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1. Introduction

This is an attempt to show that a potential theory is associated with certain
recurrent Markov processes in a natural way. For transient Markov processes
this fact has been studied intensely. Thus Hunt [9] bases a general potential
theory on transient continuous parameter processes, Doob [7] and Hunt [10] use
the theory to construct boundaries for discrete parameter processes, Ito and
McKean [11] solve the problem of characterizing the recurrent sets for simple
random walk in three and higher dimension within the framework of the as-
sociated potential theory.
The class of recurrent Markov processes considered here are defined as fol-

lows. The state space will be E, the set of all ordered pairs (lattice points)
x = (m, n) where m and n are integers. X is a random variable with values in E.
Its characteristic function k(0) is
(1.1) 4(0) = E[eIX] = E eil zP{X = xI,

zEE

where 0 = (01, 02) and 0-x = 01M + 02n if x = (m, n). Here XI, X2, * is an
infinite sequence of independent random variables with the same distribution as
X. Each characteristic function +(0) defines a Markov process
(1.2) S = So + X +***+ X, n > 1,
where the starting point So is an arbitrary point in E.

For simplicity we assume throughout that 4(0) = 0(- 0), or equivalently that
P {X = x} = P{X = -4x}. Two further assumptions are essential to the theory.
Let S denote the square Io,l < 7r, 1021 < T in the 0-plane and let f [ ] dO denote
integration over S where dO is two-dimensional Lebesgue measure. For 0 E S,
it is assumed that 4(0) satisfies

(1.3) 0(0) = 1 * = 0

(1.4) f de

A number theoretical argument may be used to show that (1.3) is equivalent
to the condition that every x in E is a possible value of the process S, that is,
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that, given So and x, there is a positive integer n such that P{Sn= x} > 0.
Condition (1.4) is equivalent to

(1.5) E P {Sn = So} = oo
n=O

and if (1.3) holds, this is equivalent to

(1.6) P{on u (Sk= )} =1
n=1 k=n

for every S0, that is, every point in E is visited infinitely often with probability
one. These things are discussed in [4].

Conditions (1.3) and (1.4) are obviously satisfied by the simple random walk
with

(1.7) 0(0) = 1

+ 1 cos 02,

and, according to [4], a sufficient condition for (1.4) to hold is, using the assump-
tion that 4(0) = (-9),
(1.8) Fi lxlVP{X = x} = E(JXI2) < C.

zEE

The potential theory will be based on three operators P, A, and K. P has
the representation (kernel)
(1.9) P(x, y) = P{X = x -yl,
and will act on the space £ of real-valued functions on E for which PifI < oo,
that is, P: S -- £, where

(1.10) Pf(x) = E P(x, y)f(y), f £ = {fIPIfI <om}.
vEE

If I is the identity then P - I (being the second difference operator for simple
random walk) is our version of the Laplace operator. We let Q denote a finite
subset of E and £(Q) the vector space of real-valued functions on Q2 whose dimen-
sion IQI is the number of points in Q. In section 2, lemma 2.1, it is shown that,
for each pair x, y in E, the integral

(1.11) A(x, y) = (2T)-2 f -cos (x - Y) . dO1 - 4O(0)
exists and we define A as an operator (potential kernel) A: £(Q) -S £ by
(1.12) Af(x) = E A(x, a)f(a), x E E, f E£(Q).

aeQ?

The one-dimensional analogue of the kernel A (x, y) was first studied by Kac [12]
in a somewhat different context. In section 3, lemma 3.1 we use one of his results
concerning A(x, y). (This kernel is studied by W. Hoeffding in his paper "On
sequences of sums of independent random vectors," given at this Symposium.
In particular, many of the results in section 2 are also obtained by Hoeffding,
and used in a context closely related to potential theory.)
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Lemma 2.2 will show that A4, CE S when 4' C £(Q). It will show more, nlamely
that (P - I)A/(x) = 0 when x C E -Q whereas (P - I)A,(x) = +'(x) when
x C Q. This is familiar from potential theory. If #, is a nonnegative functioni
(charge distribution on Q) in £(Q), f = A4A satisfies Laplace's equation
(P - I)f = 0 off El whereas f satisfies Poisson's equation (P - I)f = 4' on U. In
the classical case the sign is reversed in the last equation. This could be remedied
by using -A as the potential kernel instead of A. Our notation has the advantage
of a more natural probability interpretation which is given in section 4.

If the range of the operator A is restricted to £(Q), A becomes a (matrix)
operator mapping S(Q) into £(Q). In section 3, lemma 3.1, this mapping will be
shown to be onto, that is, the restricted version of A has an inverse K = K(x, y),
x, y CE Qdefined by K: £(Q) -+(Q),

Kf(x) = E K(x, a)f(a), for f C 2(12), x C Q,
(1.13) aEo

AKf(x) = f(x), when f C S(Q), x C S1.
The first of several equivalent definitions, in section 8, of the capacity of the set
Q will be in terms of the quadratic form (e, Ke) where e = e(x) a 1 for x C U.

This paper relies to some extent on the imbedded Markov chain induced by the
finite set Q2. This chain is simply the process S. observed only at those (random)
times n when S. is in Q2. Thus its transition matrix is the (stochastic) matrix II
of size lo,I defined by

(1.14) H(x, y) = E P{S, El for v = 1,** ,n- 1; S = yISo = x},
n=1

x, y C Q.
In section 3, theorem 3.1, a formula for II(x, y) is obtained in terms of A (x, y)

and K(x, y) by the method of the imbedded Markov chain, the foundation for
which was laid in [14]. The method adds probabilistic interest to the potential
theory and makes it more explicit, without being essential to its logical develop-
ment. Thus, in section 5, theorem 5.2 gives an explicit formula for the harmonic
measure. It was first discovered by the method of the imbedded Markov chain;
nevertheless the proof which is given in section 5 consists of verifying that the
formula obtained is the appropriate solution to the exterior Dirichlet problem,
which has a unique solution in view of theorem 5.1. The last three sections,
sections 6, 7, 8, imitate classical potential theory, giving explicit representations
as well as the standard theorems for the potential, Green function, and capacity
of finite sets of lattice points, corresponding to each process S,, satisfying
4(0) = 4(-O) as well as conditions (1.3) and (1.4).
The methods and results of this paper should be compared to those of Ito and

McKean [11]. Our method will yield part of their results, namely those concerned
with finite sets, in a different and more explicit form. Thus the matrix H of the
imbedded Markov chain can be expressed in terms of the inverse of Ito and
McKean's potential kernel, restricted to the set in question. (H is of course
substochastic in their theory.) Just as we do in section 8, the capacity of a
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finite set call be expressed as a quadratic form, and the equilibrium charge on a
finite set Qturns out to be the limit of p(x, a) as x -x c, p(x, a) being -the condi-
tional probability that the set Q is first hit at a, starting at x, given that it is
hit in a finite time.

The fact that we get more formulas than It6 and McKean is of dubious merit.
The hard calculations in [11] are based on maximum principles, such as we ob-
tain in section 7, enabling one to use integral estimates from classical potential
theory rather than "explicit" formulas, involving matrix inversion.

Typical new problems arising from this work are, in increasing order of dif-
ficulty: (1) Its extension to nonlattice random walk in the plane of the same sum
of independent variable type as here. The theory of integral equations with
completely continuous kernels should imitate the present matrix theory without
serious difficulty. (2) To understand the connection of the limit theorems (as time
tends to infinity) of Kac [12] which lead to the same potential kernel as the
present (time-independent) theory. (3) To discover the domain of validity of
present key theorems among general irreducible recurrent Markov chains. For
example let Xk, k = 1, 2, - * * be the states of such a chain and Q a finite set of
states. What are necessary and sufficient conditions, that is what does it mean,
for i p(x a) to exist for all a in Q, for every Q, where p(x, a) is the harmonic
measure, defined as in (5.2), of Q?

2. Some Fourier analysis

To justify the definition in (1.11) we first show
LEMMA 2.1. For x, y C E, [1 - cos (x - y)-0][1 - 0(0)]- is Lebesgue inte-

grable on S and

(2.1) A (x, y) = (27r)-2 f1 -cos (x - t) * dO1 - ~OM
N

= lim E [P{Sn=ISo=O}- P{S. =x -yISO =0}].
N--1- n=O

PROOF. Let So = 0. In view of (1.3), [1 -(0)]-' is continuous on S except
at the origin. 4(0) is real. Suppose that

(2.2) Q(0) = E[(0.X)2] = eoall + 20102al2 + 02of22 <2 -
Then

(2.3) lim 1 4(0) = 1
8, Q(0) 2

Equation (1.3) implies that Q(0) is a positive definite quadratic form. Con-
sequently there is a constant d > 0 such that [1 - (0)]-l _ d(0 * 0)-1 for all 0
in S. The integral defining A(x, y) therefore exists in the sense of Lebesgue,
since [1 - cos (x - y) * 0] (0.0)-' is Lebesgue integrable on S. If on the other hand
Q(0) = +xo, for some 0 5 O we have
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1 -(2.4) E[JX12] = +ct, riM = +o IX1= X.X,
e-0o

and the previous argument may be resumed.
N

(2.5) E [P{S, = 0} - P {S. = x - y}]
n=O

= (27r)-2 f [1 - cos (x- y). ][l+± (o) + + 0(0)N] dO

= A (x, y) - (2r)-2 f
OS
C (X(- y) 0 [0(0)]N4-1 do.

Since (0) < 1 except at most at a finite number of points in S, the last term
tends to zero as N tends to infinity.
A (x, y) will play the role of a potential kernel because of
LEMMA 2.2. For f C S(Q), Af E S, and

(2.6) (P-I)Af(x) = (j) x

(For the case of simple random walk this fact is due to St6hr [15], as is the
result of lemma 2.4.)

PROOF. Since A (x, y) is a difference kernel we assume without loss of gener-
ality that Q contains 0 (the origin). Let f(O) = 1, and f(x) 0 when x CE Q,
x w- 0. It remains to show that, for x C E,

(2.7) Y_ P(x, t)A(t, 0) -A(x, 0) = f1 x-0,te E xo, x 0.

The left side is

(2.8) (27r)--2 [1 - 0(0)]-1[1- P(x, t) cost- 0 - 1 + cos x*0] dOf teE=

= (27r)-2 f [t - (6)]-1[-(cosx- 0)0(6) + cosx-0] dO

= (27r)-2 f cosx*OdO = 1

when x = 0 and 0 otherwise.
By linearity (2.6) holds for allf CE (Q) and by the triangle inequality PIAf <
so that Af C £.
The next lemma, concerning the asymptotic behavior of A (x, y) is responsible

for the asymptotic results in our potential theory. All we assume is that 4(O) =
4(-0) and that 4(0) satisfies (1.3) and (1.4). Let

(2.9) a(x) = A (x, 0) = (27r)-2 I cOsx-O dO

LEMMA 2.3.

(2.10) lim a(x) =
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For xi, X2 in E

(2.11) lim [A(x, xi) - A(x, X2)] - 0
Z-+.

PROOF. Let S. be the subset of S defined by *- 0 < e2, with 0 < e < 7r, and
decompose

(2.12) (21r)2a(x) = | d0+ f 1c0x- dO

* C~SSe S-E

With e fixed let x x = 1x12 tend to infinity, and the two-dimensional Riemann

Lebesgue lemma [1] gives limx,. (27r)2a(x) . fss dO/[l - 0(O)] for ev-

ery 0 < e <7r. Because of (1.4), the integral on the right tends to infinity as e
tends to zero, and this proves (2.10).

Since A (x, y) is a difference kernel it clearly suffices to prove (2.11) for X2 = 0,
with xi arbitrary in E. Letting ul = (1, 0), u2 = (0, 1), x = mu, + nu2, it is
clear that
(2.13) lim [A(xi, x) - A(0, x)]

z-400

= m lim [A(u1, x) - A(0, x)] + n lim [A(u2, x) - A(0, x)],
X2-4-

provided one can show that the last two limits exist. Since they are of the same
type it suffices to consider only the first one and the proof of (2.11) is completed
by showing that it is zero.

(2.14) (27r)2[A (u1, x) -A (0, x)] = f cos x 0- cos (x- i) .
0
dO

1 - 4(O)
sin1 sin (x-- *O

= -2 2 \ 2 do.

But f(O) = -2 sin (01/2)[1 - 4(O)]-1 is integrable on S since IlOi(O-O)-' is inite-
grable. Letting x - uj/2 = y and noting that y tends to infinity with x, we have

(2.15) lim (27r)2[A (ui, x) -A (0, x)] = lim f f(O) siln y *O dO = 0

by the two-dimensional Riemann-Lebesgue lemma.
Sharper results concerning the asymptotic behavior of A (x, y) require further

assumptions concerning the random walk S,, or its characteristic function 4(O).
Under the assumption that E(IX12) < X it can be shown that a(x) - c log lxl as

lxl -4 o, where c is a positive constant. (Theorem 5.1 of Hoeffding's Symposium
paper.) However, the behavior of the difference a(x) - c log lxl depends on the
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directioni in wlhich x tends to infinity, unless we assume the ranidoiii walk to
be isotropic, that is, that the quadratic form Q(0) has no preferred principal axes.
To get a result as strong as in classical potential theory it also seems necessary to
assume that IXI has a finite moment of order greater than two.
LEMMA 2.4. If Q(O) = E[(O.X)2] = a20-0 <0, and if E(IX12+6) < 00 for

some a > 0, then

(2.16) lim Ia(x)- -2log IxI =c + -a d = k,

(2.17) 0 < c = (27r)-2 [ -Q()]dO < OO,

where -y = .5772... is Euler's constant, X = ,n=O(-1)n(2n + 1)-2 is Catalan's
constant, and d = y + log 7r - 2X/7r. For the simple random walk a2 = 1/2,
k = (1/r) log 8 + 2,y/7r.

PROOF. First we check that the integrand
(2.18) 4,(O) = [1 - 0(0)]-1Q-1(0){Q(6) - 2[1 - 4(O)]}
in (2.17) is Lebesgue integrable. Since [1 - 0(0)]-1Q1(0) has a positive constant
times (0. 0)-2 as a lower bound, it suffices to prove integrability for

(2.19) X(o) = (0.0)-2 [2 (0 * 0) -1 + (a)]

= (o * )-2 E[2 (.X)2 -1 + COS OX].

For some constant h > 0, by the Schwarz inequality,
(2.20) Ix(0)j h( -0)-2 E(J0. X12+5)

< h(0*0)-2 E{[(0 0) (X * X)]1+6'2}
< h(e * )-.+8/2E(IX 12+8),

which is integrable.
Now we decompose

(2.21) a(x) = (2r)- 1 COS X-@ d1 - o)
2 (27r)-2 dO-COS 0-X dO + (2r)-2 J( - cos-x 0)#(0) do.

The last integral tends to c by the two-dimensional Riemann Lebesgue lemma
and it only remains to verify that

(2.22) lim (1 (1 -cosx. do oglxl127r J Xd 1-Jo- =,+)

=-Y + log -7r - cosx. O =1X)+IX,
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where
1 f I ~~Cos x 0

(2.23) ll(x) = 2- j 00 dO,O7
0/e*.<0

and I2(x) is the integral over the remaining part of the square S
By introducing polar coordinates it is shown that I,(x) - log Ixi y + log (ir/2),
using the formula

(2.24) y Cost dt -jco t dt.

The second integral I2(x), by the Riemann-Lebesgue lemma, tends to a limit as
x -X 0 which may be expressed in terms of Catalan's constant X. The details
are omitted as is the calculation of k for simple random walk.

3. The imbedded Markov chain

For the purpose of this section only let A = A (x, y) be restricted to x, y in
Q C E, and let 2 _ IQ: < X. The case when IQI2 = 1 is trivial. Imitating an
argument of Kac [12], we obtain more than is needed to assert that A has an
inverse K according to (1.13). A real number X is an eigenvalue of A if there is a
function f in C(Q) such that Af = Xf on Q. Thus the inverse K exists if X = 0
is not an eigenvalue. Also e = e(x) -1 for x in E and (f, g) = F_eaf(x)g(x).
LEMMA 3.1. A has one simple positive eigenvalue, its other eigenvalues are

negative and the quadratic form (e, Ke) = z_x E K(x, y) 5 0.
PROOF. Suppose that X, and X2 are two distinct positive eigenvalues of A

with eigenvectors ul and u2 in 2(Q). Since A is symmetric the functions ul and u2
may be taken real and such that (ul, ul) = (u2, u2) = 1, (ul, u2) = 0. One may
choose real constants a,, a2, not both zero, such that (v, e) = 0 where v = alul +
ca2U2. Direct computation yields

(3.1) (v, Av) = aIX + a2X2 > 0-

On the other hand, for every v such that (v, e) = 0 the definition of A (x, y)
in (1.11) gives

(3.2) (v, Av) = (27r)-2 f E v(x) eix f912 1 - 0(0)1-1 dO < 0

with strict inequality if and only if v -0 on Q. Thus (3.2) contradicts (3.1) so
that A has at most one positive eigenvalue, and there must be one, since the
trace of A is zero. This eigenvalue is simple by the theory of positive matrices of
Frobenius (for every e > 0, A + eI is a strictly positive matrix whose largest
eigenvalue is simple).
A is nonsingular, for suppose Au = 0, (u, u) = 1. Then either (u, e) = 0 in

which case (3.2) applied to u gives (u, Au) < 0 which is impossible, or (u, e) # 0.
In the latter case let ,u > 0, Av = luv, (v, v) = 1. By (3.2) (v, e) 0 0. Hence we
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can choose real a #d 0, d #d 0, such that (au + ,Bv, e) = 0 and calculate, for
w = au + fv, that (w, Aw) =-32-s. < 0 which is impossible.

Finally let K be the inverse of A which has just been shown to exist, and take
v = Ke. Since K has an inverse, v is not the zero vector. If (v, e) = 0, then (3.2)
implies (v, Av) < 0 which is impossible since (v, At) = (e, Ke) (v, e). Hence
(v, e) = (e, Ke) 5$ 0.
Unfortunately the eigenvalues and eigenfunctions of A do not seem to have

a natural place in the potential theory. An additional fact which does, to be
proved in section 5, is that
(3.3) Ke(x) _ 0 for x EE Q, and (e, Ke) > 0.
Lemma 3.1 is used to derive a representation for the transition matrix II

fl(x, y), defined in (1.14), of the imbedded Markov chain. For f, g E O(Q) we
writef ® g for the matrix f(x) g(y), with x, y E U.
THEOREM 3.1. If 2 . IQI < oo,

(3.4) rl = I + K (Ke , Ke

PROOF. Define L]It = Ht(x, y) for 0 _ t < 1, by

(3.5)
LI(X, y) = E t, P{S, v Q for v = 1, * * ,n - 1; S. = ySo = xl

n=1

X, Y E

Then II(x, y) = limt-+- fIz(x, y) and a simple renewal argument, given in detail
in [14], shows that

(3.6) (I - IHt)-(X, Y) = E tnP{Sn = YISO = X}, 0 _ t < 1;x, y (E Q
n=O

This renewal argument gives I + Lt + HI2 + * on the left, but by (3.5) III
has all row sums less than one when 0 < t < 1 so that one obtains (3.6). Let

(3.7) s(t) = (2ir)-2 J 1 - t ()' t < 1.

Using lemma 2.1, equation (3.6) may be written for 0 _ t < 1,
(3.8) (1- Hi)-' = s(t)e 0 e - A + Bt,

where

(3.9) Bt = Bt(x, y)
= (2r)-2 [1 - cos (x- y).0] [ - 1 1(0)]dO.

A matrixM of the formM = f 0 f + C, where C is nonsingular and (f, C-tf) +
1 F6 0, has the elegant property [8] that (j being the transpose of the vectorf)
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(3.10) AM-1-C-C-lffC-

Thanks are due to I. Olkin, who pointed out this fact to me. (3.10) is easily
verified, and it may be used to invert the matrix (I - He)-l in (3.8) if one can
verify that, for t close enough to one, the conditions for (3.10) are satisfied. We
shall take W e = f and B, - A = C. Since A is nonsingular and since B,
tends to the zero matrix as t tends to one, by (3.9) and lemma 2.1, it is clear
that Bt- A is nonsingular for t sufficiently close to one. Also

(3.11) 1 + s(t)[e, (Bt - A)-le] wd 0

for t close enough to one by the above argument and lemma 3.1.
Observing that Bt- A is symmetric, one obtains from (3.8) and (3.10) for

some 6 > 0
(3.12) I - W= (B - A)-' _(Bt - A)-le ® (Bt - A)-le(3.12I t = (t A-' -[s(t)]-' + (e, (B, - A)-le)
for 1 - _. t < 1, and passing to the limit

(3.13) lim [I - = I - II = -A-' + A-le, A-le

Ke X Ke
(e, Ke)

proving theorem 3.1.

4. Probability interpretation of the potential kernel

Taking x, y, z in E, not necessarily distinct, we let zE., denote the expected
number of visits of the process Sn, with So = x, to the point y, before the first
visit to z. Formally

(4.1) E. = E P{S, H z, for p = 1, ,n - 1; Sn = yISO = x}.
n=1

It turns out that

(4.2) ,E., = A(z, y) + A(z, x) - A(x, y) + b(z, y) + 6(z, x) - 6(x, y),
where 6(a, b) = 1 if a = b and 0 otherwise. In section 7, theorem 7.1, the Green
function ga(x, y) is obtained explicitly and that result will generalize (4.2) as

,E-, = go(x, y) with Q consisting of the single point z, when x, y, z are distinct.
Equation (4.2) will not be proved there as its proof requires only trivial modifica-
tions of that of theorem 2 in [14] which concerns one-dimensional random walk.
A simple direct proof may be based on theorem 3.1 for arbitrary sets Q with
IQI = 2 and IQI = 3 and requires only certain calculations based on the geometric
distribution of the number of returns to a point before visiting a different,
prescribed, point.
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A (x, y) has the probability interpretation given by
THEOREM 4.1. If x P y,

(4.3) =Ex. X.V = 2A (x, y)-1
(4.4) lim sE,5 = lim yEx2 = A (x, y).

PROOF. (4.3) is just a special case of (4.2) and (4.4) follows from lemma 2.3
applied to (4.2).

5. The harmonic measure

Given a finite subset Q of E, the harmonic measure of Q is defined as a function
p(x, a) on the product space E X 2 by x E E, a C Q,
(5.1) p(x, a) = 5(x, a) when x CO

(5.2) p(x, a) = PI{bSv E Q for v = 1, * * *, n - 1 = alSo = x}
n=1

when x E E-Q.
Thus the harmonic measure defines, for each x, a probability measure on Q
which assigns to each point a the probability that Q is first visited at a, if SO = x.

This is well known, as is the fact that the harmonic measure yields the solution
to the exterior Dirichlet problem, that is, the boundary value problem
(5.3') (P-I)f =O onE-Q,
(5.3") f = 4 on Q,
(5.3"') f E £ is bounded on E.

Here 4 Ez S(Q) is a known function and (5.3) turns out to have a unique solution
f C 2. It is given by
THEOREM 5.1. The exterior Dirichlet problem has the unique solution

(5.4) f(x) = E p(x, a)+(a).
aGfl

PROOF. The definition of p(x, a) in (5.1) and (5.2) and a simple renewal
argument (based on the strong Markov property of the process Sn) imply that
(5.4) is indeed a solution of (5.3). To prove uniqueness, suppose fi and f2 are two
solutions of (5.3) and let h = fi - f2. Then h satisfies (5.3) with =- 0 on Q and
we have to show that h- 0 on E. Define

PnV (x, y) = P(x, y),(5.5) pQ1n,1,(X' Y) = E P(X, t)P1nV(t, Y) for n > 1.

As h -0 on 2, and Ph = h on E -,

(5.6) h(x) = P"(x, y)h(y) * * = P)(x, y)h(y),
yREE-flyE-
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for all n _ 1 and every x in E -2. Choosing 111 such that 1/L(x)1 _ o1111 E,
we have for evrery x E E -

(5.7) Jh(x)J _ ill Z IN.'(x, q)
yeh1'-12

= Al P{S, ~E l-52 for v =P , , nlSo = x'-

for all n _ 1. As the process S,, is recurrent the right side tends to zero as n
approaches infinity, so that h(x) 0.
An equally short proof comes from the following observation of Doob. If

So = x and if .f satisfies (5.3) and if S' is the process S, stopped when it, first
reaches S2, thenf(S') is a bounded martingale [6]. (5.4) is the martingale theorell1:
(5.8) rf(x) = E[f(S')] = E[limf(S')] = E1[0(1im 5')] = p(x, a)+(a).

?L-. ?I-. aSa11

The next theorem gives an explicit formula for the harmonic measure p(x, a)
which will be quite indispensable for the further development of the potential
theory. It need be given only for 2 < IQI < X. When IQI = 1, p(x, a) - for
all x E E, and when Q is the empty set the only bounded (harmonic) functions
satisfying Pf = f on E are the constanits by Derman's theorem, giving the
uniiqueness of invariant measure [5].
THEOREM 5.2. T1:hen 2 _ |QI <K

(5.9) p7(x, a) =_ Ke(a) + Z , (x, b) [11(b, (I) - l(b, a)](c, Kc) bE.
PROOF. As menitioned in section I this result was first derived probabilisti-

cally as a consequence of theorem 3. 1. (It is not hard to see how p(x, a) is related
to the imbedded AMarkov chain corresponding to the set Q' obtained by adjoining
the point x to the set Q.) We shall be contenit to verify that (5.9) is correct.
In view of theorem 5.1 it suffices to verify that the right side ini (5.9) satisfies
(5.3) with +(x) = 1. wheni x = a and q(x) = 0 when x C Q- {a. As a is fixed
we write h(.a) for the function h.(x, a) oni the right in (5.9), anld (P - I)h(.a)(x)
for the image of h( -a) after applying 1'- I to it. The first term on the right in
(5.9) is independent of x so that P - I maps it inito zero. Usinig lemma 2.2 we get,

(5.10) (I' - I)h( a)(x) = [(' - I)A](x, b)[Il(b, a) - 3(b, a)] 0
bC zS

when x E2Q, so that (5.3') holds. Using theorem 4.1

(5.11) (e,(x,a) Ke(a) + Y' A(x, b) [K(b, a) Ke(b)Ke(a) 1
(5.11) hx, a) =(e, Ke) ±e K(b a) (e, Ke) -

The definition of K in (1.13) applied to (5.11) shows that h(x, a) = 6(x, a) for
x in Q so that (5.3") holds. To verify that h(x, a) is bounded in x, let c(b) =
H(b, a) -o(b, a). Note that for each fixed a, Zbez c(b) = 0, as H is a symmetric
stochastic matrix. (Even if S, were unsymmetric but recurrent, with 0(0) com-
plex this conclusion would hold as TI would still be doubly stochastic without
being symmetric.) A trivial extension of equation- (2.11) in lemma 2.3 implies
that
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(5.12) lrm E A(x, b)[H(b, a) -b(b, a)] = 0
x-*o bES2

so that

(5.13) lim h(x, a) =(e, Ke)

which is independent of x, so that (5.3"') is verified. Summarizing the observa-
tions which led to equations (5.10), (5.11) and (5.12) and introducing the nota-
tion

(5.14) p. = p. (a) = Ke(a)
(e, Ke)

for the harmonic measure of Ql "seen from infinity" which will play an important
role in the sequel, we can state
THEOREM 5.3. The unique solution of 5.4 is

(5.15) f = (p00, 4) + A(H - I)o
(5.16) lim f(x) = (pP., )

(5.17) (P - I)f = (II - I)4 on U.

Here (5.15) follows from (5.4) and (5.9), (5.16) from (5.12), and (5.17) from
(5.10) with x in U.
A final observation is the
COROLLARY. Equation (3.3) holds for 2 _ IQI < °°.
PROOF. The probability interpretation of p(x, a) yields that p (a) _ 0. To

get (3.3) we have to rule out the possibility that Ke(a) _ 0 and (e, Ke) < 0.
That is impossible since _a a A(b, a)Ke(a) = e(b) = 1 for b C Q and A(b, a) _
0. Therefore Ke(a) > 0 on Q and (e, Ke) > 0.

6. Logarithinic potential

When 1 _ 1QI < Xo and when 0 _ 4' E £(Q), we call the function f(x) =
Faec A (x, a)4+(a)] the potential due to the charge distribution 4'. The total charge
on Q2 is (4', e). The potentialf = A4A has the properties (1) (P - I)f = 0 onE -,
(2) (P - I)f = 4' on Q2, (3) f(x) - (4', e)a(x) -O 0 as x -4 oo. Properties (1) and
(2) are immediate consequences of lemma 2.2, and, recalling that a(x) = A(x, 0),
property (3) follows from lemma 2.3. Thus f = A4' is similar (except for a change
in sign) to classical logarithmic potential [13], if the additional conditions of lemma
2.4 are met, so that

(6.1) a(x)- log Ixi k

with k given in lemma 2.4, as x tends to infinity. Note that in any case the po-
tential f(x) = A4,(x) of a 4' _ 0 tends to infinity with x, unless ' =_ 0 on U.
That follows from (2.10) in lemma 2.3.

It is also true that properties (1), (2), (3) characterize our potentials:
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THEOREM 6.1. If 0 P CE (Q) then f = Ap satisfies (1), (2), (3). Converscly
if f satisfies (1), (2), (3) with 0 <- ,t E £(f), thenf = A+.

PROOF. Having already proved the first part, we assume that a function
g E 2, as well as f = A,6 satisfies (1), (2), (3) with 0 . ,Ep 2(Q). Letting
h f - g, (1) and (2) imply that (P - I)h -0 on E and (3) implies that h
is bounded, in fact that limz h(x) = 0. From the uniqueness theorem for
invariant measure [5] it follows that h 0. That completes the proof.
Much more than theorem 6.1 could be desired. The second (converse) part

could probably be altered by assuming that f > 0 and that f satisfies (1) and (2)
with 0 _ 2E S(Q). One would then expect the conclusion that f = constant +
A4,.
Our methods break down, as well as the simple argument in section 3 of [11]

where it is shown for simple random walk in three and higher dimension that
f _ 0 and (P - I)f . 0 on E implies that f is a constant plus a (Newtonian)
potential. Note added in proof. It will be shown elsewhere that the above con-
jecture is correct for the random walks considered here. For one-dimensional
random walks the situation turns out to be more complicated.

In the next section we shall require the quite obvious extension of theorem 6.1
THEOREM 6.2. If (P - I)u = 0 on E -Q, (P - I)u = 4, _ 0 on Q, (A, e) =

l, Iu(x) - a(x)I < M on E for some M > 0, then u = constant + A4.
A number of inequalities which imitate maximum principles from classical

potential theory will be proved in the next section (theorem 7.3).

7. The Green function

The Green function for the exterior domain E -Q is first defined probabilisti-
cally as the function ga(x, y) on E X E
When y C Sl, go(x, y) = 0;
When y C E -Q and x CE Q, gn(x, y) = 0;
When y C E -Q, x C E -Q, x y;

(7.1) g(x,y) = P{S E E-5 for v 1, ,n-1; S= yISo x}.
n=l

When x = y C E -

(7.V) g90(X, y)

= 1 ± ]I{S, CE - 12 for v = 1, n - 1; Sn =xISo =x}.
n=1

When x $d y and both x and y are outside Q, then gn(x, y) is the expected number
of visits to y of the process Sn with S0 = x, before the first visit to Q. In spite of
the unsymmetric definition we shall show that gu(x, y) = g9(y, x) in the course
of finding an explicit formula for the Green function. This could be done prob-
abilistically, using theorem 3.1 and the method of the imbedded Markov chain,
but we shall appeal instead to the potential theory developed in section 6.
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First we need a definition.

(7.2) f(x) = E A(x, a)p. (a)aGf

will denote the potential due to the (nonnegative unit charge) distribution p.
on El. In terms of f we shall prove
THEOREM 7.1. For 2 < 1QI <e and x, y E E

(7.3) g9(x, y) = -A(x, y) +f(x) +f(Y) - (e, Ke)
+ X_ FI A(x, a)[II(a, b) - b(a, b)]A(b, y).

aEGO bEgf
When IQI = 1, theorem 7.1 is meaningless since K is undefined, but in this

case (suppose Q consists of the single point {a}) equation (4.2) and the definition
(7.1) gives
(7.4) go(x, y) = -A (x, y) + A (x, a) + A (a, y).
This agrees with (7.3) if we define (e, Ke)-1 = 0 when 1IQ = 1.

Before proceeding to the proof of theorem 7.1 we need an analogue of the
classical theorem [13] that the harmonic measure of Q is the normal derivative
of the Green function at the boundary of U. Here the normal derivative of a
function u(t) evaluated at a in Q becomes ,2t(=-E-Q P(a, t)u(t) - u(a) and applied
to the Green function, which vanishes on Q, this is
THEOREM 7.2. For a E Q, xE E - Q,

(7.5) p(x, a) = E P(a, t)go(t, x).
tEE

One can also obtain I from go, since for a, b E Q,

(7.6) I(a, bi) = , P(a, s)p(s, b) = E E P(a, t)go(t, s)P(s, b).
BEE aGEEtEE

PROOF of (7.5). In view of (7.1) the right side in (7.5) is

(7.7) E P{S, = E-Q for v = 1, ,n-1; S. =xiSo = a}.
n=l

The symmetry of the process S., q (0) = 44-0), enables one to set up a probabil-
ity preserving one to one correspondence between paths going from a to x in
time n without hitting QI and paths going from x to a in time n without hitting
Q. Therefore the above sum is

(7.8) ;P{Sv E E-Q for V = 1, ,n-1; Sn = alSo = x}
n=l

and this is the harmonic measure p(x, a) according to (5.2).
PROOF of (7.3). Take a fixed y in E -Q. A simple renewal argument (based

on the strong Markov property of SO) and the definition (7.1) gives
(7.9) (-Ix # y, x EE-Q,

(7.9) -(P-I)go(-y)(x) =L1 x=yEEQ
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Let u(x) = u,,(x) = gn(x, y) + A (x, y). By lemma 2.2 and (7.9)
(7.10) (P-I)u = 0 on E-Q,
and by theorem 7.2 and lemma 2.2
(7.11) (P - I)u(x) = E P(x, t)g,2(t, y) = p(y, x), x E

tGE

We wish to solve the system consisting of (7.10) and (7.11) to find an explicit
formula for u = uy,. To do so one must first check that u satisfies the conditions
in theorem 6.2. The first two conditions in theorem 6.2 are equivalent to (7.10)
and (7.11) with #, (x) = p(y, x) > 0 for x E U. Clearly (A', e) = 1. For each fixed
y, A(x, y) - a(x) is bounded, as it tends to a finite limit when x tends to infinity
by lemma 2.2. Thus the result of theorem 6.2 is applicable if we show that
gn(x, y) is bounded in x for each fixed y. To do so let O' be a subset of Q consisting
of a single point. Then the probability interpretation of the definition (7.1) of
the Green function implies that 0 < gn(x, y) _ g9n(x, y), and either equation
(4.2) or theorem 4.1 proves that gg'(x, y) is bounded in x for each fixed y.
Applying the result of theorem 6.2 we have u = constant + A+t, where *'(x) -

p(y, x) for x E Q and we let h(y) be the constant, which may of course depend
on y. Then theorem 5.2 together with (7.2) yields

(7.12) u(x) = uv,(x) = gn(x, y) + A(x, y)
= h(y) + f(x) + , ,2 A(x, a)[I(a, b) - 5(a, b)]A(b, y),

aEO beg
x E E, y z E -Q.

Setting x = c C Q in (7.12) gives for y C E -Q,
(7.13)

A(c, y) = h(y) + + a A(c, a)[K(a, b) - (e, Ke)p.(a)p.(b)]A(b,y)(e, Ke) aG bGS2

= h(y) + ( Ke) + A(c, y) -f(y),
or

(7.14) h(y) = f -(e, Ke)

Equations (7.12) and (7.14) together complete the proof of theorem 7.1 for
the case when y C- E - U. For the case when y E Q the proof is completed by
straightforward calculation which shows that the right side in (7.3) vanishes.
The function h(x) defined by equation (7.14) is important as it follows from

theorem 7.1 and lemma 2.3 that g9(x, y) has a limit as y tends to infinity, and
this limit is h(x),

(7.15) lim go(x, y) = ga(x, oo) = gn(oo, x) = h(x) = f(x)-( Ke)

f(x) = Ap.(x) = ; A(x, a)p.,(a).aEO
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We use the resulting inequality

(7.16) h(x) = f(x) ->(eK ' x C E,

to establish a maximum (or rather minimum) principle for potentials.
THEOREM 7.3. For 44 and 02 in S(Q), A#1 _ A#2 on Q implies that A#'1 _

AA on E, and that (#1, e) _ (#2, e). If 0 < # CE S(Q), then

(7.17) A*(x) _ min A+(a) for all x in E.
aEQ

PROOF. For a, t E Q, theorem 3.1 gives
(7.18) K(t, a) = Ke(t)Ke(a) + ll(t, a) - a(t, a).

(e, Ke)
For x C E -S and a E Q, therefore, using theorem 5.2,

(7.19) L A(x, t)K(t, a) = f(x)Ke(a) + p(x, a) ( Ke(a)

= fx)- 1 1 Ke(a) + p(x, a).
[ (e, Ke)]

In view of (7.16), and (1.13)

(7.20) E A(x, t)K(t, a) > p(x, a) 2 0 when x C E, a E Q.
ten

Hence, if 0 - g CE S(Q),

(7.21) AK g(x)
- E A(x, t)K(t, a)g(a) 2 E p(x, a)g(a) > 0, x C E.

tEn aG9 aEn
If A#1 _ A#2 on Q, let g = A(#1 - #2) restricted to Q, giving, for all x E E,

(7.22) A#i(x) - A#2(x) _ , , p(x, a)A(a, b)[#61(b) -42(b)] _ 0.
aEn bEn

Since g > 0 and Ke > 0 on Q we also have (g, Ke) _ 0, but (g, Ke) =
(A (#1- #2), Ke) = (11 - #2, e) = (44, e) - (#2, e) 2 0. This proves the first
part of theorem 7.3. For the second part let +2(a) = cp.(a) for a C Q where
c > 0 is chosen so that

(7.23) min A#(a) = A#2(t) (e, Ke)

for all t in Q. (It follows from the definition of p. that its potential f(x) = Apr(x)
is constant on U.) Since A#2 is constant on Q we have A# 2 AA2 on Q and by the
first part of the theorem A# 2 A#2 on E. But

(7.24) A#2(x) = cf(x) 2 = min A#(a)(e, Ke) a(an
because of (7.16) and (7.23).
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8. Capacity
For a discussion of capacity in classical logarithmic potential theory see

Nevanlinna [13] and for the modern theory of capacity (of the Newtonian type)
Choquet [2] and Choquet and Deny [3]. To preserve the analogy of the present
to the classical theory, the capacity of a finite set Q should be defined as
exp [(e, Ke)-1] where K is the (matrix) operator given by (1.13). The quantity
- (e, Ke)-' then is our analogue of Robin's constant. But for the sake of con-
venience we call (e, Ke)-' the capacity of D.

DEFINITION. If IQI = 1 the capacity of Q is C(Q) = 0. If 2 _ IQI < oo the
capacity of Q is

(8.1) C(~) = (e, Ke)
The first theorem has the nature of a maximum principle. If 0 Gt E £(Q)

and (4t, e) = 1 then the potential A4' of 4' is greater than or equal to C(Q)
somewhere on Q and less than or equal to C(Q) somewhere on U. But there is a
unique t (namely p.) such that 0 _ 4, E £(U), (4', e) = 1, and such that At,6 is
constant on Q. This constant is C(Q) and p. is called the equilibrium unit charge.
A finite set Ql has the same capacity as its boundary,

(8.2) 80 = [xlx E Q, pW(x) > 0].
THEOREM 8.1. If 0 # CE S(Q) and (,6, e) = 1, then

(8.3) minA(a) < C(Q) _ max A+t(a)
aESn aEfl

(8.4) C(Q) = Ap.(x) = f(x) for x EE Q
(8.5) C(Q) = C(dQ)-
PROOF. When I91 = 1 theorem 8.1 is obvious, therefore let 2 _ IQI <Ca.

Suppose (8.3) fails, in such a way that the second inequality is violated. Then

(8.6) AA ( Ke) on Q.

This inequality is preserved under the inner product with Ke, so that

(8.7) (Ke, A+') = (e, KA,) = (e, 4) > (Ke,) 1.(e,Ke)-
This contradicts the hypothesis (e, 4') = 1. If the first inequality fails the same
argument works.

Equation (8.4) follows immediately from (5.14), (7.2) and (8.1). Equation (8.5)
is true because p., restricted to dQ is a unit charge distribution on ai; the
potential due to p. is constant on O9 and has the value

(8.8) 2 A (x, C) Ke(c) =C , x EE Q,aEoA (e, Ke) by(e,Ke)
where K is the iniverse of A restricted to Ui, but by (8.3) C(Q) is the capacity of 490.
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Equation (8.3) may be expressed in the language of game theory. Let u, v range
over £(Q) with (u, e) = (v, e) = 1, u 2 0, v 2 0, and let (u, Av) = YaeYben
u(a)A(a, b)v(b). Then (8.3) becomes
(8.9) max min (u, Av) = C(Q)= min max (u, Av).

D t& 5 v

Thus C(Q) is the value of the game whose matrix is A.
As in classical potential theory the capacity of Q may also be defined through

the asymptotic behavior of the Green function.
THEOREM 8.2. Let g9(x, oo) = lim gn(x, y), a(x) = A(x, 0). Then

(8.10) C(Q) = lim [a(x) - gn(x, 00)].

PROOF. When 1QI = 1, Q= {a}, equation (7.5) and lemma (2.2) give
gn(x, x) = A(x, a). Lemma (2.3) gives C(Q) = 0 as we defined it. When 2 .
Ill < X, (7.15) and (8.1) give gu(x, oo) = f(x) -CQ), a(x) - g(x, oo) =
C(Q) + a(x) - f(x) and by lemma (2.3) and (7.2)
(8.11) lim [a(x) -f(x)] = 0.

X-.z

This characterization of capacity furnishes simple proofs of its behavior under
set theoretical operations. Typical results are
THEOREM 8.3. Let F, G be two finite subsets of E, and C(F n G) = -oo if

F n G is the empty set. Then
(8.12) C(F n G) + C(F U G) . C(F) + C(G).
If F C G C E,

(8.13) C(F) :5 C(G)-
If {x} is the set consisting of the single point x C E - 2, IQI < ,

(8.14) C(Q) ' CQ2 u {x}D) C() + min A (x, y).

PROOF. If F and G have nonempty intersection, the definition (7.1) of
g9(x, y) implies that

(8.15) gFnaG(X, Y) - 9G(X, y) 2 9F(X, Y) -9FUG(X, Y),
for all x, y in E. Letting first y tend to infinity, and then x, one obtains in view
of theorem 8.2

(8.16) lim [gFnG(x, mG)-9(X, )]

= C(G) - (F n G) 2 lim [gF(X, ) -9FUG(X, )]

= C(F u G) - C(F).

The proof of (8.13) is based on the simpler inequality gF(x, y) _ gG(X, Y) when
F C G. The first inequality in (8.14) follows from (8.13). The second one
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comes froiim (8.12) with F = Q and G = {x} U {y} where y xQ, .r E - Q.
Equation (8.12) yields

(8.17) C({y}) + C(I u {x}) = C(2 U {x)) < C(Q2) + C({x} U {}y).
For every pair of distinct points x, y in E, (1.13) and (8.1) give C(fx} U -'y,-)
A(x, y)/2. Since (8.17) holds for all y C Q, this proves (8.14).

Still another definition of capacity follows from theorem 7.1 aiid equation
(4.2). Let Q be an arbitrary finite subset of E, anid a an arbitrary fixed point in
E. Then

(8.18) linm [gxa1(x, x) - gu(x, x)] = C(52)

This formula has a comparatively pleasant probability interpretation, as ga2(x, x)
(or g a (x, x)) is the expected number of returns to x before the first visit to the
set Q (or the set {a}). Thus C(Q) is a meastire of the difference in "size" of the
sets Q anid {a}, seen from inifinity.
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