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1. Introduction

As a convenience, let us agree to call an infinite sequence Xn X1, X2, X3, * *
of independent random variables, a renewal sequence, and when all the random
variables are identically distributed let us call {Xn} a renewal process. If all the
random variables are nonnegative let us say {Xn} is a positive renewal sequence
(process).
The renewal sequence (process) will be called periodic if there is a real w > 0

such that, with probability one, every random variable in the renewal sequence
(process) is a multiple of w. If the renewal sequence (process) is not periodic we
shall call it continuous.
We shall write S. = Xi + X2 + Xn with n = 1, 2, 3, * , for the

partial sums of the renewal sequence, Fn(x) = P{Sn _ x} for the distribution
function of Sn, and U(x) = P{O _ x} for the so-called Heaviside unit function.
We then define the random variable N(x) as the number of partial sums Sn
which satisfy the inequality Sn _ x,

(1.1) N(x) = U(x - Sj).
Thus, if H(x) = E{N(x)}, it follows from (1.1) that

(1.2) H(x) = E Fj(x).
j=l1

The function H(x) is called the renewal function and is of prime interest in
renewal theory; we refer to Smith [11] for an extensive account of it. A knowl-
edge of its asymptotic behavior has proved very useful in establishing a variety
of results about stochastic processes. However, with very few exceptions (one
being the paper by Cox and Smith [5]) almost all the work done so far in this
subject has referred to renewal processes (possibly with the trivial modification
of allowing X1 a different distribution from all the other Xn for n > 1) rather
than the more general renewal sequences.
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The crucial theorem for continuous renewal processes is due to Blackwell. It
states that, if 0 < E{Xn} _ co, then for every fixed a > 0

(1.3) H(x + a)-H(x) yE{X } as x - .

This was proved first for positive renewal processes (Blackwell [1]) and later
extended to the general case (Blackwell [2]). Note that in (1.3), and in similar
contexts elsewhere, it is to be understood that if E{Xn} = °o then l/E {X.} = 0.

There is, of course, a periodic analogue to (1.3); in particular, Erd6s, Feller,
and Pollard [6] gave a proof of this analogue for positive periodic renewal
processes.

In addition to the papers mentioned so far, we should also draw attention to
papers by Chung and Pollard [3], Chung and Wolfowitz [4], Karlin [8], Smith
[10], and Kesten and Runnenburg [9]. These authors tackle various aspects of
(1.3), some the continuous case, some the periodic case, some both such cases;
some restrict themselves to positive processes, and so on. We must again refer
to Smith [11] or, of course, to the original papers, for further details.

Let Q be the class of "kernel" functions k(x) which vanish for x < 0 and which
are nonnegative, nonincreasing, and integrable, over (0, Xo). An alternative form
of Blackwell's theorem (1.3) for positive continuous renewal processes, which
was given by Smith [10], is

r+.k 1 r+(1.4) k(x - z) dH(z) E f k(z) dz as x -> oo,

for every k(z) E Q. This form is often more convenient for applications, although
it is not hard to show that (1.3) and (1.4) are equivalent.
Our object in this paper is to establish general conditions under which a

theorem like (1.4) will hold for renewal sequences (not necessarily positive ones)
rather than for renewal processes. Before we discuss matters further, however,
it will be as well if we introduce some more notation, and also the kernel class
3C which we shall use.

If k(x) is any absolutely integrable function then we write

(1.5) likl f_ k(x) dx,
and we remark that kj may be negative.

If A (x) and B(x) are functions which possess a Stieltjes convolution then we
write

(1.6) A(x) * B(x) f= A(x - z) dB(z).
In dealing with these convolutions we shall occasionally assume, without com-
ment, that A (x) * B(x) = B(x) * A (x), but only when it is easy to verify that
this commutativity is valid. However, in this connection see our remarks at the
end of section 6.
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DEFINITION 1. We write k(x) E 3f if
(Xei) k(x) i8 Riemann-integrable in every finite interval;

(X2) E max Ik(x)l < -o.
n-- n<xSn+l

We shall also write X+ for the subclass of functions k(x) such that k(x) _ 0,
all x. For future reference we note the following fact. Suppose k(x) E 3C, and
define
(1.7) ki(x) = max fk(x)J, n < x < n +1,

n<zx<n+lI
for alln=*n - -2, -1, 0, 1, 2, - -. Then ki(x) and ki(x) + k(x) both belong
to W+. Hence an arbitrary member of 3C can always be represented as the differ-
ence between two members of 3C+. Incidentally, note that SC is a broader class
of functions than Q.
The main theorem of this paper is theorem 4, and all the later limit theorems

in this paper are deduced from it. It states that certain very weak restrictions
on the renewal sequence {Xn} imply that k(x) * H(x) -+ 0 as x -X - for every
k(x) E 3C with lkl = 0. Thus, although theorem 4 does not state that k(x) * H(x)
necessarily tends to a limit for all k(x) E aC, it does insist that if ki(x) and k2(x)
both belong to 3C, and if IIki11I5 0, IIk211 7 0, then as x -+ X

(1.8) ki(x) *H(x) _ k2(x) * H(x) 0.
Ilkill 11k2fl

The conditions involved in theorem 4 have been introduced to cover eventu-
alities which just cannot arise when we restrict our attention to renewal proc-
esses. Thus, it is well known that for renewal processes, with 0 < E{Xn} _< °
H(x) is always finite and H(x + 1) - H(x) is uniformly bounded. These two
properties of the renewal function do not appear to hold necessarily for quite
general renewal sequences. In condition (a) of theorem 4 we simply suppose they
do hold. However, we describe in section 6 of this paper a certain condition T
on {Xn} which, if satisfied, automatically ensures the satisfaction of condition
(a) of theorem 4. Condition £ relates to basic properties of the {X,J sequence
and should not be difficult to verify in particular circumstances; for positive
renewal sequences, corollary 3.1 shows that Z can be replaced by a much simpler
condition.

In treating renewal processes the distinction between the periodic and the conI-
tinuous cases is clear-cut. But when we turn our attention to renewal sequences
a new and significant obstacle is found to bar the progress of our investigation.
We have defined, simply enough, what we mean by a continuous renewal se-
quence; the trouble is that as we run through the series of random variables {X,}
sequentially they may "misbehave" and begin to look more and more like lattice
variables. Thus, although we may "officially" be dealing with a "continuous"
sequence, we may in fact be faced with a sequence which, in some vague sense
which we will not bother to make precise, is "ultimately periodic." A major part
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of the present paper (sections 2, 3, 4, and 5) is devoted to a discussion of this
matter, a matter which requires no discussion at all when dealing with renewal
processes. Our primary object in this part of the paper is to determine weak re-
strictions on the sequence {Xn} which will prevent its "misbehaving" too badly.
We introduce the notions of asymptotically lattice sequence of random variables,
and of insistent meshes of the renewal sequence {X"}. These notions cannot be
briefly described in this introduction; we shall content ourselves with the remark
that it is the insistent mesh structure of {X.} which determines how well or badly
it "behaves." Conditions (b), (c), and (d) of theorem 4 impose such restrictions
on the insistent mesh structure of {X"} as were found necessary for our present
methods of analysis to be successful. We do not believe these conditions to be
necessary ones, but it certainly should be said that only extremely pathological
renewal sequences fail to satisfy them. Roughly speaking, we regard {X41 as
well behaved except when it contains arbitrarily long, uninterrupted runs of
consecutive variables which are arbitrarily nearly like lattice variables. Thus
the periodic renewal sequence is ruled out from consideration for theorem 4;
however, we explain in section 12 that there is a completely parallel theory for
periodic renewal sequences.
With the exception of the papers by Chung and Pollard [3] and by Cox and

Smith [5], it is probably true to say that all the published proofs of (1.3) and
(1.4) are Tauberian in nature. That is, they utilize the knowledge that, for a
special kernel function k(x), the convolution k(x) * H(x) tends to a certain limit,
and succeed in deducing from this fact that similar limiting behavior operates
when k(x) is any member of such and such a class of functions. In fact, in the
continuous case, the special function is always k(x) = U(x) - Fi(x); the well
known integral equation of renewal theory shows that {U(x) - F1(x)} * H(x) =

F&(x), which tends to unity as x tends to infinity. Karlin [8] and Smith [10]
actually go so far as to appeal to Wiener's general Tauberian theorem.
When we consider renewal sequences instead of processes, no convenient

special kernel is available and the Tauberian kind of argument is no use. Thus we
have had to develop a quite new attack. The methods of Cox and Smith [5] are
unsuitable as they make heavy assumptions about {X,}. In the sense that our
chosen argument uses Fourier analysis it resembles that of Chung and Pollard
[3], but the resemblance does not go very far. If our present argument is applied
to renewal processes it will be found to be much simpler than the estimation
methods employed by Chung and Pollard (who had to make an assumption
about the characteristic function of Xl which is now known to be unnecessary).
The method we actually adopt utilizes some easily proved properties of the
triangular probability density function and of its Fourier transform. We discuss
these properties in section 7.

In section 9 we show that for continuous renewal processes, with
0 < E{Xn} < 00 it is an easy consequence of theorem 4 that

(1.9) k(x) * H(x) - lkl asx oo,
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for all k(x) C 3C. Section 10 takes up the question of the extent to which (1.5)
will be true for renewal sequences. The notion of an ultimately stochastically stable
sequence of random variables is introduced, and it is proved in theorem 6 that
if the renewal sequence {X.} is such a sequence, and if its insistent mesh struc-
ture satisfies the conditions of theorem 4, then (1.9) will hold with E{Xn} re-
placed by a certain constant of the sequence {X.}. Thus theorem 6 provides the
desired generalization of (1.4) from renewal processes to renewal sequences. It
is useful, however, to have convenient necessary and sufficient conditions under
which the renewal sequence will be ultimately stochastically stable. Such neces-
sary and sufficient conditions are given by theorem 7 and are as follows.
There must be an integer N such that E{XN}, E{XN+1}, E{XN+2}, *--, ad

infinitum, is a stable sequence (as defined by Cox and Smith [5]). There must
also be two distribution functions G_(x), G+(x), each referring to a random
variable of finite expectation, such that G_(x) < P {X, < x} for r > N and
G+(x) > P {Xr < x} for r _ 0. Provided these two conditions are satisfied, and
provided the asymptotic mesh structure of the renewal sequence is satisfactory,
it follows therefore, from theorems 6 and 7, that the convolution k(x) * H(x)
converges to a limiting value as x -. oo. Theorem 8 gives a version of theorem 6
for the situation when the {X.} predominantly have infinite positive expecta-
tions and k(x) * H(x) -+ 0 for all k(x) Ez X.

In section 11 we consider functions of the form Q(x) = Fj ajFj(x), of which
H(x) is a special case. It is explained that, when the constants {a,} are bounded
theorem 4 holds for Q as well as for H. If the constants {an} form a stable
sequence with average a, then it is proved in theorem 9 that there is a suitable
extension of theorem 6, that is, limits like (1.9) can be proved for Q instead of
H:

(1.10) k(x) * Q (x) 4aI as x-=*,

for all k(x) E 3C, where /A is a constant associated with the ultimately stochasti-
cally stable sequence {Xj}. Functions like Q(x) have been considered previously
by Cox and Smith [5].

Finally, in section 12, we discuss briefly two additional matters. First, we
comment on the theory of periodic renewal sequences, which parallels the theory
given in this paper, but which we do not develop in detail. Second, we discuss
the case of dependent variables {X.} and introduce the idea of "structure R."
We show that a theorem like theorem 4 will hold for certain sequences of depend-
ent variables if they have structure R.

2. On insistent subsequences
In our study of the renewal sequence {X"} we will have to guard against its

behaving too much like a sequence of lattice variables. To discuss this undesir-
able possibility we introduce the concepts of an insistent subsequence and of an
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asymptoticaUy lattice sequence of random variables. This section is concerned
with the first of these ideas.

Suppose we are given a certain subsequence {An,} for v = 0, 1, 2, **, of some
arbitrary infinite sequence of terms {An} for n = 0, 1, 2, *- . For each value of
the integer n define the integer In as follows.

(a) If An does not appear in the subsequence {An,} then set In = 1.
(b) If An does appear in {An,} then let In be the maximum integer such that

An, An+l, An+2 *.*. An+ln-2 all appear in {A.,j.
We call {Il} the I-sequence of {An,}. If the sequence of integers {In for

n = 0, 1, 2, * * *, is unbounded then we shall say {An,} is an insistent subsequence
of {An}. Thus, when we have an insistent subsequence of a given sequence, we
can find arbitrarily long runs of successive terms in the given sequence, which
terms all appear in the subsequence.

It is necessary to introduce various degrees of insistence of the subsequence
{An}. If there is a a> 0 such that, although {An,} is insistent, n5-1/3ln -O 0 as
n -- oo, then we shall say {An,} is weakly insistent. If {An,} is insistent but not
weakly insistent, and if n-ln -- 0 as n -- oo, then we shall say {An,} is mildly
insistent. If {An,} is insistent, but neither weakly nor mildly so, then we shall
say it is strongly insistent. It is to be emphasized that a subsequence {An} can
be "highly representative" of the given sequence {An} without being in the
least insistent (in the present sense). For instance, {A1n} might consist of every
term in {An} with an even suffix; then ln = 1 or 2 according as n is odd or even,
and the subsequence is clearly not insistent. On the other hand, if {An,} is a
strongly insistent subsequence of {An} then there must be an f > 0 such that,
for infinitely many values of n, all the terms Ar for n < r _ n(l + e) belong to
the subsequence.
The various degrees of insistence are useful in connection with a certain method

of summing series, which we shall use later, by aggregating successive terms of
the series into blocks. We therefore describe the blocking procedure appropriate
to the subsequence {An,}. The first lo terms of {An} are assigned to the first
block, B1 say. Define Xi = 4. Assign to B2, the second block, the next remaining

l), terms of {An}. Thus B2 starts with Al. and runs to Ai.+x1-i. Define X2 = lX
and assign to Bs the next Ix,+N, terms of {An}. Define X3 = 1x,+m and assign to
B4 the next 4,x+x,+x terms of {An}. It should be clear how this procedure is to
be continued; its motivation is easy to grasp. Each block consists of a run of
successive terms in the sequence {An} of which all but the last belong to the
subsequence {Ash}. The following two lemmas, needed later, refer to this "block-
ing procedure."
LEMMA 1. If {A,,} is neither a mildly nor a strongly insistent subsequence of

the infinite sequence {An} then

Xn(2.1) <31 <

PROOF. If {Anj} is not insistent then the 1-sequence {ln} and hence the
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X-sequence {X,,} are bounded; the lemma is then trivial. Suppose therefore that
{An,} is weakly insistent and that a > 0 has been chosen so that n8l/31 -* 0 as
n - a:. Thus, as n -*,
(2.2) (X1 + X2 + * + Xn-1)61/3X -°0.

If we write An = X1 + 'X2 + * - -+ X,, then the last limit can be rewritten
(2.3) (An_ l) 6 -1/3(An-.An-) O.
But X. > 1 f-or all n, so that An > An-1. Thus

(2.4) An:1/3(An- An-1) > A+213- Anl'3> 0

and we may conclude
(2.5) lim (A8~~~+2/3 A+2/3) = 0.(2.5) lim (AB.21 - A=n0.

Define e = A8+2/1 ande_ - n - Anth1/_3, for n> 1. Then En 0 as n oo

and
(2.6) An = (El + E2 + + E.)3/(2+36).

If we further define in = fl'(fl + 62 + ***+-n) then, as a well-known conse-
quence of 'En -0, we have inO-- 0 as n - oo. If we now observe that

A 3I(2+36)(2.7) An/ =
(2.7)~~~~~~~5/12 n(4+153)/(4+66)

it follows immediately that

(2.8) n ±( 2.X m)

is a convergent double series of positive terms. Rearrangement is legitimate and
shows

(2.9) n-

to be convergent. Since

2 co(2.10) - /2 rn-5/2 as n-o,
3 im=n

the lemma is therefore proved.
LEMMA 2. If {An,} is not a strongly insistent subsequence of {An, then

(2.11) EI pXn < °O
n=l

for all p such that 0 < p < 1.
PROOF. The previous lemma proves the present one easily if {An,} is weakly

insistent or not insistent at all.
If {A n,} is mildly insistent then ln/n -+0 and so Xn/(Xl + X2 + * + X.-l) -+0
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as n X.Hence, given any f> 0, there is an integer m(e) such that for all
n _ m(e)

(2.12) 0 < Xn <KE(Xl + X2 + * + Xn-1).

Put C = Xi + X)2 + * - - + Xm-i. Then we can develop the following inequali-
ties in a systematic fashion:

0 <Xm < eC;

0 < Xm+, < e(C + Xm)

(2.13) < e(l + e)C;

o < Xm+2 < e(C + Am + Xm+l)

< e(l + e)2C;

and, generally, for all r > 0, 0 < Xm+r < e(1 + e)rC.
If e is chosen small enough to make p(l + e) < 1, which choice is always pos-

sible when 0 < p < 1, the lemma follows directly from these last inequalities.

3. Asymptotically lattice sequences

Suppose {Yn} is a given sequence of random variables. Suppose it is possible
to find two sequences of finite constants {an}, {h.}, such that hn > 0 for all n
and (a) hn -h as n- , where 0 < h < o; (b) if the random variable F,n is
defined by -hn/2 < F. < +h./2 and Fn -Yn-an (mod h.) then Fn -O0 in
probability as n -- oo. In this case we say {Yn} is an asymptotically lattice se-

quence, and h is its asymptotic mesh.
Let us adopt the notation that if Y is any random variable then Y' and Y" are

independent random variables distributed like Y. Write ya = Y- Y" for the
symmetrization of Y. We then have
LEMMA 3. A necessary and sufficient condition for {Yn} to be asymptotically

lattice is that {Y.'} be so.
PROOF. The necessity part of the lemma is rather obvious; we prove (and

need) only the sufficiency part. Suppose therefore that {Yn} is asymptotically
lattice, with appropriate sequences {an}, {h,}. Because the variables {Y'} are
symmetrical we can clearly choose a, = 0 for all n. Define S.(e) to be the set of
all real numbers which differ from zero, or a positive or negative multiple of hn,'
by less than e. Then if, for some e > 0, we have

(3.1) P{Yn - Yn E Sn(e)} > 1 -

there must be a real constant an such that

(3.2) P{Yn- Yn Sn(e)jYn = anl > 1 - C

But Y' and Y"' are independent, so the last inequality implies
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(3.3) P {Yn' - a. EE S.(e)} > 1 -e.

The fact that (3.1) implies (3.3) is enough to prove the lemma.
We remark that there is an alternative proof of the above lemma in terms of

characteristic functions. This proof is, in some ways, more appealing; but it does
not cover the interesting case h = oo which is embraced by the arguments we
give. However, characteristic functions are useful when we restrict our attention
to finite asymptotic meshes; there is then an alternative definition of asymptoti-
cally lattice sequences, which will be important in the sequel, and which is
summarized in the following.
THEOREM 1. If An(O) = E{ei9y"} for n = 1, 2, 3, , then a necessary and

sufficient condition for {Y.} to be asymptotically lattice, with a finite asymptotic
mesh, is that there should exist a sequence of angles {Dnj and a 6, 0 < 6 < oo, such
that En-a and Itn(O@n) I -1, as n-+ oo.

PROOF. We prove the necessity part first. Suppose {Yn} is asymptotically
lattice with the finite asymptotic mesh h. Let {an}, {hn}, have the usual mean-
ings. Then it is easy to show that

(3.4) lim E {cos [2r(Yh- an)]= 1

or

(3.5) lim Te-2ia (hn ) = 1

But 7n(0) _ 1 for all 0, so we may deduce from (3.5) that

(3.6) lim |^ (')I = 1.

This proves the necessity of our condition; evidently we may take On =27r/hn
and 0 = 27r/h.
To prove the sufficiency part of the condition, first put 6n(O.) = Pne-ia,

where pn and a. are real and chosen so that 0 _ Pn < 1 and 0 - an < 27r. Then
Pn- 1 as n -+ o, or

(3.7) lim e i9n(l = 1.

On taking real parts of (3.7) we discover

(3.8) lim E{cos (OnYn- an)} = 1.
n-

Define hn = 27r/lOnI and an = an/lOnI. Then we see that (3.8) implies (3.4). The
asymptotically lattice nature of {Yn} is an easy deduction from this last limit
(3.4) since hn -- 27r/101 = h, say, and 0 < h <co.

It is of interest to see why the present argument fails for the case of infinite
asymptotic mesh. The reason is that when h. -+ Xo the fact that the limit (3.4)
holds is not equivalent to an asymptotically lattice nature of the sequence {Yn}.
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4. Insistent meshes of the renewal sequence
We now apply the ideas of the preceding two sections to the renewal sequence

{X,j. To do this we shall need to employ the following convenient notation. If
{An} is any sequence and if {A,,} is some given subsequence of it, let {A8/A..}
denote the sequence obtained from {An} by deleting those terms which are also
in {A.,,}. In other words, {An/Anv} is the subsequence which complements {Anv}
with respect to {An}.

If the renewal sequence {X.} possesses an insistent subsequence {X",} which
is asymptotically lattice, with asymptotic mesh h, then we shall say that h is an
insistent mesh (or, briefly, an I-mesh) of {X.}. If h is an I-mesh of {Xj} and if
it is possible to find a subsequence {X",}, say, such that h is not an I-mesh of
the new sequence {X./Xnv,}, then we shall say {Xn,} annihilates h; alternatively,
we may say {X,} is an annihilating subsequence. Notice that it is not necessary
for the annihilating subsequence to be asymptotically lattice; it is obvious, how-
ever, that an annihilating subsequence must be an insistent subsequence. An-
other point to be noted is that the modified sequence {Xn/Xn,} may contair'
I-meshes which were not I-meshes of the original sequence {X.}.

If h is an I-mesh which can be annihilated by a weakly insistent subsequence
of {X"} then we shall say h is a weakly insistent mesh (briefly, an Iw-mesh). If
h is an I-mesh, but not an I.-mesh, and if h can be annihilated by a mildly
insistent subsequence of {Xn} then we shall say h is a mildly insistent mesh
(an Im-mesh). If h is an I-mesh which can only be annihilated by a strongly
insistent subsequence of {Xn} then we shall say h is a strongly insistent mesh
(an I,-mesh). In the latter case, we may if necessary, regard the entire renewal
sequence as an annihilating subsequence of itself, and we must adopt the view
that finite (or empty) sequences of random variables possess no I-meshes. For
example, if every random variable of the renewal sequence is, with probability
one, an even integer, then 2 is a strongly insistent mesh; the I-mesh 2 can only
be annihilated by subsequences {Xn,} such that {X,,/X,,} contains but finitely
many terms.

It is sometimes helpful to speak of degrees of insistence. Thus if hi is an
I.-mesh and h2 is an I,-mesh then we shall say hi is more highly insistent than
h2; if hi and h2 are both I,,,-meshes, say, then we shall call hi and h2 similarly
insistent; and so on. If hi and h2 are distinct finite I-meshes such that h1/h2 is a
positive integer 2 2, then it is not difficult to see that h1 cannot be more highly
insistent than h2. Furthermore, if h is a finite 1-mesh then h/2, h/3, h/4, * * *, are
all I-meshes which, by our previous remark, are at least as insistent as the I-mesh
h. If we write 3C for the set of all I-meshes then it is obvious that, unless Je is
empty, it always has 0 as a limit point. Nevertheless, 0 never belongs to 3c, since
it can never be an asymptotic mesh.
THEOREM 2. If 0 < h . X and if h is a limit point of 3C, then h E 3c.
PROOF. Suppose {hm} is a sequence of I-meshes such that hm -+ h as m -+ oo.

For each I-mesh hm we can find an insistent subsequence {X,,} of {Xn} and
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also real sequences {a,m)} and {h,m)} for v = 1, 2, 3, *-, such that, if
-hp¶m /2 . %(m) < +h,m)/2 and ( =) X,,,,, - a(n) (mod h( then (m) 0o
in probability as v -v *.

Let {e,,} be a decreasing sequence of real numbers such that Em 0Oas m -- c*.

Since {X,,,,} is insistent, we can find integers ai, #1, such that the successive
terms of {Xn,,} from v = al to v = ,1 are also successive terms of {Xn}; such that
nip, - nia, > el 1 and such that jhi1)- hv'lJ < El and P{jX,1)I > ei} < ei for all
v such that al < v _ ,13. Similarly we can find a2 and 12 such that the successive
terms of {Xn,,} from v = a2 to v = 132 are also successive terms of {Xn}; such that
h120 - h2 < E2 and P{I_t2)1 > L2} < E2 for all v such that a2 < v . 132. We can
evidently arrange, moreover, to have nl, < n2,,,, and it is clear how we can con-
tinue, on the lines we have described, to select runs of consecutive terms from
{Xrn,}, {X,,41}, and so on.

Define a subsequence {X,,} of {X,} as follows. Let the first n1, - nl,,, + 1
terms of {X,,.} be the terms of {X.,,} from v = a, to v = 13i. Let the succeeding
n2% - n2,t + 1 terms of {X,,.} be the terms of {Xn28} from v = a2 to v = 12;
and so on. Since em decreases to 0 and hm -- h as m X-+ o it is not difficult to see
that {X,j,,} is an insistent subsequence of {Xn} which is asymptotically lattice,
with asymptotic mesh h. This proves the theorem.
An important consequence of theorem 2 is that if co is not an I-mesh then aC

must be a bounded set. The following corollary shows further that if Xo is not
in SCm U 3C, then 3Cm U SC8 must be a bounded set. SCw, SCm, 3C. are the sets of
I.-, Im- I.,-meshes.

COROLLARY 2.1. If 0 < h < oo and if h is a limit point of 5Cm U RC,, then
h E 3Cm U 3Ce.

PROOF. The proof is similar to that for the main theorem. Suppose {hm} is a
sequence of I-meshes in MC. U SC. such that hm -* h as m -* oo. For each I-mesh
hm we can find an asymptotically lattice, insistent subsequence {X,,,}, as before,
but with the additional property that if {I(")} is the associated i-sequence then,
for every a > 0, {n8 113l(m)} is an unbounded sequence. To see this last point,
observe that there must be an E> 0 such that n12 -l/31(m) > E for infinitely many
values of n; thus n'-113nm) > En'12 for infinitely many values of n.

Let {6p}be a decreasing sequence of real numbers such that 5, -O 0 as v -o.
Then we can modify the construction of the main proof so that, in the notation
of that proof

(4.1) np, - n,,, > v-11n/,

for all v. The rest of the argument holds with only trivial changes; in particular
the fact that 5, decreases to zero ensures that {X7,0,} will not be weakly insistent.
We complete this section with two lemmas which show that the degree of

insistence of an I-mesh h, say, cannot be lower than that of any asymptotically
lattice, insistent subsequence with asymptotic mesh h.
LEMMA 4. If the renewal sequence {Xn} contains an asymptotically lattice,
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insistent subsequence {Xj,} which is not weakly insistent and of which the asymp-
totic mesh is h, then h is not an I,-mesh (although it is, of course, an I-mesh).

PROOF. We use the notation of section 2 and let {lnj be the i-sequence asso-
ciated with {X,,,}. Then for every 6 > 0 we must have nl- 1/3n -O 0 as n -4 oo.

Suppose it is claimed that h is an I,-mesh and that the weakly insistent sub-
sequence {Xm,}, say, is such that {Xn/Xm,} does not have h as an I-mesh. Let
{1*} be the I-sequence associated with {Xm,} and suppose 6* > 0 is such that
nS*l-ln*O 0 as n - . Take 0 < 6 < 6*. Then there must be an E>O such
that In > En"/3-6 for infinitely many values of n; let n* be such a value of n.

In the argument that follows regard the values of any functions of n* or of n
as being taken to the nearest integer. Then there is a run of En*l/3-5 successive
terms in {Xn,}; call this run R. We ask: how many terms in R also belong to
{Xn/Xm,}?

It may be supposed that n* is so large that l* < enl/3 - * for all n _ n*. Thus,
if R contains a subrun of consecutive terms in {X"} which also belong to {Xm,},
then this subrun can contain no more than e(n* + en*l/3-)1!/3- * terms. Each
such subrun of R must be followed by a term of {Xn/Xm,}. Thus R must contain
at least

(4.2) En*l/S- P,E(n* + En*l/3-8) /3S5*=Pn

say, terms of {Xn/Xm,}. Plainly Pn* - n**- which -X o as n* -- oo. Thus
{Xn/Xm,} contains arbitrarily long runs of consecutive terms which belong also
to the asymptotically lattice subsequence {Xn,}. Thus h is an I-mesh of
{Xn/Xmv,}, and this contradiction of our hypothesis proves the lemma.
We bring this section to a close with the following lemma which, while barely

used in the sequel, is of value in analyzing particular renewal sequences.
LEMMA 5. If {Xn} has an asyymptotically lattice, strongly insistent subsequence

{Xn,} with asymptotic mesh h, then h is an I,-mesh.
PROOF. The proof can be constructed on lines similar to the ones adopted

for the proof of lemma 4. Lemma 4 shows that h cannot be an I.-mesh. Suppose
it is claimed that h is an Im-mesh and that the mildly insistent subsequence
{Xmj} annihilates h. Define the i-sequences as in the last proof and put en = in/n
and e* = I*/n. Then there is an e > 0 such that e, > El/2 for infinitely many values
of n, while e* < E for all sufficiently large values of n. For arbitrarily large values
of n we can find runs of more than ne112 consecutive terms in {X,j which are
also consecutive terms in {Xn}. In such a run, R, say, the subruns which are
consecutive terms in {Xm,} cannot contain more than e(n + nel/2) terms. Thus
R contains at least 1/[el/2(1 + el/2)] terms of {Xn/Xm,}. Since e can be arbitrarily
small, we have proved that {Xn/Xm,} contains arbitrarily long runs of consecu-
tive terms which also fall in the asymptotically lattice subsequence {Xn.J.
Thus h is an I-mesh of {Xn/Xm,} and the lemma is proved by this contradiction
of our hypothesis.
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5. On sums of characteristic functions
Let {Xn} be the renewal sequence of independent random variables and let

,n(O) = E{exp (ifXn)} be the characteristic function of X.. Write An(@) =
01(0)02(0) ...* (D) for the characteristic function of the partial sum S". Recall
that , JC,,3C, , are the sets of all weakly, mildly, strongly insistent meshes,
respectively.

If 0 = ±2wr/h, where h E SC, then we shall call 0 an insistent angle (I-angle).
If 0 = 427r/h, where h Ez3JC,, we shall call 0 a weakly insistent angle (I.-angle);
similarly for mildly, and strongly, insistent angles (Im- and I.-angles). Note that
0 can be an insistent angle if X is an insistent mesh.
LEMMA 6. If J is a bounded closed interval which
(a) does not include 0;
(b) contains no strongly insistent angles;
(c) contains no more than a finite number of mildly insistent angles; then
T 146#(O) is boundedly convergent in J.
PROOF. Suppose first that J contains exactly one Im-angle, 0, say. Let {X,4

be a mildly insistent subsequence of {X,} which annihilates the Im-mesh 27r/101,
and let {In} be the corresponding 1-sequence. Then ln/n -+0 as n -X o. Let {fn}
be a decreasing sequence such that en > ln/n for all n, and En -O 0 as n o* .

Since {Xn,} is mildly insistent, for every a > 0 there is some e > 0 such that
In > en1/3-1 for infinitely many values of n. Hence En > e/n2/3+6 for infinitely
many values of n. Write
(5.1) L = lim sup sup inf Ifj(O)I.

k=x OEJ n2k n_j.n(+e,.1/2)

It is obvious that 0 < L _ 1, but our wish is to prove that L < 1. To this end,
suppose L = 1. This implies the existence of an unbounded increasing sequence
of integers {n,} and of a sequence of angles in J, {f0}, such that if we write

(5.2) L, = inf |+(@P)
n, =<j Sn,(l+.nyI/2)

then L,, -+ 1 as v - . Because J is a bounded closed set we can (by selecting a
suitable subsequence if necessary) arrange for {O,} to be a convergent sequence
with a limit point 0* 7 0.

Define a subsequence 8, say, of {X.} by assigning Xj to S if n <_ j <
n,(1 + (l/2) for some P. Since L >- 1 as v - , while 0 -+0v* 0, it is an
immediate consequence of theorem 1 that S is asymptotically lattice, with
asymptotic mesh 27r/10*1. Furthermore, if {I*} is the 1-sequence corresponding
to S then the definition of S shows that ln/n _ e1/2 for infinitely many values of
n. By our choice of {fen} it follows that, for every 8 > 0, there is an e > 0 such
that . >/n'/3-6_ nl/3+12e'/2, for infinitely many values of n. Thus S is not
weakly insistent, and an appeal to lemma 4 establishes that 27r/10*1 is either an
Im-mesh or an P,-mesh. But our hypothesis is that J contains no I.-angles and
exactly one mildly insistent angle, namely 0. Thus 0* = 0.

Finally, we make use of the annihilating subsequence {X,}. The modified
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sequence {X,/Xn,} does not have 27r/11 as an I-mesh. However, if we employ
the kind of argument used in the proofs of lemmas 4 and 5, we can show that, for
infinitely many values of n, {X1/X-,>} must contain runs of more than

(5.3) (n + nfl/)en(l +el/2)
say, successive terms which also belong to S. But {fn} is a decreasing sequence,
so that

(5.4) P 1+ 1/2)CI/2
This last inequality shows, sinceef - 0, that {Xn/XnJ contains arbitrarily long
runs of consecutive terms which also belong to the symptotically lattice sequence
S, whose asymptotic mesh is 2wr/1[1. Thus 27r/101 is an I-mesh of the modified
sequence {Xn/Xw,}. But {X"J is supposed to have annihilated this particular
I-mesh. Thus we have a contradiction and must conclude that L < 1.

Since L < i, there must be an integer ko, and a number p with 0 < p < 1,
such that

(5.5) inif 10i(O)l < p
n si <n(l +-,n"2

for all n _ koand all 0 E J.
With no loss of generality we can assume ko _ 2. We then construct a subse-

quence 4), say, of {1n(O)} as follows:
(a) 0j(O) does not belong to 4) for j = 1, 2, ko,o- 1;
(b) fj(O) belongs to 4) for ko _ j _ ko(l + el/2) -
(c) if k1 is the least integer exceeding ko(l + ek2)- 1, then Ok,-1(0) does not

belong to 4);
(d) Oj(0) belongs to 4) for k, _ j _ k1(l + 4[2)-1;
(e) if k2 is the least integer exceeding k,(I + e2)- 1, then 04k2_- (0) does not

belong to 4b; and so on ad infinitum.
It is apparent that 4) is not a strongly insistent subsequence of {fn(O)} because
en 0 as n -+ x. Let us assign the terms of {fn(o)} to blocks in accordance with

the blocking procedure described in section 2. The first (ko- 1) blocks will each
contain just one member. Block Bko, however, contains all 0j(O) for which
ko _ j _ ko(l + 41l/2). Therefore, if we employ the X notation of section 2 for the
number of terms in the blocks, the number of terms in Bo is Xk. . ko0412. More
generally, B,+k, contains all oj(O) for which kr _ j < k,(1 + 4k,I9), and so con-
tains Xr+k. < k ,4l{2 terms.

In view of (5.5), and the fact that the modulus of a characteristic function
never exceeds unity, we find that

(5.6) II li(0) < p
IXd0 EB,Theor,I

for all a Ez J and r = 0, 1, 2, * * *. Therefore, if n >_ km,
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rn-I

(5-7) 14n(MI < I H rl I)(6)) < p74
r-O ,fG-B,+k.

and so

(5.8) 4'n(O)l < Xrn+kopm-
km <n <km +1

The present case of the lemma is now seen to be a consequence of lemma 2.
To deal with the case when J contains several Im-angles (but only a finite

number, of course) is now easy. We merely represent J as the union of a finite
number of bounded closed subintervals each of which contains exactly one
Im-angle. The previous argument can be applied to each subinterval.
To complete the proof of the lemma we must discuss the case when J contains

no I.-angles. The argument needed for this case is similar to but somewhat
simpler than the one we have given for the case when J contains exactly one
Im-angle. We define L as before, but with Ef = n-213, say. We can then deduce
from the hypothesis L = 1 the following facts: (a) {Xn} contains an asymptoti-
cally lattice subsequence {Xn} with asymptotic mesh 27r/161, say, where 0 E J;
(b) if {ln} is the 1-sequence associated with {XJ4, then In _ n2/3 for infinitely
many values of n. From (b) it is clear that {X.,4 is insistent, but not weakly
insistent. An appeal to lemma 4 shows that 27r/101 is either an Im-mesh or an
Is-mesh; since 0 E J we have, in either event, a contradiction because J is
supposed to contain neither Im-angles nor I,-angles. Thus L < 1 and the re-
mainder of the proof proceeds exactly as before.
The lemma we have just proved gives us vital information about the behavior

of the series E 46j(O) in closed intervals which do not contain 0. It is also neces-
sary, however, to examine the behavior of this series in a neighborhood of 0. The
next two lemmas consider this problem.
LEMMA 7. IfX is a symmetric random variable with characteristicfunction +(6);

if, for some fixed small 0# 0, e2 [1-9 (0)]/02 where e is small; and if A (6, e) is
the set of real numbers which lie within (3E)1/2 of an integral multiple of 27r/O
(positive, negative, and zero multiples allowed), then

(5.9) P{X E A(6,E)} > 1 -.
PROOF. Denote by B the set of x values for which 1-cos Ox < e62, and let

Be be the set of x values complementary to B. Since X is symmetric,

2>I - 0 0)(5.10) 02

=E I - Cos X

> eP{X E Bc}.

Thus P{X C B} > 1 - E, and the lemma will be proved if we can show
B C A (0, e).
The set B consists of an infinite sequence of congruent intervals, of width 2K,
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say, centered on the integral multiples of 2X/8. Since e is supposed small, K is
also small; we find an upper bound for K by observing that, for all small x, we
have (1 -cos 0X)/02 > x2/3, so that K2/3 < e, that is, K < (3e)1/2. Hence
B C A (0, e), and the lemma is proved.
LEMMA 8. If oo is neither a strongly nor a mildly insistent mesh of the renewal

sequence {X.}, then for all sufficiently small v > 0

J01(5.11) jO~~~~2~I'(O) I d0 < o

PROOF. By corollary 2.1 the sets .Cm and 3C8 must be bounded. Thus we can
choose X1 > 0 so that the interval [0, i] contains neither Im- nor I8-angles. By
lemma 6, incidentally, E 14,j() will converge for all 0 < 0 _ m Write J for the
open interval (0, 71), J for its closure and, for 6 > 0,

(5.12) Ls = lim inf inf sup (1 )
k-o OEJ n_k n.j_n+fl+fll2

We shall prove that La > 0 for some sufficiently small 6 > 0. To establish this
let us make the hypothesis that La = 0 for all 6 > 0. Then there exist three
sequences: (a) an unbounded increasing sequence of integers {n,}; (b) a sequence
of angles {0,} in J which may, with no loss of generality, be assumed convergent
to a limit 0*, say, in J; (c) a decreasing sequence of real numbers {6P} which con-
verges to 0. These three sequences, moreover, will have the property that, if we
write

/1- I(0,)12
(5.13) E,= sup
then e, -f 0 as v -X c.
Employ the notation of lemma 7 and write A, for the set A (0,, e,). Observe,

furthermore, that l5,(0)12 is the characteristic function of the symmetrized vari-
able X,. Then (5.13) and lemma 7 combine to show that

(5.14) 1 -fv < inf P{X, E A,}.
n, =<j <,n,+,n,113-a

Since cv, - 0, (5.14) proves that {Xj} contains an asymptotically lattice subse-
quence with asymptotic mesh 27r/10*1 (which may be X if 0* = 0). Lemma 3
then shows that the corresponding subsequence of {X"} has similar asymptoti-
cally lattice properties. But, by (5.14), this subsequence is insistent, and since
6, -> 0 it is not weakly insistent. Thus lemma 4 proves 0* to be either an I,-angle
or an I-angle. This contradicts the hypothesis that 7 contains no such angles.
Thus we must conclude that La > 0 for some 6 > 0.

It may be pointed out that if it could be supposed that 0* $ 0 then the argu-
ment from (5.13) onward could be greatly simplified, and lemma 7 dispensed
with. However, 0* = 0 is a possible value for an insistent angle and it is this
possibility which makes the present argument necessary.
Having proved that La > 0 for some 6 > 0, we can infer the existence of an

integer ko and a real number p > 0 such that
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(5.)SUp 1 - j¢ (0)j2
n1 c-j -<n+nl/3-8 02

for all 0 C J and all n _ ko. Thus, for each value of 0 C J there is a j such that
n . j . n + n1/3- and

(5.16) 1 _ I(0) 12 > p02,
or

(5.17) loj(0) I < 1 - p02.

It appears, therefore, that for all 0 C J and all n _ ko,

(5.18) _ II kj(0)I < 1 - p02.
n =<j_n+n 1/3-3

Construct a subsequence 4' of {0.(0)} exactly as was done in the proof of
lemma 6, but with the term n(1 + l/2), which is used in the earlier construction,
replaced by the term n + n1/3- . The subsequence 4' so constructed is weakly
insistent.

If we form blocks of terms in the same way as before and employ the same
notation, then we find from (5.18) that

(5.19) E |,n(0)I < Xm+ko(l - p02)m, for all 0 C J.
k n <k.,l

However, if we suppose q so small that pq2 < 1, we have

(5.20) f 02(1 - p02)md0 =d 312 jp u1/2(1 - u)mdu

-2 u1/2(1 - u)mdu

1 r(D-r(m+ 1)
p32 r (m +

An appeal to Stirling's theorem then shows that

(5.21) f|" 02(l - p02)m dO = O(m-31/2).

The integral of an infinite sum of positive terms equals the sum of the integrals
of the individual terms. The X-sequence in the present case is derived from a
weakly insistent subsequence. The lemma is therefore proved by (5.19), (5.21)
and an appeal to lemma 1.
To close this section we introduce one further definition. Suppose 0 is a strongly

insistent angle; and suppose further that, for all 0 in some sufficiently small
neighborhood of 0, the partial sums IN(0) = _J' 41,j() oscillate boundedly as
N -* 00; in other words, suppose there are finite numbers v and B such that
*NN(0) < B for all N and all 0 in the interval ( - 7, 0 + ,7). Then, under these
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conditions, we shall say that e is removable; the reason for this terminology will
appear later.
A strongly insistent mesh h is called removable if the I,-angle 2Tr/h is remova-

ble.
It is to be noted that a removable I,-angle can arise in the theory of continuous

renewal processes. For 0 $ 0 to be such an angle, since 0n(0) is independent of
n, we must have I0n(0) = 1. Suppose therefore that for some real a we have
4b(O) = exp(i0a); then it follows (Kolmogorov and Gnedenko [7], p. 59) that the X.
are, with probability one, restricted to values on the lattice a + 2k7r/0, where k
takes integer values. Set h = 2wr/11. Then a and h must be incommensurable or
the renewal process would be periodic; therefore aO cannot be a multiple of 27r
and so 0,,(O) 0 1. However, it is easy to show that [w'N(0)I < 2/l1 - 0(0)1, for
all N, so that (since characteristic functions are continuous) 'IN(O)i is bounded
uniformly in N in some sufficiently small neighborhood of t. We have therefore
proved
LEMMA 9. If {XJ} is a continuous renewal process with 0 < E{X,} _ ct,

then the strongly insistent meshes, if any, must form a sequence of the form
h, h/2, h/3, * * *, and they are all removable.
The restriction on E{Xn} rules out the silly possibility P{Xn = O} = 1, which

would make 0 a strongly insistent angle (which would not be removable).
Notice that weakly and mildly insistent angles cannot arise in connection with

a renewal process.
It would be desirable to obtain some general structural properties of the re-

newal sequence {Xn} which would ensure that a strongly insistent angle be
removable. Such a problem seems very difficult indeed; it is not unrelated to
problems of estimation of trigonometric sums, such as have been considered by
Vinogradov [13]. We have been unable to obtain any worthwhile results here.

6. The uniformly bounded variation property of the renewal function

When {X"} is a renewal process it is well known that the associated renewal
function has the property that for every e > 0 there is a finite 6(e) such that
(6.1) H(x + e) - H(x) < a(e)
for all x. The proof of (6.1) is quite simple; for the case of a positive renewal
process there is a proof in the paper of Blackwell [1] and the "positive" restric-
tion is easy to remove from his proof.
We shall call (6.1) the uniformly bounded variation (U.B.V.) property of H(x);

it will play a crucial role in our proof of the main theorem (theorem 4). The
object of this section is to discuss conditions which will ensure that quite general
renewal functions have the U.B.V. property. Write

(6.2) Apq(X) = sup P{Xn+l + Xn+2 + * + Xn+p < x}.
nof

DEFINITION 2. If, for some values of p and q, there is a distribution function
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K(x) _ A,,(x) for all x, which is the distribution function of a random variable with
a strictly positive (but possibly infinite) expectation, and if E{|min (0, Xn)1)1 < oo
for n = 1, 2, **. , q - 1, then we shall say {X"} satisfies the condition Z.
THEOREM 3. If the renewal sequence {X"} satisfies condition Z then the associ-

ated renewal function has the U.B.V. property and is finite for all x.
PROOF. Suppose first that we can put q = 0 and find p so that the function

A,o(x) of (6.2) is dominated by K(x), the distribution function of a variable Z,
say, where O < E{Z} .0 .

Fix a semiclosed interval J- (a, b], and let N be the number of partial sums
S which fall in J. For each integer p satisfying 0 . p _ (k - 1), let N, be the
number of partial sums of the kind S,+jk(j = 0, 1,2, ...) which fall in J. Then
N = No + N1 + *-- + Nk1 and, since the expectation of a finite sum equals
the sum of the expectations E{N} = E{No} + E {N1} + * + E{Nk_l}.
Let us fix p, 0 < p _ (k - 1), and write

(6.3) Kpn(x) = PISp+nk - Sp+ (n-l)k < X}.
Then, by (6.2), K,p(x) f; K(x) for all x.

Suppose {Zn} is a renewal process with associated distribution function K(x).
Define the random variable Y,p as the greatest lower bound of numbers y such
that K,p(y) 2 K(Zn). We shall assume, temporarily, that K(x) is a continuous
function; in view of this assumed continuity, and of the monotone character of
distribution functions, the inverse function K-1(x) is uniquely defined on
0 < x < 1. It can therefore be seen that Ypn < x if and only if Z, _ K-1[Kpn(x)] X
so that P{Yp, 5 x} = K{K-'[Kp,,(x)]}. Thus the sequence {Ypn}, for n = 1, 2,
3, * * * represents a realization of the sequence {Sp+nk - Sp+(n-1)k} , for n = 1, 2,
3, * - . Moreover, by the construction we have adopted, Zn _ Ypn for all n.

Let Ap,(J) be the event that r <co is the least value of j for which S,+jk E J;
let A,p(J) be the event that no Apr(J) happens; and let -Apx(J) be the event
complementary to Ap,(J). Then, trivially, E{N,lApx(J)} = 0.

Suppose A p,r(J) occurs; then Np cannot exceed unity plus the total number of
partial sums Y,,,p+, Yp,,r+ + Yp,r+2, Y,,p+l + Yp.r+2 + Yp,,+3 ** X and so on,
which are _ b. As an example, if Yp,ri+ + Yp,r+2 > b, then necessarily Sp+(r+2)k>
a + b.

Thus, since Z. < Ypn for all n, Np cannot exceed unity plus the total number
of partial sums Z,.+,, Z,+, + Zr+2, Zr+1 + Zr+2 + Zr+3, *** and so on, which are
_ b.

If L(x) is the renewal function of the renewal process {Zn} then it appears that

(6.4) E{NpJApr(J)} _ 1 + L(b),
for all r. Therefore, since E{NpIAp,(J)} = 0, we find
(6.5) E{Np} < P{f Apx(J)}[1 + L(b)],
and so

k-1
(6.6) E{N} - [1 + L(b)] E P{A,(J)}p=0
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If H(x) is the renewal function associated with {X"} then (6.6) implies
H(a + b) - H(a) _ k[l + L(b)]. Recalling that E{Z} > 0 we remark that the
"conventional" renewal function L(b) is necessarily finite, and the U.B.V. prop-
erty of H(x) is then proved. But we assumed K(x) to be continuous and we must
now show that this assumption does not matter.

Suppose therefore that K(x), the distribution function of Z, is discontinuous.
Choose a small q > 0 and let the random variable Zo be independent of Z and
have a rectangular distribution over (0, -q). Let K(x) be the distribution function
of Z - ZO. Then K(x) is continuous; K(x) 2 Kpn(x) for all p, n, x; and, if v is
sufficiently small, 0 < E{Z - Zo} <_ . We can thus use K(x) instead of K(x)
in the preceding argument. Furthermore, we remark that all of this argument
will hold good if we take J to be the semi-infinite interval (-00, x); thus we have
proved incidentally that H(x) is finite for all x. Combining the fact that H(O)
is finite and that H(x) has the U.B.V. property it also appears that H(x) = O(x)
as x -X oo.

To conclude the proof we consider the case when it is necessary to take q > 0
before a suitable value of p can be found. Let H,(x) be the renewal function
associated with the sequence X,, X,+1, X,+2, *--, ad infinitum. The foregoing
discussion applies to H1(x); and we shall see later in this section that the con-
dition E{lmin (0, Xn)I} < oo, for n = 1, 2, * , q - 1, will ensure the existence
and finiteness of H1(x) * Ff1. But

q-1

(6.7) H(x) = _ Fj(x) + H.(x) * F,_l(x)
j=1

and from this equation it is easy to deduce that H(x) has the requisite properties.
The case of the positive renewal sequence deserves special attention. Let us

say that a sequence of random variables is null if it converges to zero in proba-
bility; then we have
COROLLARY 3.1. If {X,} is a positive renewal sequence which contains no in-

sistent null subsequence then the associated renewal function has the U.B. V. prop-
erty, and is finite for all x.

PROOF. Write

(6.8) Q. = sup inf P{Xn + Xn+1 + * + Xn+k > 'e
k n

and suppose Q. = 0 for all e> 0. Then there must be a sequence {ej where
E- 0 as v -- oo, and two unbounded increasing sequences of integers {n}, {kj},
such that

(6.9) lim P{X., + X.+ +1 + X,+k, > ey} = 0.
V-X

Since the {X"} are nonnegative, (6.9) implies the presence of an insistent
null sequence. Thus we are forced to conclude that Q, > 0 for some e > 0. We
can therefore find an integer k, and a real number p > 0, such that
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(6.10) P{Xn + X.+, + * * * + X,+k > 4 > p

for all n.
Define

F0 for x < 0

(6.11) K(x) = I1 -p/2 for 0 < x < e,
I for e _ x.

Then, if Apq(x) is the function defined in (6.2), we have K(x) > Ako(x) for all x.
But K(x) is clearly the distribution function of a random variable with mean
pE/2 > 0. Thus {Xj} satisfies condition Z and the corollary is proved.
To bring the discussion of the U.B.V. property to a close, let us draw attention

to the following simple consequences of assuming that H(x) is finite for all x and
that it has the U.B.V. property.

(a) Since E Fn,(O) is convergent and F,(x) < Fn(O) for all x < 0, it follows
that E_ Fn(x) is uniformly convergent for x _ 0. But Fn(x) -O 0 as x -o-, and
so, since H(x) = E F,,(x), it follows that H(x) - 0 as x -m.-.

(b) We have seen that H(x) = O(x), as x -xc, so there is a constant C such
that H(x) _ Cx for all x > 1. Thus, if A (x) is any distribution function it is
easy to see that

(6.12) H(x) * A(x) _ H(1) f- dA(z) + C'lxlA(x - I) + C f I
lzl dA(z),

and so H(x) * A (x) will be necessarily finite if

(6.13) _ Izl dA(z) < x

On the other hand, if we assume that H(x) _ Ex for some fixed e > 0 and for all
large positive x, then it is equally easy to show that (6.13) must hold if
H(x) *A (x) is finite. Since lim infx. H(x)/x is usually positive it will be
appreciated why we occasionally impose conditions like (6.13) on distribution
functions (or equivalent conditions on the corresponding random variables) to
ensure that all the convolutions we encounter will be finite. Moreover, if we are
granted that H(x) *A (x) is finite, then it is an immediate consequence of
Fubini's theorem that H(x) * A (x) = A (x) * H(x) since both convolutions equal

(6.14) Jf' f|+ U(x - z - y) dH(y) dA(z).
Thus not only does (6.13) ensure the finiteness of H(x) * A (x) but it also allows
us to write H(x) * A(x) = A(x) * H(x).

7. Some special functions

This section is devoted to the discussion of certain special functions, closely
related to the triangular distribution, which will be used in our proof of the main
theorem.
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Define the function A(x) by

(7.1) A(2) = { for lxl > 1,

I1-lxIXfor lxl < 1.

For any a > 0 write Aa(X) for the function a-' A(xa-1).
We shall denote the Fourier transform of an Li-function g(x), say, thus:

(7.2) gt(0) = f+ ei'xg(x) dx.

LEMMA 10.

(7.3) At(0) = sin2 (aO/2)
-(aO/2)2

PROOF. This result is well known and can be obtained by direct computation.
Notice that At(0) > 0 for all 0.

Let us next define the function

A(a(0) for 10j _ 2w
(7.4) ao(~ a

0 otherwise;
and for n = 1, 2, 3, *.*, the functions

7.FA ata(o)) = { for 2nir < H _ 2(n + 1)
(7.5) Sta(O) = At)for a a

0 otherwise.

Then, trivially,

(7.6) Qa(o) E an((O)
n=O

Less trivially, we have
LEMMA 11. The functions {an(0)}, for n = 0, 1, 2, * *, are Fourier transforms

of certain absolutely integrable functions {anW(X)} ; furthermore there is a finite con-
stant C, which depends on a, such that

(7.7) laao(X)I <- I +CX
for all x while for n _ 1,

c
(7.8) I6a.(X) 5 n2(l + x2)'
for all x.

PROOF. If we write ban(x) for the inverse Fourier transform of btan(0) then,
for n 2: 1,
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2(n+1)ir

(7.9) wn(X) = 1 a (Co sin2 (aO/2) de7a(r
= csO)(aO/2)2 o

a

=

2 C(n+)(os 20x) sjl2
air Jar 02dO

Thus, from (7.9),
2f~ +ln dO < 2(7.10) Iaan(x) _I2j 02 ar2n2

If we return to (7.9) and twice integrate by parts, we find

(7.11) Za(x)
af(n+l)Kr ( 20x) {cos2 0 - sin20 - 4 sin 0 cos 0 3 sin2 dorX2y co a )l02 - 0g2 03 + 0(4 Jd@

For all 101 _ 7r, the integrand of (7.11) is dominated by a function A/02, where
A is some absolute constant. Thus we can infer from (7.11) that

(7.12) 1+)n(X)A AaTun,IiX2 J 02
7 ?X

Inequalities (7.10) and (7.12) combine to show the existence of a finite con-
stant C, depending on a, such that

(7.13) &n(x)I < n2(1 + X2)

Incidentally, (7.13) proves that ban(x), like tn(0), is an absolutely integrable
function. Thus we can conclude that 61n(0) is the Fourier transform of ban(x), and
the lemma is proved for the cases when n _ 1.
We can treat 50o(x) in a similar way; define it as the inverse Fourier transform

of 6t (0):
1 [+2K/a sin' (aO/2)(7.14) 5aaO(X) = / (cos OX) I)(012 dO-2 2K /a (aO,2)2

af+ (cos a ) s2 dO.

From (7.14) we have, since sin2 0 < 02 that

(7.15) |6a. (X)l-z de =a_
Moreover, if we twice integrate (7.14) by parts we find

(7.16) SaO(X)
a- +K(co. 2A0 {cos2 0 sin2 0 _ 4 sinO cos 0 3 sin2Od

27rx2 J co aB 02 02 03 + 04 do.
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The expression in the braces under the integral sign in (7.16) is approximately
- 1/3 for small 0 and so this expression is a bounded function of 0. Thus we
deduce from (7.16) that, for some absolute constant A,

(7.17) raO(X) X2 A dO = X2

The remainder of the proof uses (7.15) and (7.17) and proceeds as before.
LEMMA 12.

(7.18) Aa(X) = E 5an(X)-
n-O

PROOF. From (7.6) we have, formally,

(7.19) Aa(X) = 1 e-ix At(O) dO

t | " iOx an(j)l dO

= E ban.(X).
nsO

The inversion of summation and integration is justified by bounded convergence,
since

(7.20) f tatn(O) dO = 0

LEMMA 13. For every n 2 0, thefunction lian(X) can be differentiated any number
of times, and the derivatives so obtained are bounded functions of x.

PROOF. Equations (7.9) and (7.14) show that ,an(x) can always be repre-
sented as a trigonometric integral over a finite range; consequently differentia-
tion under the integral sign is easily justified. For n > 1 one obtains, for example,
that

(7.21) a'(a)=-(4 | -d.sin20x) d

Thus

161 ~ 4
(7.22) ba.(O) I - na27r

for all x. A similar argument will apply to higher derivatives.

8. A general renewal theorem

We are now in a position to prove our main theorem.
THEOREM 4. Let {X.} be a renewal function. Suppose that
(a) H(x) is always finite, and has the U.B. V. property (which will be the case if

{Xn} satisfies condition Z of section 6);
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(b) oc is neither a mildly nor a strongly insistent mesh;
(c) there is no limit point of R.. U 3tC, except, possibly, 0;
(d) any meshes in 3Ce are removable; then, if ki(x) and k2(x) are arbitrary mem-

bers of aC,
(8.1) Ik2lki(x) * H(x) - IIklIk2(x) * H(x) - 0,
as x -4 oo.

PROOF. By lemma 11, for n 2z 1,

(8.2) a. (X)I H(x) C l+ dH(z)
-n2 J, 1+ (X- Z)2

and so, because H(x) has the U.B.V. property, there must be a finite constant
Cl, say, such that

(8.3) I5an(X)I *H(x) -<

for all n 2 1, all x.
An appeal to lemma 12, the inequalities (8.3), and the theorem on bounded

convergence, shows that

(8.4) A.a(X) * H(x) = EZ 5an(X) * H(x).
n=

But (8.3) shows, in addition, that the series on the right side of (8.4) is uniformly
convergent. Thus, if the limits exist,

(8.5) lim {Aa(X) - 8ao(X)} * H(x) = , lim ban(X) * H(x).
x=x0 nl z-x-

That these limits do indeed exist is a consequence of
LEMMA 14. Under the conditions of theorem 4, for all n> 1, aan(X) * H(x) 0,

as x -- oo.
PROOF. If we define, for large N,

(8.6) HN(X) Fj(x),
j-N+ 1

then the variation of HN(x) over an interval is clearly not greater than the cor-
responding variation of H(x). Thus, for n _ 1 and some large number M, by
lemma 11,

(8.7) ban(X- z) dHN(z) < n2 + (X-z)2
Ix-z >M Ix-z >M

if we choose M, independently of N, sufficiently large and appeal to the U.B.V.
property of H(x).
However, since F, Fj(x) converges for all x we can find N, depending upon

M and x, so that

(8.8) - Fj(x + M) < f
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Thus, again appealing to lemma 11,

(8.9) j | (x-z) dHN(z) <
jXc-Zj 5M

From (8.7) and (8.9) it follows that f|_ 6an(x -z) dHN(z) 0,

as N - oo, and so, since
N

(8.10) H(x) =, Fj(x) + IIN(X),
j=1

we have that
N

(8.11) ban(x) * H(x) = lim E &G,,(x) * Fj(x).
N- j=1

In view of lemma 13 it is easy to show that
N

(8.12) ZE ban(X) * Fj(x)

has a bounded derivative everywhere; thus, in particular, in any small interval
(8.12) is continuous and of bounded variation. The Fourier transform of (8.12)
is evidently ban(o) .1-1 4,j(O), which, since it is bounded and vanishes outside a
finite interval, is absolutely integrable. Thus we can apply a familiar Fourier
inversion theorem (for example, Titchmarsh [12], p. 42) to deduce that, for all x,

N { N

(8.13) E 5an(x) * Fj(x) = 2- e-0Xtan(0) {E CO(O)} do,

where J is the bounded set 2n7r/a _ 101 _ 2(n + 1)7r/a.
Suppose J contains v strongly insistent angles. By condition (c) of theorem 4,

the number v must be finite, for otherwise x.m U JCe would contain a nonzero
limit point. Let us enclose each of the v strongly insistent angles in open intervals
J1, J2, ..., J,, each of width %, say. Since the strongly insistent angles are
removable, we can make vj small enough for there to be a finite constant C2 such
that J,j(0)I < C2 for all N and all 0 E 1J1 U J2 U ... U J,. Now enclose
the v I8-angles in open intervals Jl, J2, * * *, J' within the intervals Ji, J2, * *, J,
respectively, and having width e/(vC2). Let J' = Jl U JA U ... U J'. Then,
using lemma 11, we find that

I! {0bt(0
N

() i-IL(~~ (Ce(8.14) e2 aei9 (0) C(O)}dO < 2 2n2 C2 4n27r

By taking e sufficiently small, therefore, we can make

(8.15) 2 f e-O"61(O) {4E 6(O)} da

as small as we please, uniformly with respect to both x and N.
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The set J - J' consists of a finite number of closed intervals. Let J" be a
typical such interval. Then J" contains no strongly insistent angles, and at most
finitely many mildly insistent angles (otherwise C,. U 3C. would have a nonzero
limit point again); furthermore J" does not contain 0. Thus we can appeal to
lemma 6 to infer that ' 14,j(0) is boundedly convergent in J". By the theorem
on bounded convergence it follows that

(8.16) lim r| ebtan(N){ j(0)jd0 e| e tan(9) { 7*j(J)jd&N- 2w J 2xr()1~#() O= ix~(){~4iO}D

But _2 4j(0) and btn(O) are bounded functions of 0 in the interval J", so we can
appeal to the Riemann-Lebesgue lemma to deduce that

(8.17) lim lim 'Xe tan(0) 4,j (0) dO = O(x87 N-o 27r J J 0

Since J - J' is the union of finitely many intervals like J" it follows that

(8.18) lim lim 21 | exbtan(0) { CO)d0 = 0.x-* N- 2 j=
J-J'

From (8.13), (8.18), and the fact that (8.15) can be made arbitrarily small,
uniformly with respect to x and N, we can deduce

N
(8.19) lim lim E ban(X) * H(x) = 0.

x-* N-* j=I

The lemma can now be proved by an appeal to (8.11).
Lemma 14 and (8.5) provide us with the important result that, as x -o,

(8.20) {Aa(X) - 6a0(X)} * H(x) -O 0.

A consequence of (8.20), trivially easy to deduce, is that if c is any real constant
then, as x - ,

(8.21) {Aa(X -c) - 3ao(x - c)} *H(x) -0.

Let 9 be the class of nonnegative functions which can be represented as finite
sums of the form

-y

(8.22) 9(x) = E Wj Aaj(X - cj)
j=1

where y is an integer, wl, W2, * w, are positive weights, and a,, a2, * ay,
cl, C2, * * , cy are finite real numbers (the aj being positive).

Let go be the subclass of functions g(x) which belong to 9 and have the addi-
tional property that

(8.23) f| xg(x) dx = 0; J+ g(x) dx = 1.

LEMMA 15. If g(x) E !go and has the representation (8.22) then, as x -oo,
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(8.24) {6a(X) -E WjajO(X - c>)} * H(x) -+ 0.
j=1

PROOF. Write

(8.25) Q(x) = aao(x) - E Wjba3O(X - cj).
*j=1

Then, on taking Fourier transforms,

(8.26) DIM = 6aao(O) - E wj6ato(O)eiOi
j=1

Plainly, Qt(o) is a bounded function of 0 which vanishes outside some bounded
interval containing 0. Moreover, for 0 sufficiently small, we can write

(8.27) Qt(O) =At(O) - gt(o)

because, for each value of a, at(O) = At(@) for all sufficiently small 9. Thus, near
0, Qt(0) equals the difference between two characteristic functions of distribu-
tions with zero means and finite variances. We may therefore infer that, for
some finite constant C3, say,

(8.28) IQt(9)j < C302
for all sufficiently small 0.
The results (8.11) and (8.13) were actually proved only for n > 1, but slight

modifications of their proofs (in respect of certain bounds) will extend them to
the case n = 0. It then follows that, since Q(x) is only a finite weighted sum of
the functions 6&o(x), 6aiO(x), *, and so on,

(8.29) Q(x) * H(x) = lim 27 f eioCO( ) d_
Jo

where Jo is some bounded closed interval containing 0.
The set .Cm U 3C. must be bounded, for otherwise Xo would be a limit point of

XC. U 5C. and so, by corollary 2.1, would itself belong to X. U 3Ce in contradic-
tion to condition (b) of theorem 4. Thus by lemma 8 we can find a small t1 > 0
such that

(8.30) f02{ I4K(0)I}do <0X
In view of this result, (8.28), and the fact that J#j(-D)I = 14'j(0)I for all real 0,
we can appeal to the theorem on dominated convergence to infer that

(8.31)

lim- f e-iexut() { Cj(O)}dO =-iUte-'Q(o) { Cj(O) dO.
Nx 27r J_ =iJ 2-,r j= J

We can further state that Wt(0) {,_ 1 4j(o)} is absolutely integrable over the
interval (-,1, +,), and then deduce from (8.31), by another appeal to the
Riemann-Lebesgue lemma, that
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urnurn1 f ± ,Q' o f= 0.o(8.32) lim -lim 2X c- d(O = 0)
x-- Nx2T t=-

Let J' be the set of points in J0 but not in (7, +n7). Clearly Qt(0) is bounded
on J0, and so we can treat each of the two intervals comprising JO much as we
treated the interval J earlier in this section, and deduce

(8.33) lim lim -f e-io2t(0) {d#(o)}d = 0.
x-2 NA-. 27r j=1

The lemma is proved by (8.29), (8.32) and (8.33).
Let us now return to the proof of theorem 4. If g(x) E go and has representa-

tion (8.22) then it follows from (8.21) that, as x --,

(8.34) {g(x) - E Wjka,O(X- * H(x) -.

Hence, from (8.20), (8.24) and lemma 15 we find that, as x -oo,

(8.35) {A(X) _g(x) *H(} ) o

for every g(x) E go.
Next suppose g(x) belongs to , but not necessarily to 9o. Write

(8.36) a = f+ g(x) dx; (-=f xg(x) dx.

Since functions in 9 are nonnegative we may assume a > 0. Define, for some
small e > 0,

(8.37) g(x) = (a +) <(g(x) + e i (x +

It may be verified that g(x) E go, and so

(8.38) 1{z5(x) - 9(x)} * H(x)I < e

for all sufficiently large x. But, because H(x) has the U.B.V. property, there must
be a finite constant C4 such that, for all x,

(8.39) Al (x + )*H(x) < C4

and

(8.40) lg(x) * H(x)I < C4.
(Recall that g(x) is a finite linear combination of "triangle" functions.)

Further,

(8.41) g(x) - (a+ g(x) = (+ x)( ),
so that, for all x,
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(8.42) |(Z) * H(x)- + ) g(x) * 11(x) < ( + )

If we now appeal to (8.38) and (8.42) we discover that for all sufficiently
large x,

(8.43) Aa(x) * H(x)-- g(x) * H(x)

(a + e) a!(a + e) 9) ()<+ C4e + C

(a +e) a(a + e)

Since e can be chosen arbitrarily small we conclude that (8.35) holds for all
g E S-
Next suppose g(x) is a step function; in particular, suppose there are finite

constants a, b, such that

(8.44) if a<x_b,
(( 0 otherwise.

Choose a large integer N and put q = (b - a)/2N. Define
2N

g+(x) = r, A, (x - a -),
r=O

(8.45) 2N-1
g_(x) = 7l ,- A, (x- a-rr7).

r=]

Then

(8.46) g+(x) 2 g(x) 2 g_(x) 2 0,
for all x, so that

(8.47) g+(x) * H(x) 2 g(x) * H(x) 2: g_(x) * H(x),
for all x.

The functions g+(x) and g_(x) are both in S so we have, for all sufficiently
large x,

g+(x) * H(x) < Ijg+jI ha(x) * H(x) + q,
(8.48) g_(x) * H(x) > I9g-1l ha(x) * H(x) -1.
However, by the U.B.V. property of H(x), there must be a finite constant Cr
such thatAa(X) *H(x) < C6 for all x. Also, 11g+11 = I1911 +-n and IIg1-l = I19I -1
Thus, for all sufficiently large x, by (8.47) and (8.48),
(8.49) I lgi I Aa(x) * H(x)

- (Cs + 1)7, < g(x) * H(x) < I gfIAa(x) * H(x) + (C5+ l),i.
We may take N very large and thereby make q arbitrarily small. Thus (8.35)
must hold when g(x) is a step function. It is a straightforward matter to extend
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this result and show that (8.35) holds when g(x) is a simple function, that is,
when g(x) is a finite linear combination of step functions.
Next suppose k(x) vanishes for all [xi greater than some large N, and is

bounded, nonnegative, and Riemann-integrable in [-N, +N]. Then, for any
prescribed E > 0, we can determine simple functions g+(x), g_(x), such that
g_(x) _ k(x) _ g+(x), for all x, and I9g+ - g-| < E. An argument similar to the
one which we have just used to show that (8.35) holds for step functions will
now prove that (8.35) also holds for functions like k(x) in the place of g(x).

Finally, suppose k(x) is an arbitrary member of 3C+. Let us write
{k(x) for lxl . N,

(8.50) kTN(x) = .-
0 otherwise;

and let us put kN(X) = k(x) - kN(x). By the property 3C2 of the class 3C, given
any e > 0, we can choose N so large that

(8.51) E max kN(X) < f.n=-X n<x<(n+l)

By the U.B.V. property of H(x) we can find a finite C6 such that H(x + 1) -
H(x) < C6 for all x. Thus

+- r -n
(8.52) kN(x) * H(x) = E kN(X- z) dH(z)

n=-o J-n-I
< CO6.

We have already proved that (8.35) holds for functions like kN(x) in the place
of g(x). Thus, for all sufficiently large x,

(8.53) IlkNlI A>(x) * H(x) - e < kN(x) * H(x) < IjkNI| Aa(X) * H(x) + e-

Hence, using (8.52) and the fact that k(x) = kN(x) + kN(x), we have, for all
sufficiently large x,

(8.54) llkNl Aa(x) * H(x) - < k(x) * H(x) < IlkNI Aa(x) *H(x) + (1 + C6)e.
But we must have IlkNIi < E because of the way we chose N and so
IlIkNII < jIkIl < IlkNlI ±+ . Therefore we can deduce from (8.54) that, for all suf-
ficiently large x,

(8.55) ilkl A(x) * H(x)
- (1 + C7)E < k(x) * H(x) < lkl ha.() * H(x) + (1 + C6)e

where C7 is a finite constant such that Aa(x) * H(x) < C7 for all x. The theorem
is proved by (8.55) for all k(x) E X4 and, since an arbitrary member of 3C can
always be represented as the difference between two functions in 3C+, its validity
for all k(x) E 3X is immediately deducible.

9. Application of the general theorem to renewal processes
As an example of the application of theorem 4 let us consider the case of a

continuous renewal process {X.} with 0 < E{Xn} _ oo. We know that the as-



498 FOURTH BERKELEY SYMPOSIUM: SMITH

sociated renewal function H(x) satisfies condition (a) of theorem 4, and lemma
9 shows that the remaining conditions of theorem 4 are also satisfied. Thus the
conclusion of theorem 4 applies to the present renewal function.
Suppose F(x) is the distribution function of the {X.}. If .0 < E{XM} <KO

and if we write k1(x) = U(x) - F(x), then it is easy to show that tk1ll = E{X,}
and that k,(x) E aC. But the integral equation of renewal theory (see for ex-
ample, Smith [11]) states that ki(x) * H(x) = F(x), which implies that
ki(x) * H(x) 1 as x oo* Thus, by theorem 4, for any k(x) EE C we have

(9.1) k(x) * H(x) -E E}X'-, as x-.oo

If E{Xn =x we modify our argument slightly. Choose a large positive N,
and put

(9.2) klN(X) = rki(x) for x <N

to otherwise.

The integral equation of renewal theory still applies and, since klN(X) * H(x) _

ki(x) * H(x) for all x, it enables us to infer that
(9.3) lim sup k1v(x) * H(x) _ 1.

But, as is easy to see, kN(x) ECx and so, from theorem 4 and (9.3), we have
that for any k(x) E C+

(9.4) lim sup k(x) * H(x) - .likl

However, since E{Xn} = °°, we can make kI arbitrarily large by choice of N.
Since k(x) * H(x) _ 0 we can thus infer from (9.4) that k(x) * H(x) -O 0 as
x -+ oo. We have therefore proved
THEOREM 5. If H(x) is the renewal function of a continuous renewal process

{Xn}with 0 < E{Xn} then k(x) * H(x) -- jIkII/E{Xn}, as x-oo, for
every k(x) E x.
Theorem 5 generalizes the renewal theorem 1 of Smith [10] by broadening the

kernel class and removing the restriction to positive renewal processes. There is
nothing surprising in either of these improvements. However, in another paper
of Smith [11] an attempt was made to show that theorem 5 would be false if 3C
were replaced by L1 (-oo, +Xo). Unfortunately, the counterexample was incor-
rectly described in [11] (the kernel as described there was a member of 3C). Since
it is of some interest to see that the kernel class 3C of theorem 5 cannot be much
widened, we give here a correct counterexample. Suppose, as in [11], that the
{X"} take the values 1 and V\2 with equal probabilities of one-half. Then {X"}
is a continuous renewal process such that H(x) can only increase at x-values of
the form r + s\I/, where r and s are positive integers. Write A for the set of all
numbers in the interval (0,1) of the form r + 8V\2, where here r and s are
positive or negative integers or zero. The set A is countable and so has measure
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zero. Defiinc k(x) to be zero on A and on the complement of (0, 1); define k(x) to
be unity where it is not zero. Then k(x) is in L1(-oo, +oo) and

(9.5) lim inf k(x) * H(x) = 0.
X X

Thus theorem 5 does not hold. It is possible to show that the points of A are
everywhere dense in (0, 1) so that k(x) is discontinuous at every point of (0, 1).
A necessary and sufficient condition for a bounded function to be Riemann-
integrable in an interval is that its points of discontinuity in that interval shall
form a set of measure zero. Thus the k(x) we have just defined is not Riemann-
integrable.

10. A renewal theorem for stochastically stable sequences

The general renewal theorem, theorem 4, covers a very wide class of renewal
sequences. In this section we shall demonstrate that by restricting this class
somewhat we can draw a firmer conclusion than theorem 4 allows. More pre-
cisely, we shall establish conditions under which, if k(x) E 5C and H(x) is the
renewal function, then

(10.1) lim k(x) * H(x)

exists.
Cox and Smith [5] introduced the notion of a stable sequence of constants. If

{An} is a sequence of real numbers such that

(10.2) - (An+1 + An+2 + * + An+p)p

tends to some finite limit A, uniformly in n, as p -- oo, then {An} is stable with
average A. It is proved in [5] that a stable sequence is necessarily bounded. We
wish to extend the notion of a stable sequence to cover sequences of random
variables.
DEFINITION 3. SUppOSe {Xn} is a renewal sequence, and ,u some finite constant;

Suppose we write, for t > 0,

(10.3) nl (t) Sup PIXn+1 + X.+2 + + X.+P - | >

If ,u can be chosen so that

(10.4) io HIp(Q) dt - 0

as p -* oo, then {Xn} is stochastically stable (S.S.) with average Iu.
Clearly fp(t) is a nonincreasing function so that, for any fixed E > 0,

Jo Ilp(t) dS > eH,(e). Hence, if {Xn} is S.S. with average u, for every fixed f > 0

we have



500 FOURTH BERKELEY SYMPOSIUM: SMITII

(10.5) X.{|xn l±+ Xn.-2 + * + X, + > } 0,

as p -* oo, uniformly with respect to n.

It is to be remarked that if {X.} is S.S. then Jo fp(Q) dt is necessarily finite

for all p. This may be seen as follows. There must be a q such that J 1flp(t) di
is finite for all p _ q. Suppose that m < q. Choose any fixed v such that
IIH(jv) < 1/2. Then, by the independence of the {X0},
(10.6) 2P{Xn+i +* + Xn+m+q - (m + q)j, _ (m + q)t}

> 2P{X.+i+ + Xn+-m-fnl _ (m + q)t + qv}
P{Xn+m41 + + X-+m+q - qji _ -qv)

> P{Xnq+ + * + X.+m - mu4 > (in + q)t + qv,}.
Similarly,
(10.7) P{Xn±+ +* + Xn+m - my _ -(m + q)t - qv}

< 2P{X.+, + + Xn+m+q - (m + q),4 _ -((m + q)0.
Thus, for all n,

(10.8) p{ Xn+1 + + Xn+m - A _ + ±-)t mv}}
and so

(10.9) jim({ + + I)m) m+Q).

This proves that fo Hlm() dt must be finite.
DEFINITION 4. The renewal sequence X,, X2, X3, * ad infinitum, is said to

be ultimately stochastically stable (U.S.S.) with average M if the following two con-
ditions hold:

(U1) for some integer N the renewal sequence XN, XN+1, XN+2, * , ad infinitum,
is stochastically stable with average ,u;

(U2) E{Imin (0, Xi) J} < oo for i = 1, 2, N*,N 1.
Condition (U2) in this definition is to ensure that all the convolutions we

encounter shall be finite, a point discussed briefly at the end of section 6. Notice
that there is no point in defining ultimate stability for sequences of constants; if
such a sequence were ultimately stable then it could be proved to be stable. With
sequences of random variables, however, some early members may have infinite
expectations; this would spoil stability, but not ultimate stability.
THEOREM 6. Let {Xn} be a renewal sequence whose I-mesh structure satisfies

conditions (b), (c) and (d) of theorem 4 and whose renewal function is H(x). Then,
if {Xn} is U.S.S. with a finite average ,u > 0,

(10.10) k(x) * H(x) --* UIk, as x-oo,

for every k(x) C .
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PROOF. Let us suppose, to begin with, that {Xn} is S.S. (as opposed to being
U.S.S.).
For t 2 0 let us define

II +() = sup P { +1 +X++2+ + X.+< }

II-()= s p {xn+1 + Xn-i-2 + **+ X , 2p +

(10.12)

then we have p4+) -~0 and p(~-0, as p) -> OO
Next define distribution functions K()() K(-)(x) as follows:

K(+(X=s= {p+ ( P) for x <Xpp,
(10.13) 1~~t. for x._pu;(10.rly13) f1Q) < IIII-1Q) < sO forxi<pwd,

() =j II(-) (- _ ) for x 2 p.

Then for all n, all x,

(10.14) K(+)(x) _ P{Xn+ + Xn+2 + *-I + + < x} _ K(-)(x)-
Computation also establishes that the means of the distribution functions

n K((x) are p(hvpe ap) p ) respectively.
Since p'+ can be made arbitrarily small, p(p - pp+)) can be made strictly

positive, by choice of a suitable p. Thus the sequence {X^} satisfies condition
Nof section 6. (The distribution functionK(+)K(x) plays the role of the K(x) in

definition 2.) The sequence {X^} therefore satisfies all the conditions of theorem
4. Thus in the special case when Il = 0 the present theorem is proved.

Write Gn(x) for the distribution function of X). Then (10.14) is equivalent to

(10.15) Kp+)(x) _ Gn+l(x) * Go+2(x) * * * Gp+u(x) 2

which holds, therefore, for all n and all x.
To make our argument clear we shall briefly consider the case p = 2. We

have

(10.16) H(x) = Gi(x) +GP(x) * G2(x) + G,(x) * G2(x) * GK(x)
+ GK(x) * G2(x) * GaGa) * G4(x) + * *.

and, in view of (10.15), it appears therefore that
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(10.17) H.(x) _ G1(x) + Kj+)(x) + Gj(x) * K(+)(x)
+ Gi(x) * G2(x) * K&+)(x) + *

that is,
(10.18) H(x) < G1(x) + K&+)(x) + K&+)(x) * H(x).
It should not be difficult to see that, for a general value of p, we have

p-i

(10.19) H(x) _ E, Gj(x) * G2(x) * * * Gj(x) + K(+)(x) + K(+)(x) * H(x).
j=1

Similarly, we can show that

(10.20) H(x) > E Gj(x) * G2(x) * * * Gj(x) + K(-)(x) + K(-)(x) * H(x).
j=l

If we write ki(x) = U(x) - K(+)(x) then (10.19) shows that

(10.21) k&(x) * H(x) _ K(+)(x) + E G1(x) * *Gj(x),
j=l

and hence that
(10.22) lim sup k1(x) * H(x) _ p.

Z-4 O

But ki(x) E aC and Ilkill = p(,u-p+)). Thus we can infer from (10.22) and
theorem 4 that if k(x) is an arbitrary member of 3+,

(10.23) lim sup k(x) * H(x) < 1LdL.
2- IA pp

Similarly we can show, starting from (10.20), that

(10.24) lim inf k(x) * H(x) > ,
z- IAco + pp

If we let p -X oo in (10.23) and (10.24) and use the facts that p(+- 0 and
p-) 0, then the theorem is proved for the case k(x) E X+. The proof of the

theorem for the case when k(x) is an arbitrary member of 3C is now a simple
matter.
However, we have assumed in the preceding argument that {X"} is S.S. and

we must now show how to deal with the case when {X.} is only U.S.S.
If {X"j is U.S.S. there will be a finite N such that XN, XN+l, XN+2, ***,

ad infinitum, is S.S. Thus, if we write

(10.25) HN(x) = GN(X) + GN(x) * GN+1(x)
+ GN(X) * GN+1(X) * GN+2(X) + * ,

the preceding argument will apply to HN(x), and will show that

(10.26) k(x) * HN(x) -l as x X,

for all k(x) EE C. But
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N-1
(10.27) H(x) = E Fj(x) + HN(x) * FN-,(x),

j=-

the convolution necessarily being finite, because of condition (U2). Thus
N- 1(10.28) k(x) * H(x) = , k(x) * Fj(x) + k(x) * HN(x) * FN-l(x).
j=1

Since k(x) is a bounded function which tends to zero as x -+ oo, then
k(x) * Fj(x) -O 0 as x -X oo (lemma 1 of Smith [10]). It is possible to show, by
appealing to condition XC2 of the class 3C and to the U.B.V. property of HN(x),
that k(x) * HN(x) is also a bounded function. Thus, in view of (10.26), we can
also deduce (by another appeal to lemma 1 of Smith [10]) that

(10.29) k(x) *HN(x) *FN-l(x)J as x - oo

On referring to (10.28) we see that this last observation proves the theorem.
Theorem 6 shows that the convolution k(x) * H(x) will converge to a limiting

value, as x -* oo, if the renewal sequence {Xn} satisfies two distinct conditions.
The first of these, relating to the lattice structure of the renewal sequence, is
nonprobabilistic, and is concerned solely with arithmetical properties of the set
of values taken by the random variables. This aspect of renewal sequences has
been given much discussion in earlier sections. The second condition of theorem
6 is probabilistic and is concerned with the frequency with which the random
variables assume very large values. It is desirable to relate stochastic stability
to characteristics of the renewal sequence which are more immediately verifiable
than those introduced in definition 3. The next theorem accomplishes this de-
sired simplification.
THEOREM 7. Let {Xn} be a renewal sequence and let {Gn(x)} be the correspond-

ing sequence of distribution functions. A necessary and sufficient condition for {Xn}
to be stochastically stable is that there exist two distribution functions G+(x), G_C(x),
such that

(a) G+(x) and G_(x) are both distribution functions of random variables with
finite mean values, so that

(10.30) 2+ IU(x) - G±(x)l dx < co;

(b) for all x and all r,

(10.31) Ga(x) _ Gr(x) < G+(x);

(c) E{X1}, E{X2}, E{X3}, * , ad infinitum, is a stable sequence with average

PROOF. We prove the necessity part first. Thus we suppose {Xj} to be sto-

chastically stable and it then follows from an earlier discussion that fo nII(e) dt
is finite.



504 FOURTH BERKELEY SYMPOSIUM: SMITH

Let uis definle

(10.32) i+(x)ffl1O.~ - x) for x < u,1~i for x_ A;
and

(10.33) G_(x) = for x < u,
I 1- lJJ(x- for x _ A.

The distribution functions G_(x) thus defined have all the requisite properties.
For example, if x _ u,
(10.34) G,,(x) = P{Xn < x}

. 1 - PIX- Al > X - I'
_ I - HP(X -

_ G_(x).
Furthermore it is evident that the finiteness of J0 1l1(t) dt ensures the satisfac-
tion of (10.30).

Since (10.30) and (10.31) have been proved, it is clear that

(10.35) f+ U(x) - G.(x)I dx <

for all n. ThenAn = E{Xn} is finite for all n.
Now, because {Xn} is S.S., for any f > 0 we can find a po(e) such that

e > JO 1I,(Q) dt for all p > po(e). Hence for all n and all p > po(e),

(10.36) > f p JXn+i + ± Xn+1 -
p

_

= E {Xn+l ± +± n+p }

But la - b _ a - b, always, so we can infer that

(10.37) P.L1± + n
- /A.

p
Similarly

(10.38) > _
- nn+1 + + An+p.

Thus, for all n and all p > po(e), we have shown

(10.39) p
.* * *

< C,

This proves {sf,n} to be a stable sequence, and completes the necessity part of
the theorem.
We begin the sufficiency part of the proof with some computations concerning

the function
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(10.40) -y(x) = 1 - G_(x) + G+(-x),
and'our first observation is that an easy and well-known consequence of (10.30)
is that
(10.41) x'y(x)-0 and fl y(y)dy-0, as x-X.

Thus, if we select some arbitrarily small e> 0, then we can find an xo(e) such
that
(10.42) xy(x) < e, f 7y(y) dy < E, for all x > xo(e).

Our second observation is that, for any fixed p > 0, one can prove by ele-
mentary computation that

(10.43) feU0{ (x) dx dt = | X(X) dX + p 7(x) dx.

Moreover, since strict convergence implies Cesaro convergence it follows from
(10.41) that
(10.44) yf y1Y(Y) dy - 0 as x - oo.

Thus we can deduce from (10.43) that

(10.45) P J".p t2lJ0xy(x) dx}d = o.

With these preparatory computations accomplished, we can turn to the main
part of the sufficiency proof. In our argument we shall employ a well-known
truncation device of Kolmogorov and an inequality used by him in dealing with
the weak law of large numbers (see, for example, Gnedenko and Kolmogorov [7],
p. 106). Define IA. = E{Xn} and Zn = Xn - p., choose 2t e and p > e-lxo(e),
and then define

(Zn if -P~< Z. <P~,
(10.46) Zn =

O otherwise.

Write Snp = Zn+i + Zn+2 + * + Zn+pand S'2, = Z'+1 + Zn+2 + * + Z+P.
The distribution function of Zr is Gr(x + A,.). Since {/An} is a stable sequence

it is also a bounded sequence. Thus, by resorting to some finite translations of
the distribution functions G,(x) if necessary, we may suppose that (10.31) holds
even when Gr(x) is replaced by Gr(x + u,.).

Plainly, E{Zr} = 0, so that

(10.47) E{Z'} = -|z dGr (x + fr)- P_ x dGr (x + Ar).

Some integrations by parts will then prove that

(10.48) E{Z'r} = -pt{l - Gr(pt + PAr)} -ft( - Gr(x + Pr)} dx

+2p2Gr(-p + Ir) + f -P Gr(x + ir) dx.
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An appeal to (10.31) then shows that

(10.49) 1E{Zfr} p<4{l-GP(p4)}- + 1{1- G(x)} dx

+ p4G+(-p4) + J_-P G+(x) dx,
so that

(10.50) |E{Zr < p-y(p4) + y/(x) dx.

But pt > xo(e), so we may deduce from (10.42) that
(10.51) IE{Z'}I < 2e, for all r.
The second moment of Zr must also be studied. Some more integration by

parts will prove that
(10.52) E{(Z')2} - -p2;2{l - Gr(p4 + MT) + Gr(-p4 + A,)}

+ 2 fp X{1- Gr(x + p,) + G,(-x + y,,)j dx,
and from this equation we can deduce the inequality

(10.53) E{(Zr)2} < 2 f0t x-y(x) dx for all r.

The familiar inequality of Chebyshev shows that P{ISn'pj > p4} <
E{(Z'+1 + *-- + Z+p)2}/p242 and hence, if we use the independence of the
{Z'}, we can easily prove that

F_ E {(Zn'+r)2} + E£ E {Zn +r}
(10.54) np > p2} < E( 2}+

On appealing to (10.51) and (10.53), it thus transpires that

(10.55) P{|S'p| > Pt} < 42 + p,2 xPy(x) dx.

Let us now define Bnp as the event {Zn'+r = Zn+r for all r = 1, 2, * , p}, and let
B'n, be the event complementary to Bnp. Then

p
(10.56) P{Bnp} _ , P{Zn'+r 7£ Zn+r}

r=1

p
_ , [1 - Gn+r(pt + I.s,u) + Gn+r(-p4 + lUn+r)],r= 1

aild so, by (10.31),
(10.57) P{BnpV} _ p-y(p4).
Now
(10.58) P{jSIj > p4} = P{Bnp & |S'npI > p'} + P{Bnp & IS.pI > pt}

_ P{&S'I > p4} + P{B`P},
and therefore, by (10.55) and (10.57),
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(10.59) p4Xn.+ + * + Xn+p n+1 + *± + At.+P| > <

uniformly in n, where

(10.60) aw(0 = PY(PO) +±2 + 2 fx'Y(x) dx.

At this point it is to be noticed that, by (10.60),

(10.61) f 'yp() dt = f -y(u) du + 4e + - f' Y!-AJfxS(x) dx}d ,

and so, on appealing to (10.41) and (10.45), it follows that

(10.62) lim sup f yp() dS _ 4e.

Since {,ur} is stable with average A, there must be a po(e) such that, for all
p > po(e), JA -(/+ + + A,±+p)/pI < e uniformly in n. Thus, from (10.59), for
all t _ e and all p > max (pO, xo/e), P{I, - (X,+, + . . . + Xn+p)/pl > e + E} _
-Yp() uniformly in n. Therefore, if we introduce the function Hp(Q) of (10.3), it
appears that H,,(A + e) < -y,Q), and so, from (10.62),

(10.63) lim sup f2 HP(p) dS _ 4E.

However, 0 _ Ilp( ) _ 1 for all t; and E can be chosen arbitrarily small. Thus it

plainly follows that f|HIp(p) di- 0 as p - -, and the theorem is proved.
It is to be remarked that if the {X.} are known to be bounded below by some

finite constant c, say, then one can take G+(x) = U(x - c). Thus, for instance,
for the case of a positive renewal sequence there is no difficulty in determining a
suitable G+(x). Similar remarks apply if the {X,} are known to be bounded
above; G_(x) is then easily determined.
COROLLARY 7.1. Let {Xn} be a renewal sequence and let a(x) be a nondecreasing,

nonnegative function of x such that, for some sufficiently large A,

(10.64) dx <
If E{X,}, E{X2}, E{X3,-, * , ad infinitum, is a stable sequence with average rA,
andif,forsomefiniteconstantc, E{a(lXnl)} <cforalln, then {Xn} isstochastically
stable with average ,u.
PROOF. Choose A appropriately and then define

G+(x) =t^(-z) for x < -A,
G+(x)=

(10.65) 1 for x > -A;
r0 for x <A,

(x) I1-_(c) for x _A.
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rIlheii the functions G+(x) and G_(x) are both distribution fuiictioiis of ranidoiii
variables with finite mean values. Moreover, from the monotone character of
a-(x) and the fact that E{fa(Xn1)} < c for all n, it follows that for all x _ A

(10.66) P{lXnI _ x} < c/of(x).
It is an easy matter to verify, using (10.66), that the inequalities (10.31) hold
for G+(x) and G_(x) as presently defined. The corollary then follows from theorem
7.
As a simple example of a situation to which corollary 7.1 conveniently applies,

we mention the case when the variances of the {Xnj are bounded.
Theorems 6 and 7 discuss the situation when most of the random variables

fXn} have finite mean values and k(x) * H(x) converges to a nonzero limit. To
round off this section, let us prove the following theorem, which covers the case
when many of the random variables have iifinite meanis, and 1;(x) * H(x) con-
verges to zero.
THEOREM 8. Let {X,,) be a renewal -sequence whose I-niesh structure satisfies

conditions (b), (c) and (d) of theorem 4. Suppose that, for any arbitrarily large
number M, we can find integers p and q such that the function Apq(x) of (6.2) is
dominated by the distribution function K(x) of a random variable whose expectation
exceeds Mp and supposefurther that E{lmin (0, Xi) l} < ocfor i = 1, 2, ., q - 1.
If H(x) is the renewal function of {Xn} , and k (x) E XC, then k(x) *H(x) 0, as
x. % .

PROOF. If we give M any strictly positive value, then it is obvious that{X,}
satisfics condition Z and hence all the conditions of theorem 4. The proof now
closely parallels part of the proof of theorem 6 and we shall merely give a sketch.
Suppose first that we can take q = 0 and find a value of p and a distribution

function K(x) with the properties described in the enunciation. Then

(10.67) K(x) > Gn+l(x) * G.+2(X) * ... * G.+p(x)
for all n and x. On proceeding as before we find that, if ki(x) = U(x) -K(x),
than k1fl > Mp and ki(x) E SC and

(10.68) lim sup ki(x) * H(x) < p.
z-

Thus, if k(x) C X+ we have, trivially,
(10.69) lim inf k(x) * H(x) > 0,

and from (10.68) and theorem 4,

(10.70) lim sup k(x) * H(x) <-l-.

But M can be chosen arbitrarily large and so, from (10.69) and (10.70), the
theorem is proved when k(x) E X+. The extension from X+ to X is then trivial.

If it is necessary to have q > 0, before a suitable value of p can be found, then
we can adopt the same argument as was used at the end of the proof of theorem
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6, namely, the argument which extended a result proved for a S.S. sequence to
the case of an U.S.S. sequence.

11. On certain generalizations of renewal theory

Cox and Smith [5] discussed, in addition to the conventional renewal function,
certain more general functions of the form

(11.1) Q(x) = E, a,Fj(x),
j=1

where {an} is a sequence of real constants. The function Q(x) has a simple inter-
pretation. Suppose that, for every n, we are to receive a "prize" of a. units of
currency ifSn _< x (if a. is negative the "prize" becomes a "loss"). Our total
prize is then

(11.2) E ajU(x - Si)
j-1

and it is easily seen that Q(x) is the expected value of this total prize. Similarly,
if we suppose that, for every n, we are to receive a prize of a. units if xi < Sn < X2,
then our expected total prize is Q(x2) - Q(xi). The renewal function H(x) refers
to the special case when all the individual prizes equal one unit. Thus, if the
{an} are bounded, Jan| < A, say, for all n, it is trivial that (a) IQ(x)I _ AH(x)
for all x; (b) for every xi, X2, xl < X2, IQ(X2) - Q(xi)I < A{H(x2) - H(xl)}. The
following lemma is now obvious.
LEMMA 16. If (a) {a"} is a bounded sequence; (b) H(x) is finite for all x;

(c) H(x) has the U.B. V. property; then Q(x) is finite for all x, and Q(x) has the
U.B.V. property, in the sense that for every E > 0 we can find a finite 6(e) such that

f| + [dQ(x)I < 6(f), for all a.

If we suppose {a.} to be bounded, the work of section 5 on the behavior of
,(0) applies equally well, after some obvious and easy changes, to the series

Ia,n,6n(0)j. The only point needing serious attention is that we must either
redefine what we mean by a removable I.-angle or simply suppose that I.-angles
do not arise. We shall take here the latter and simpler course of action. With the
proviso, therefore, that JC8 is empty, and in view of lemma 16 above, the proof
of theorem 4 applies with slight modifications to the function Q(x) instead of
H (x). In one or two places, however, the proof of theorem 4 depends upon H(x)
being nondecreasing. We can arrange Q(x) to be nondecreasing by supposing
a. > 0 for all n. Once we have proved theorem 4 for such a monotone Q(x) the
extension to the general case is trivial. Thus we have shown that if {a"} is a
bounded sequence, and if the conditions of theorem 4 are satisfied, and if SC, is
empty, then k(x) * Q(x) -*0, as x - x, for every k(x) E Xe such that Iki = 0.
Of particular interest is the following extension of theorem 6 (compare with

theorems 3 and 4 of Cox and Smith [5]).
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THEOREM 9. Suppose that
(a) {Xn} is a renewal sequence which is ultimately stochastically stable with a

finite, strictly positive, average ,;
(b) the I-mesh structure of {X,} satisfies the conditions (b), (c), and (d) of

theorem 4, together with the additional condition that 5C8 be empty:
(c) {an} is a stable sequence of constants with average a; then if Q(x) is defined

as in (11.1) and if k(x) E ,

(11.3) k(x) *Q(x) as x- c.

PROOF. We shall suppose {X,j is S.S., once the theorem has been proved
for this case it can be extended to cover the case when {Xn} is U.S.S. by reason-
ing similar to that employed in the proof of theorem 6.

Since {an} is stable, it is also bounded, that is la.1 < A for all n. Let us put
a* = A + a., Q*(x) = E an*F,(x). Then {an*} is a positive stable sequence, and
Q*(x) = AH(x) + Q(x). But theorem 9 is known to be true for H(x) in the place
of Q(x), and therefore it will be true for Q(x) if we can prove it for Q*(x). In
other words there will be no loss of generality if in proving the theorem for Q(x),
we assume an > 0 for all n (and Q(x) nondecreasing).

In the proof that follows we shall several times use the fact that if
Al(x) _ A2(x) _ 0 for all x, and if B(x) is a distribution function, then
AI(x) * B(x) _ A2(x) * B(x) for all x. Note also that if Bl(x) and B2(x) are
distribution functions of random variables Z1, Z2, say, then IIB -B21| =
E{Z2} -E{Z1}.

Let E> 0 be chosen arbitrarily small. Since fa,,} is stable we can choose p so
that

(11.4) la. + a.+, + *;+ a,,+p _al < e(11.4) ~ ~ (p + 1

for all n.
We shall use the functions Ki'+(x), K(-)(x) of section 10, and we note for

reference that, by (10.15),

(11.5) K'(-'(x) * F (x) _ Fr+, (x) _ K(+)(x) * Fs(x),

for all values of the integers r and s. Thus

(11.6) Kr(-(x) * Q(x) _ E a.F.+,(x).
n=1

If we write

(11.7) L'-)(x) = 6(x) + Kj (x) + ;-. + K (x)(

then computation based on (11.6) shows that
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(11.8) L(-)(x) * Q(x)

p +l F(x) + + lF(x) + + a + a2 + .. .+ aF()
22 F()+ p2+1p

E a. + a.+, + * + a,+p F ,(x).
n-I (p+1)

Let A (x) be the distribution function of a random variable with a large negative
mean -A, chosen so that A(x) > K(-'(x) for all x. From (11.8) it follows that

(11.9) A(x) * L(-(x) * Q(x)
a, Fl(x)*A(x) + ...+a+a2+ + aF,(x)A(x)

+ , an+ an+ + * * + a±+P Fn+p(x) * A(x).

If we define

(11.10) Lp+)(x) = Kp+(x) + Kp(++)(x) + . + KM+)(x),(p+ 1

then it may similarly be shown, using (11.5), that

(11.11) L(+)(x) * Q(x) _ + 1 F,+i(x) + a, + a Fp+2(X) + *

a, + a2 + . + ap F2p(x) + , a. + a,+, + * + an+,,
22+1 ,%1 (22+)

On subtracting (11.11) from (11.9), we find that

(11.12) {A(x) * L'-)(x) -L(+)(x)} * Q(x)

< a1 {F(x) * A(x) - Fp+,(x)} + *= (p + 1

+ al +a2 + * * +qafFp(x) *AA(x) -F2p(x)l(p + 1)
a. + a.+, + + a'+p {Fn+p(x) * A (x) -Fn+2p(X))

n=1 ~ (p +)
However, if we refer to (11.5) again, we see that

(11.13) Fn+p(x) * A(x) - Fn+2p(X) < Fn+,(X) * {A(x) -K(-)(x)l.
Since, by choice of A(x), the right side of (11.13) is nonnegative, we can use

(11.13) in the summation of (11.12) and at the same time appeal to (11.4) to
deduce that
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(11.14) {A(x) * l(-)(x) -L(+)(x) * Q(x)

< a Fi(xr) * A (x) - F,+i(x)} + *
(p -F 1)

+ al + a2 + +Ua{Fp(x) * A(x) - F2p(x)}(p + 1)

+ (a + E) A (x) - )(x)} *{ Fn+p(x)}
At this stage let us note that:
(a) E_l F,+p(x) is a renewal function whose behavior is covered by theorem

6 (the absenice of the first p terms which are usually present makes no difference);
(b) {A (x) - K-) (x)} E 3C and IJA (x) - K'- (x)lI = A + p(A + p(-)).
Thus we can infer from (11.14) that

(11.15) lim sup {A (x) * L(-)(x) - L(+) (x)} * Q(x)
X-40

< (a + e)(A + pA + pp-

However, A (x) * L(-)(x) -L(+) (x) X a] so, and computation shows that

(11.16)

=A+- 1 - 1 2pI A(x) *L(-)(x) -L( )(x)l i+ p - +1)- (' + 1) E jp+
= A + p

say.
We have already explained earlier in this section that under the conditions

of the present theorem, the conclusion of theorem 4 can be applied to Q(x) as
well as to H(x). Thus, for every k(x) E 3C+, we must have

(11.17) lim sup k(x) * Q(x) _ (a + E)(A + p,.s + pp~())Ilklf
J- ~~~~~~~~(A+ ,A.~)/A

If, on the right side of (11.17) we let A -* oc, keeping p fixed, and then let
O0, we finally achieve

(11.18) lim sup k(x) * Q(x) < k
zX-H

A similar argument, which we spare the reader, will also show that

(11.19) lim inf k(x) * Q(x) > a -

The theorem follows from (11.18) and (11.19).
There is, of course, a similar generalization of theorem 8 to cover the case

when k(x) * Q(x) -O 0. It is very easy to prove, but we omit details.
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12. Some concluding observations

The whole theory in this paper is concerned with what we have called con-
tinuous renewal sequences. Nevertheless it is to be expected that a parallel theory
will exist for periodic renewal sequences. This is, in fact, soi the theory for
the periodic case is, indeed, simpler in some respects. With no loss of generality
we may suppose the period concerned to be unity. Thus the random variables
X. are all positive or negative integers, or zero. We define I-meshes, I-angles,
and so on, much as before; however, we need only bother now with I-meshes
which exceed unity and with I-angles in the interval [- r, +wr]. The theory of
sections 2 to 6 then goes much as for the continuous case. In sections 7 and 8 one
must work with Fourier series in place of Fourier integrals. Instead of discussing
k(x) * H(x) one considers averages like E_ k,u where u, is the expected
number of partial sums S, which equal the integer x. These averages can be
represented as trigonometrical integrals over [-7r, +wr]. However, for the
present we shall say no more on this topic, except to state that the sort of the-
orems one expects to find true in the periodic case, that is, theorems which are
analogous to the ones we have proved in this paper for the continuous case,
are indeed true.

Lastly there is the question of to what extent the results of this paper will be
valid if the variables X, are dependent in some way. This is a considerable and
a difficult question; its answer obviously hinges to a great degree on the nature
of the dependence. For the main theorem, theorem 4, our proof basically depends
on: (a) H(x) having the U.B.V. property; (b) El #N(O) behaving itself. It should
not be difficult to verify (a) in any special circumstances, but a discussion of (b)
could become quite tricky.
DEFINI1ION 5. We say the sequence of random variables {Xn} has structure R

if we can write Xn = Yn + Zn for all n, where
(a) {Yn} is a sequence of (possibly) dependent random variables;
(b) {Zn} is a renewal sequence which is independent of the variables {Yn}, that

is, the Zn are mutuaUy independent and also independent of the Yn;
(c) The I-mesh structure of {Zn} satisfies the conditions (b), (c), and (d) of

theorem 4 together with the additional condition that it have no Is-mesh.
It is possible to show that E l ',6n(0) has suitable good behavior if {X.} has

structure R. For let Wn(O) be the characteristic function of Zl + Z2 + * - * + Zn-
Then it is clear that, if {Xn} has structure R, 11n(O)I < Iw.(6)I for all 0. But,
except in dealing with removable I.-meshes, the results in section 5 all involved
absolute convergence. Thus, in the present circumstances, L2 fWn(0) is well-
behaved and, therefore, so is E 14'n(0)1.
When {Xn} has structure R and the variables {Yn} and {Zn} are all non-

negative, it is not too difficult to discover whether H(x) has the U.B.V. property.
Without these nonnegativity assumptions, however, there seems to be no con-
venient general prescription which will ensure U.B.V.

Notice that structure R is not quite such a restriction as it may, at first sight,
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appeal. Nearly all the {Z,2I) may be zero. All that is needed is for a nonizero,
inolilattice-like, Z. to appear every 101]( terms, or so.
When we consider the limit theorems which followv tlecorem 4, however, our

methods seem quite unsuitable for dealing with dependent variables. All our
proofs have involved the construction of kernels k(x) for which the limiting
behavior of k(x) * H(x) could be estimated. These constructions all break down
once the independence assumptioni is surrendered.
Note added in proof.

If H(x) is the renewal function (1.2) of a reniewal process {X.j with
E{X.} > 0 then, unfortunately, H(x) can be infinite; in this case redefine H(x)
as 2{Fn(x) - F,(0)}, which is necessarily finite by a result of Chung and Fuchs
(Mem. Amer. Math. Soc., No. 6, 1951); since H(a + 1) - H(a) < 1 + H(2)
the U.B.V. property still holds. This redefinitioni is the only change needed in
the proofs of theorems 4, 5. It is deducible from a result of Hsu and Robbins
(Proc. Nat. Acad. Sci., 33, 1947. pp. 25-31) that H(x) will be finite if
E{Imin(0,Xn)12} < oo. We therefore require K(x) of definition 2 to refer to a
random variable Z where E {-min(0,Z) 2} < x, and that in theorems 6, 8, 9
there is such a K(x) _ Pf{X,, < x for all x and all except finitelv many n.
In the introductioni G_(x) must have a finite second momenit.
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