
is finite and if Xpa _ 1 then , = w
We remark that if

(120) f=| xdG(x),

then by (97)

(121) A = a(O)[1 + XpA] = a(O)
a

REMARK 5. Theorem 8 can be proved directly as follows. Let us denote
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by p the expected number of services during a busy period (possibly p =
Then we have it = pa. Now we shall prove the relation

(122) = pa + 1

If we suppose that the customers arrive at the counter according to a Poisson
process of density ?p and every customer joins the queue, then the stochastic
law of the busy period remains unchanged. In this case consider the starting
points of two consecutive busy periods. The expectation of the distance between
them is on the one hand clearly p/Xp and on'the other hand it is equal to the sum
of pa, the expected length of the busy period and l/Xp, the expected length of
the idle period. Thus we obtain (122). If Xpa < 1 then p = 1/(1 - Xpa) is finite
and if Xpa > 1 then p must be infinite.
EXAMPLE 2. Let us suppose that the service time has the distribution func-

tion H(x) = 1 - exp (-Ax) for x > 0 and that the initial queue size is i. In
this case ,6(s) = ,u/(,u + s),

(123) W(X) = 1 - e (,ux) if x _ O,
j=O j

and Q(s) = [,u/(, + s)]i. Now by theorem 6,

(124) ^>/(s = (Xp + ,A + s) -[(Xp + MA + s)2 - 4XpM]1/2
(124) 'y\5/ ~~~2Xp

and by (93)

(125) i(s) = [y(s)]i.

Using (45) and (46) we obtain

(126) dG(z) = A( IA )(i e (Xp+A)J{Ii_1[2(XpA) 12x] - Ii+1[2(XpA)1/2x]},dx yiX)/

where In(x) is the modified Bessel function of order n defined by (47).
If specifically i = 1, then G(x) = G(x).

8. The probability that the server is idle

THEOREM 9. The probability Po(t) that the server is idle at time t satisfies the
integral equation

(127) Po(t) = G(t) - X jo [1 - G(t - u)]Po(u)du.

The Laplace-Stieltjes transform of Po(t) is

(128) f e-"Po(t)dt + i(s) = s + Xps+X - ky(s) s + X - ky(s)
where 'y(s) is that root in z of the equation
(129) z = O[s + Xp(l - z)]
which has the smallest absolute value.



SINGLE SERVER QUEUEING PROCESS 555

PROOF. We have

(130) 1 - Po(t) = 1 -G(t) + ? Jo [1 - G(t - u)]Po(u)du.

For the left side is the probability that the server is busy at the instant t. This
event can occur in the following two exclusive ways: the length of the initial busy
period is greater than t or at the instant u where 0 < u < t a busy period starts
and its length is greater than t - u. At the instant u a busy period starts if and
only if the server is idle and a customer arrives. This proves (127). The Laplace
transform of Po(t) agrees with (13).
THEOREM 10. The limit limt-Po(t) = PO always exists and is independent of

the initial distribution of ,q(O). We have

(131) 1 - Xpa

if Xpa < 1 and PO = O ifXpa _ 1.
PROOF. Let us denote by Mo(t) the expected number of transitions Eo -El

occurring in the time interval (0, t] and denote by No(t) the expected number of
transitions El-- Eo occurring in the time interval (0, t]. Then we can write

(132) Po(t) = G(t) - fo [1 - G(t - u)]dMo(u)

or

(133) Po(t) = P0(0)e-X' + fo e-)(t-u)dNo(u).

The transitions Eo -* Elform a recurrent process, that is, the distances between
successive transitions Eo -+ Elare independent random variables with identical
distribution function G(t) * F(t). Clearly we have

(134) Mo(t) = G(t) * F(t) + G(t) * F(t) * G(t) + .
The distribution function G(t) * F(t) is not a lattice distribution and its mean is
evidently ,u + (1/X), where At is defined by theorem 8. Thus, by using a theorem
of D. Blackwell [1], we obtain for all h > 0

(135) lim Mo(t + h) -Mo(t) = lim Mo(t) 1
h t t 1

and the limit is independent of G(t) and consequently also independent of the
distribution of 71(0). If IA = X then (135) is taken to be zero.

If Xpa < 1 then ,u = a/(1 -Xpa) and G(oo) = 1, and by using (135) we
obtain from (132) that

(136) lim Po(t) = 1 + J = 1+ p)a
t-00. 1+ X(1 - P)a

This proves the first half of theorem 8. On the other hand the representation
(133) is suitable for the complete proof of the theorem. Similarly to Eo -+ El the
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transitions El-+ Eo also form a recurrent process in which the distances between
successive transitions E1 - Eo are independent random variables with identical
distribution function F(t) * G(t). Thus by the theorem of Blackwell [1] we have
for all h > 0 that

(137) lrn No(t + h) - No(t) l_ No(t) 1
h It 1

x
irrespective of the initial distribution of q(0). If we take into consideration that
IMo(t) - No(t) < 1 for all t 2 0, then we can conclude also from this fact that
the limits (135) and (137) agree. Now by (133)

(138) lim Po(t) = 1
t boo 1 + XA

whether p is infinite or finite. This proves the theorem.
REMARK 6. If limt,.Po(t) = P* exists then obviously

(139) Iim - f Po(u)du = PO
t"

also holds. By a well-known Tauberian theorem we can conclude that

(140) lim s f e-'tPo(t)dt = Po.

Thus by (128)

(141) 8=r + X[1-7(s)]
We have seen that P0 > 0 if Xpa < 1. Consequently in this case ey(0) = 1 must
hold. This proves that co = 1 if Xpa < 1.

9. The limiting distribution of the waiting time

THEOREM 1 1. If Xpa < 1 then the limiting probability distribution
limt, W(t, x) = W*(x) exists and is independent of the initial distribution of
7a(0). The Laplace-Stieltjes transform of W*(x) is given by
(142) Q*( ) - (1 - Xpa){s + X(1- p)[1 -

[1 + \(1 - p)a]{s -Xp[l -COD
If Xpa _ 1 then limt, W(t, x) = Ofor all x.

PROOF. If Xpa < 1 and we restrict ourselves to imaginary s then by (12) and
(131) it can be proved that limn4_(t, s) = Q(s) exists if Isl < a, where a is a
sufficiently small positive number and further that Q*(s) is continuous at s = 0.
Hence it follows by a theorem of A. Zygmund [29] that the limiting distribution
limj_ W(t, x) = W*(x) exists and further that the Laplace-Stieltjes transform
of W*(x) is limn1.oQ(t, s) = Q*(s) defined for Re(s) _ 0. Thus by (28) we can
conclude that Q*(s) has to satisfy the equation
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(143) {S - Wp[I - (s)]}*(s) = {s + X(l - p)[l - (s)Po*
where PXo is defined by (131). This proves (142). If Xpa > 1 then P = 0 anld
therefore limt t.Q(t, s) = 0 for Re(s) _ 0. Hence it follows that limt, W(t, x) =
0 for every x. This completes the proof of the theorem.
REMARK 7. If we suppose that Xpa < 1 and W(x) = W*(x), then we obtain

a stationary process {11(t)} for which

(144) W(t, x) =W*(x)-
Po(t) = PO

for all t > 0. Conversely it is easy to see that the process {-q(t)} is stationary if
and only if Xpa < 1 and the initial distribution of 7(0) is W*(x).
THEOREM 12. If Xpa < 1 then the limiting probability distribution

limn . P{7n, _ x} = W*(x) exists and is independent of the initial distribution
i7j. The Laplace-Stieltjes transform of W*(x) is given by (142). If Xpa _ 1 then
limn, P{fn < x} = Ofor all x.
PROOF. The statement concerning the existence of the limiting distribution

is a consequence of a theorem of D. V. Lindley [16]. It remains only to find Q*(s),
the Laplace-Stieltjes transform of W*(x) in the case Xpa < 1. Here SQ*(s) is
independent of the initial distribution. If we suppose that q, a- 0 then by using
Abel's theorem it follows from (58) that

(145) Q*(s) = lim (1 - w) E 0-(s)w-
w >*1 n-I

(1 - Xpa){s + X(l- p)[l -7(s)]}
[1 + X(1 - p)a]{s - Xp[l - (s)]}

because h'(1) = -X/(1 - Xpa). This agrees with (142).
THEOREM 13. If Xpa < 1 then the limiting probability distribution

lim.n ¢ P{%* g x} = W(x) exists and is independent of the initial distribution of
nt. The Laplace-Stieltjes transform of 112(x) is given by

(146) 1 - Xpa
1-,X 1 - 8(s

If kpa 2 1 then limn-PP{,* < x} = Ofor all x.
PROOF. The proof is similar to that of theorem 12. If Xpa < 1 then by (67)

we have

(147) Q(s) = lim (1 - w) Ef2(s)wT = s[1 ]()W]
w-I n=1 s ~~- Xp[l - t'(s)]

because g'(1) = 1/(1 - Xpa). If Xpa > 1 then Q(s) = 0.
REMARK 8. If Xpa = 1 then Q(S) -0 and therefore it is impossible that

lg(1)I < 1. This proves that w = g(l) = 1 must hold if )Xpa = 1.
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10. The distribution of the queue size

At this point let us suppose that there is a departure at time t =-0 and
write to = t(0). It is easy to see that the sequence of random variables {n} forms
a homogeneous Markov chain. The transition probabilities

(148) Pik = Pf{n+1 = kI{n = i}, n = 1, 2,

are given by

rPk-i+l if k i- and i = 1, 2,.*,
(149) pik = pk if k > 0 and i = 0,

10 if k < i-1 and i = 2, 3,*,
where

(150) p = | e-vxP (Xx)! dH(x), j = 0, 1, 2, **,

is the probability that during a serving exactly j customers join the queue. Now
the matrix of transition probabilities has the following form

Po Pi P2 ...

(151) 7r= P0 P1 p2
0 Po Pi ...

THEOREM 14. The higher transition probabilities
(152) pkn) = P =tn= k i}, n= 1, 2,

are given by the generating function
(153) E E Wnk = zi+[1 - g(w)] - (1 - z)wP[Xp(l - Z)][g(w)li

=Ok [1 - g(w)]{z - w4lXp(l - Z)]}
where z = g(w) is the root with the smallest absolute value of the equation
(154) z = wP[l{p(l - z)].
PROOF. Now we can write

(155) ,n+l= [- 1+ + nl
where {v,} is a sequence of independent random variables with distribution
P{vn = j} = p;, for j = 0, 1, 2, * defined by (150). Now let us suppose that
to = i is fixed and write
(156) U.(z) = E{Z-
Then by (155) we have

(157) U.+1(z) = 1[Xp(l - z)] [Un(z) -Pn = ° + P{n = 0}]

Taking into consideration that Uo(z) = zi and P{fn = 0} = p(n) and forming the
generating function of (157) we obtain
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Z - w(l - Z)O[{p(1 - Z)] E p(O
(158) E Un(z)wn = n=0

n=O Z - wu[Xp(l - Z)]
The left side of (158) is a regular function of z if lzl r 1 and lwl < 1. The denom-
inator of the right side has exactly one root z = g(w) in the unit circle lzl < 1.
This must be a root of the numerator also. So we have

[ng(w)]t
(159) E PtoW = 1 (g(w)
Putting (159) into (158) we get (153), which was to be proved.
REMARK 9. If we suppose that t(0) = 0 and the distribution function of the

waiting time of the nth customer joining the queue is denoted by Wn(x), then we
can write the obvious relation

(160) P f>n = k} = f e-P (px) d[Wn(x) * H(x)],

whence
(161) E{zt"} = n*[Xp(l - z)]#[Xp(l - z)].
Now using (67) we can prove (153) in this way also. If the initial queue size is
arbitrary then E{zt"} can be obtained similarly.
The Markov chain {%} is irreducible and aperiodic and we have
THEOREM 15. If Xpa < 1 then the Markov chain {fn} is ergodic and the limiting

probability distribution limn xP{Un = k} = Pk for k = 0, 1, 2, * exists and is
independent of the initial distribution. We have

(162) U(z) = PkZk = (1 )( z)P[Xp(l Z)]
k=O #jpl-z)] - z

If Xpa _. 1 then liMn, -P{4n = k} = 0 for every k.
PROOF. The limit limn1 P{ = k} = Pk always exists and is independent of

the initial distribution. Either every Pk > 0 and {Pk} is a probability distribu-
tion or every Pk = 0. By using Abel's theorem we have

(163) E PkZk = limn (1 - w) E L p()zkwn
k- w1 n-O k=O

and the right side can be calculated by (153). If we use g(l) = 1 and g'(1) =
1/(1 - Xpa) when Xpa < 1 then we obtain (162) and since g(l) < 1 when
Xpca> 1 we obtain that Pk = 0 for every k if Xpa > 1.
Now we shall investigate the distribution of t(t) for finite t. Let us suppose that

there is a departure at time t = -0. We need the joint distribution of (,n and r'
for every n. In this case to = t(0) and r' = 0.
THEOREM 16. Let us define

(164) Un(s, z) = E{e-Ju'zt-}, n = 0, 1, 2,

for Re(s) _ 0 and lzl < 1. We have for lw! < 1 that
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(165) E U.(s, Z)w"
n1-0

zUo(s, z) - #w[s + p(l - z)][S + (l - z)]UO[s, y(s, w)]ZUO(S,Z) 8~~+ [1-'Y(8, w)]
z -w#[s + xp(l - Z)]

where -y(s, w) is the root with smallest absolute value in z of the equation

(166) z = w4#[s + Xp(1- z)].
PROOF. Now we can write

(167) tn+1 = [{n - 1]+ + V'+I
and

(168) rn+l = -n + x*+i + { ' >1

where {x*} and {n*} are independent sequences of identically distributed inde-
pendent random variables with distribution functions P{x* < xI = H(x) and
P{n* _ xI = F(x) = - exp (-Xx) for x >_ 0. Further we have

(169) P{vn = ilx* = x} = e-xpz(XP.) j = O, 1, 2,
for every n.

Since
(170) E{exp(-sx*)zv^} = 0ts + Xp(l - z)]
we get by (167) and (168) that

(171) U,i+1(s, z) = 4t[s + Xp(l - z)] [Ut(s5 z) - Un(S, 0) U(S, 0)
z X+sj

Hence

(172) Un(S, Z)Wn
n-0

zUo(s, z) - WipEs + Xp(l - Z)]5 + - Un(s, O)wn'X+ 8 n-o
z -Wi[s + Xp(l- Z)]

The left side of (172) is a regular function of z if Izi . 1, Re(s) _ 0, and lwl < 1.
In this domain the denominator of the right side of (172) has exactly one root
z = -y(s, w). This must also be a root of the numerator. Thus we have

(173) Un(Uo[s, (s, w)]
n-O 1 -

S (8,w)

Putting (173) into (158) we get (165), as was to be proved.
In what follows let us suppose that t =-0 is a departure point and write

(174) Pik(t) = P{t(t) = klt(O) = i}.
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THEOREM 17. Let

(175) RIJk(S) = JO eStPik(t)dt
for Re(s) > 0. For Re(s) > 0 and zI-. 1 we have

(176) - JI ik(S)Z
Zi+ll-*[s + Xp(l -Z)]}

[s + Xp(l - z)]{z - 0[s + Xp(l -Z)]}

(s)__I_ _ [s + 4'(1-[s + Xp(l - Z)]}
+s + K1 - y(s)]\ [s + Xp(l--Z)]{z - 4s + Xp(l -Z)]}

where y(s) is the root with smallest absolute value in z of the equation

(177) z = 4,[s + Xp(l - z)].

PROOF. Under the assumption t(0) = i let us denote by Mj(t) for j =
0, 1, 2, * * * the expectation of the number of transitions E3 - Ej+j occurring in
the time interval (0, t] and denote by Nj(t) for j = 0, 1, 2, -.. the expectation
of the number of transitions Ej+1 Ej occurring in the time interval (0, t]. We
have evidently
(178) Mo(t) = X fo Pio(u)du
and by (128)
(179) j e-dMo(t) = s + 17(s)]

Since clearly

(180) Nj(t) = , < t,
n-I

we obtain by (165) that

(181) 2 zi | e-adNj(t) = 2 U-(s, z)
i=O Jo n=1

zi_[s + x(1 -Z)][8(s)]
= 41[s + ),p(l Z)] - s +[l'[1(s)]

Knowing Mo(t) and Nj(t) with j = 0, 1, 2, for all t._ 0, the probabilities
Pik(t) can be obtained as follows. If k = 1, 2, * , then

(182) Pik(t) = Ait [1 - H(t)]e-x- (k -i

+ F, [1 -H(t-u)]e-c(t)[XP(t -Nu)]- u

+ - - (k - j)! dNo(u)

+ f [1 - H(t - ue-P(u[X(k-i)!k- dMo(u),
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where at = 1 if i = 1, 2, * , k and 6A = 0 otherwise. Further

(183) Pio(t) = aioe-" + fo e_x(t-u)dNo(u),

where bio = 1 if i = 0 and 6io = 0 if i > 0.
In proving (182) we take into consideration that the event t(t) = k with

k = 1, 2, * * can occur in the following mutually exclusive ways. At the instant
u, where 0

_
u < t, there occurs a transition Ej+l -* Ej with j = 1, 2, ***, k

or a transition Eo -- E1. The servicing starting at this instant u does not ter-
minate in the time interval (u, t] and during (u, t], respectively k - j or k - 1
customers join the queue. Finally we obtain (182) if we also take into consider-
ation that the transition Ej+1 -- E, may be the 1st, 2nd, * *, nth, * * * departure
and similarly the transition Eo -v E1 may be the 1st, 2nd, . .. , nth, *-* arrival.
In proving (183) we take into consideration that the event Z(t) = 0 can occur in
such a way that at the instant u (where 0 _ u < t) there occurs a transition
El- Eo and during (u, t] no customer joins the queue.

Let us form the Laplace transforms of (182) and (183) and write the generat-
ing function of llik(S); then we obtain

(184) E IIik(s)zk
k-0

1- 0'[s + xp(1 - Z)]f~ l
s +Xp(l- ~'-~ ~ edNj(t) + z ~ea-IdMo(t)1s + Xp(l Z) , l ()+ o°(}

1I'co t~~~1 = 0,

+ e-tdNo (t) + ( i +X) ;
(X+s)j0 ~~s+ xp(l -z)] i .

By (178) and (183) we have

(15ox)+ s f+ s

and hence by (180), (181), (184), and (185) we obtain (176).
THEOREM 18. If Xpa < 1, then the limiting distribution limt- P{t(t) = k} =

Pk for k = 0, 1, 2, * exists and is independent of the initial distribution. We have

(16)(1 -pf,r k =0,
(186) Pk( ) =

where {Pk} is defined by (162). If Xpa _ 1 then limt ccP{Z(t) = k} = 0 for
every k.
PROOF. The transitions Ej+1-+ E1 for j = 0, 1, 2, * and similarly the

transitions Eo -- E1 form a recurrent process. The distances between successive
transitions are identically distributed independent random variables having nonx-



SINGLE SERVER QUEUEING PROCESS 563

lattice distributions. Therefore by a theorem of Blackwell [1] it follows that the
following limits exist for every h > 0 and agree with the corresponding right
sides

(187) lim j=0*Nj(t+ h) -Nj(t) Nl (t)
h t t

and

(188) limn Mo(t + h) - Mo(t) = lim Mo(t)
t-+ h t- t

Furthermore it is easy to see that these limits are independent of the initial state.
Forming the Riemann-Stieltjes sums approximating the integrals (182) and
(183), respectively, and using (187) and (188) we obtain that the limit

(189) lim Pk(t) = Pt, k = 0, 1, 2, ...

always exists and is independent of the initial state. Specifically we have

(190) P= 1(No + Mo)

and for k = 1, 2, * * -

(191) P*k=ENj [1-H(x)]e-'P'-(pX)k-dkE~~~~~~H()ePzk)~
+ Mo [1-H( (k 1)!dx,

where

(192) lim Ny(t = Nj and lim Mo(t) = M
t-*ao t t-+ t

Now it is valid that the difference of the numbers of transitions Ek -4 Ek+1 and
Ek+1 -- Ek occurring in the time interval (0, t] is at most one. Hence we have

(193) IMk(t) - Nk(t) _ 1

for every k and t _ 0. On the other hand obviously

()P fo P,(U)du, k = 1, 2, ...
(194) Mk(t) =

1X fg Po(u)du, k = 0.

Having proved that lim1 .0Pk(t) = Pt for k = 0, 1, 2, * always exists we can
conclude that

(195) limM(t) fXPP', k= 12, *,
te-+o t X)pO*, k = O.

By the theory of Markov chains it follows that

(196) lim Nk(t) - k, k = 0, 1,
- IcN(t
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where N(t) denotes the expectation of the number of the departing customers in
the time interval (0, t], that is,
(197) N(t) k- (t).

k =0

We have proved that if Xppa < 1 then Pk > 0 for every k and {Pk} is a prob-
ability distribution, while if Xpa ._ 1 then Pk = 0 for every k. Now by (193)

(198) lim Mk(t) = lim Nk(t),
t-400 t t-4O t

and thus in virtue of (195) and (196) we get

F'k lim N(t), k = 1, 2,...,
1ip tx

(199) Pk = 1 l0 N(t)
I-jim ' k =0.
x t-*co t

If we suppose that Xpa < 1, then by (162) and (131) we obtain

(200) P* = p )+X(1 - p)a
and hence if we write k = 0 in (199) we obtain

(201) lim Nt - Bp
and by (199)
(202) k I + X(P) k- 1 .i2

Formulas (200) and (202) prove (186).
If Xpa ! 1 then every Pk = 0 and since limt-, Nk(t)/t is evidently finite it

follows by (199) that P* = 0 for every k. This completes the proof of the theorem.

11. The process of departures
Let us suppose that there is a departure at t -0 and denote by rl, T2, **,
., the sequence of the successive departures. Further denote by N(t) the

expected number of the departures occurring in the time interval (0, t].
THEOREM 19. If Re(s) > 0 then

(203) f e-'dN(t)= 1 (S) s- +XI1 (s)]},
where y(s) is the root with smallest absolute value in z of the equation
(204) z = #[S + Xp(1 -Z)],
and

(205) Uo(z) = E{z"(0)}
is the generating function of the initial queue size.
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PRoOF. If we put z = 1 in (165) we get

1 Sw*(s)UO[Y(, W)]
(206) EI E{e-"-'}w' - s + X[1- Y(s, w)] 1

Since

(207) N(t) = E P{Tn . t}
n-1

we obtain (203) from (206) letting w -+ 1.
Now let us suppose that Xpa < 1 and the initial distribution of the queue size

agrees with the stationary distribution defined by (162). In this case

(208) UOW ~= (1 - Xpa)(1 - 0)#]jX(1 - Z)]
(208) U(z) [p(-)z~{p1-z)] - z

and by (203)

(209) f e-8'dN(t)

_Cs) 1 _ (1- Xpa)8[l - -Y(s)]4{{Xp[l - -y(s)]}j
1 -C(s) t {S +X[1 - y()]}(&{p[1- -(s)]} - /())

If we suppose in particular that H(x) = 1 - exp (-,x) for x _ 0, when
A(s) = M/I( + s) and a = 14,, then by (209) we obtain

(210) f e-'dN(t) = 1Ii - I]
Jo~~~- 1 - IA'YS

In the case of p = 1 (210) reduces to

(211) e"dN(t)=-

whence

(212) N(t) = Xt.

The latter equation is in agreement with the fact that in this case the departures
follow a Poisson process with density X. This theorem was proved by P. J. Burke
[4] and E. Reich [19]. In the general case the output process {r.} cannot be
characterized in a similar simple way.
The interdeparture times can always be expressed as follows,

(213) +- Tn= { +n 0,
X*n+l + 6*n+lx 0O

where {xn} and {t7n} are independent sequences of identically distributed inde-
pendent random variables with distribution functions P{x* < x} = H(x) and
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P{n* _ x} = F(x) = 1 - exp (-Xx) if x _ 0, and further n is the queue size
immediately after the nth departure. Then we have

(214) P{rn+l _ X} = [1 -P{{n = 0}]H(x) + P{ = O}H(x) * F(x).
If Xpa < 1 then limnIn P{n = O} = 1- Xpa, whence

(215) irn P{Tn+I - rn' X} = XpaH(x) + (1 - Xpa)H(x) * F(X),
n >

and

(216) lim E{Tn+l - Tn} = + X( P)

The Laplace-Stieltjes transform of the limiting distribution (215) is

(217) 4'(S) ( + pas)
X+s

The distribution function- (215) is an exponential distribution if and only if
p = 1 and H(x) = 1 - exp (-x/a) if x > 0.
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