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1. Introduction

The theory of processes of calls is highly developed. In this paper I am going
to consider some questions which, to my mind, have not yet been analyzed
sufficiently from the measure theoretic point of view.

Palm [1] dealt with a special kind of conditional probability for stationary
processes. Khinchin [2] presented and completed the ideas of Palm. Their
methods were simple and elegant but they were of analytical character. In this
paper I am going to give a different and, so far as I know, new approach to these
problems. I shall confine myself to considering some basic notions and their
properties.

As a by-product I have obtained a result from ergodic theory which seems to
be of some interest in itself.

2. Discrete time

From the measure theoretic point of view, the theory of stationary processes
of calls with discrete time is quite simple and consequently it is not dangerous
to omit some technical details. Let us consider a doubly infinite stationary se-
quence of random variables - - -, £_s, £, &, &1, &, - - - taking only the value zero
or one. It is easy to prove that either there are no calls or they occur infinitely
many times in both directions. In symbols
1) P =0 or Iim &= Tim & =1} =1,

i—+tw {——0
where P denotes the probability measure. The first possibility is uninteresting
from any point of view. Hence we may suppose that

2) P{& =0} =0.

Further, the general case can be reduced to this case by the introduction of a
“new’’ probability measure, invariant under the shift transformation,

3) P*(-) £ P(-|N), N = {t; = 0}.
455
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We denote by A the event {§ = 1} and put « = P(4). Under the condition
that A has occurred, that is, that there is a call at time ¢ = 0, we can define the
sequence of random variables - - -, n-s, 7-1, M0, M, - -+, which are equal to the
distances of the successive calls. The enumeration begins from the call &. This
is illustrated in figure 1.

t=0

Ficure 1

Sequence {7:} of distances of successive calls.

We denote by p(-) the conditional probability p(-) = P(-|& = 1) = P(-|A).
We can now assert

THEOREM 1. (1) The sequence {n:} is

(a) stationary with respect to measure p,

(b) the random variables n; admit only positive, inleger values,

(c) the expectation of n; is finite and is equal to (P{& = 1})~.

(ii) The correspondence between {&} and {n;}, or more precisely between the
probability measures P and p, is one to one.

(ii) Each sequence {n;} of random variables satisfying (a) to (c) can be obtained
in thes way.

Proor. Let S_,., S_pi1, -+, S0, Sy, - -+, Su be arbitrary positive numbers.
In order to prove the equality
(4) I){"—-m = S—My M = SM} = P{ﬂ—m+1 = S——ma Ty Ml T Sn}

it is sufficient to apply the shift transformation S_; times in the formula
(5) P{&Am = ];Es-m-H =0, -- s = 1, ey b= 1, Ssat1 = 0, e b1 =0,
£0= 1y£1 =O)ESI= 17 "',Es,.= 1}.

Hence property (a) has been proved. Property (b) is obvious. Further, by the
stationarity of {¢.} and formulas (1) and (2) we have

, © . 1ao
(6) Ep(nn)=2_:11’{71021}=;_§P{Eo=1;51=07"',£i—1=0}
S Pl = =0, =0, =0 =1
—ai=0 W—i — by §—i4l T Y, y &—-1 — Y, 60 — _a’

Thus (c) is proved, which completes the proof of the first part of our assertion.
Now we shall consider the correspondence between the probability measures
P and p. We have
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@) P(8)

o
(S

ZOP{S—i = 1)3,:—1'+1 = 07 "'750 = 0

= EOP{EO = 1; b= 0; ] Ei = 0) S(i)})

where ™ denotes the event &, shifted to the right ¢ times. Finally, we obtain
from (7) the following formula expressing the probability measure P by the
probability measure p

®) P@®) = a ¥ plw > i, 69).

Now we have to prove only the last part of theorem 1. Namely, we suppose
that conditions (a) to (c) hold, and formula (8) can be regarded as a definition

of the measure P. Evidently we must put a = (f n0 dp)~'. We shall compute
the value of P(6®). We have

(9) P(s®)

a ¥ pl > i, 564}
2

a X [Pl > 5, 69} + pln = 5, 89}] - ap(e)

PE) +a| £ pln =i, 69 - p(®) |

The last expression in brackets, in virtue of the stationarity of the sequence
{n.} with respect to the measure p, is equal to zero. Hence we get P(§V) = P(§)
for all events &, that is, the measure P is indeed invariant.

At the end of this section we give the law for forming statistical mixtures of
the measures P and p.

THEOREM 2. If a measure p; corresponds, in the preceding sense, to a measure
P;, then the measure

(10) (; ai)\i)"l ; ai\ip;

corresponds to the measure 3_; NiPs, where \; > 0 and 2 \; = 1.

The proof of this theorem is not difficult. This rule has, however, an important
consequence which is not quite evident.

TueorEM 3. The sequence {£:} is metrically transitive with respect to the meas-
ure P if and only if the sequence {n;} has the same property with respect to p.

By metrically transitive we mean that each event concerning the variables
£; which is invariant, under the transformation {¢;} — {£.,1}, has P-probability
equal to zero or one.

Proor. The set of P-measures and the set of p-measures are convex. From
theorem 2 it follows that the extremal points of one of the convex sets are mapped
onto the extremal points of the other. On the other hand, extremality and tran-
sitivity are equivalent, which concludes the proof.
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This elegant method, based on notions and theorems of the theory of convex
sets, was successfully used in ergodic theory by Savage and Hewitt.

3. The recurrence transformation

We shall consider a probability space (2, B, p) with a measure preserving
transformation 7', that is, a point transformation from the space @ into itself,
satisfying the following conditions: T-1(B) C B and p[T-(8)] = u(8) for all
& € B. We shall say that T is one-to-one measure preserving if it is one-to-one
from the space @ onto itself, if T(B) = B and if T is measure preserving. Let
& be a fixed measurable set of positive measure. By the famous Poincaré-Zermelo
theorem for almost every point w € & some of its iteration T%(w) for £ = 1 also
belongs to the set & More precisely, we have the relation

(11) lim % ki x(Thw) > 0, ae e
n k=1

where x, denotes the characteristic function of the set &. Hence we can define
on the set & the recurrence transformation 7'¢ by condition

(12) Te(w) L THw) €& and Tiw) & &, 1gi<k

More exactly, this transformation 7'y must be considered on the set

(13) 0% {w:wE & and qn_xs(T"w) = 1}.

Now it is easy to verify that & and &, are almost equal. In our probabilistic con-
siderations, sets of measure zero may be neglected. We emphasize that the
recurrence transformation depends on the choice of the set & and is defined only
on it.

The basic property of the recurrence transformation is

THEOREM 4. T preserves the measure u in the new measure space (8§, & N B, n).

In probabilistic applications we can also consider the normed conditional

measure p:(-) ¥ u(-|8). For the proof it suffices to verify that
14 w® = T uENTHE) N o N THHE) N T4

It is easy to see that the right side of formula (14) is equal to p[T&'(%)].
On the other hand, we obtain by a simple computation

15) Sa= E 8N TAE) N e () TH(E) () THE)

= ”’[Fﬂ N T_”(x)L )

where F, = 8 U --- U T-"(8). We observe now that the limit set lim, F, =
F = 2.0 T-"(8) is almost T-invariant and contains the set ¥. Hence we can
write
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ulF O T®)] ~ ulF — F.) N T-(®)]

p(X) — pwl[(F — Fa) N T(X)].

To conclude the proof it suffices to remark that the second term on the right
side converges to zero.

It is easy to observe close connection of the recurrence transformations with
the theory of stationary sequences of calls. For this purpose it is enough to
consider the exponent k, in the definition (5), as a function of a point w € &.
The measurability of this function ¥ = k(w) is clear. Now we form a sequence

(16) S,

I

an k(w), k(Tew), k(Téw), - --.
In view of theorem 4 this sequence is stationary with respect to the measure
pe, and has exactly the same meaning as the random variables no, 71, 72, « - - con-

sidered above. We must put & £ {§ = 1}, T £ the shift transformation and
we have u 2 P and p = p.

In addition we remark that for each one-to-one measure preserving transfor-
mation T the transformation 7T's is also one-to-one, and therefore we can also
form the negative iterations

(18) s B(T30), k(T %w), k(T ).

We are not going to give a systematic study of the recurrence transformations.

We shall present some formulas and properties only.
(1) Te = (Te)e for measurable sets & C &..

(ii) If the transformation T is metrically transitive then 7'¢ is also transitive.

(iii) If we suppose in addition that the iterations of & cover the whole space
Q, then the inverse implication is also true.

The proof of (i) consists of a simple calculation based on the definition (12).
The proof of (ii) and (iii) is the same as that of theorem 3.

We can raise different problems about the recurrence transformations. For
instance, are various mixing properties hereditary from T on T'¢?

4, The conditional probability for arbitrary processes of calls

We start with a precise description of the measurable space for the process of
calls. Let Q denote the class of all countable subsets of the real axis R, which is
the time axis, that are finite in each finite interval. The elements of @, which are
the realizations of our process, are denoted by w. By N (v, @), or simply by N(Q)
we denote the number of calls in the time set Q, that is,

(19) N, Q) ¥ card (v N Q).

Now we define the class B of measurable subsets of  as the o-field generated
by all the functions N (-, Q), where @ is a Borel set, that is, B is the smallest
o-field with respect to which all functions N (-, @) are measurable. It is obvious
that in the preceding definition we can replace the family {Q} of all Borel sets
by the family of all intervals, or by the family of the intervals with rational
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endpoints. Evidently each » can also be treated as a purely atomic measure,
finite for bounded sets. We emphasize that (2, B) has good set-theoretic struc-
ture. Namely, it is not difficult to prove that Q can be mapped by a one-to-one
function onto the unit interval I and the class B onto the class of all Borel sub-
sets of I. Hence the typical difficulties of the theory of conditional probability
do not occur in our space (R, B).

Let a fixed probability measure P be defined on (2, B). Our next aim is to
give a precise meaning to the notion: the probability of an event & under the
condition that a call occurred at moment ¢. For this notion, not yet defined, we
shall use the symbols P(§|t) or P(8|t € w). Now, we introduce a new assumption,
which is quite natural and at the same time seems to be necessary for our con-
sideration. We suppose that

(20) [ N, QPde) = EN@] < =

for all bounded sets Q. Consequently we put u(Q) £ Ep[N(Q)]. Obviously u
is a Borel measure on the time axis.
For each event & & B the integral

(1) [ %@)N (@, QP@a),

treated as a function of the set @, is an absolutely continuous measure with
respect to u. Hence by the Radon-Nikodym theorem we can write

(22) [ X@N @, QP@s) = [ PElu(@).
Q

For each fixed & the Radon-Nikodym derivative P(§|f) is unique only a.e. with
respect to u, and we can always suppose that it is a “true” measure with respect
to sets & € B. This follows from the previously mentioned property that a
measurable space (2, B) is a Borel space.

Formula (22) can be generalized to

(23) [ 5N @, QPe) = [ w(d) [ f(w)P(dw),
Q

where f is a P-integrable function.

It seems that this way of introducing the probability P(&|t) is appropriate.
We shall only remark that

(i) If there is exactly one call then P(§|¢) is identical with the ordinary con-
ditional probability.

(ii) If some process of calls is realized by the sequence of random variables
Xy, g, - -+, for which P{zx; # z;} = 1 for 7 £ j, in the following sense
NQ YT, xXo(@:) for all Borel sets @, then our assumption (20) takes on the
form Y ;p(Q) = u(Q) < » for all bounded @, where p.(Q) Y Pz € Q).
Moreover, the probability P(8|t) can be written

(24) P(elty = X P(8lz: = t)P(z: = tlt),
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where P(x; = tt) is equal to the Radon-Nikodym derivative du;/dp and can be
interpreted as the conditional probability that the th call occurs at the moment
t, given that a call appears at this moment.

6. The stationary process

Now we shall consider stationary processes of calls. We shall use the following
notations for shifts

w ¥ o+ wEQ —o <1<,
weg ot

We add the new assumption P(8) = P(&) forall § E Band —o < i < o,
As in the case of the discrete time, we have

(26)  P{N(—w,+%) =0 or N(—w,0) =N, )=} =1,
and in what follows we always assume that

@7) P{N(—w, +©) =0} =0

Hence we can restrict our attention to the realizations w with infinitely many
calls in both time directions. First we shall establish the form of the conditional
probability P(g|t), from the preceding section.

THEOREM 5. There exists one and only one probability measure Py defined on
the space (R, B) for which the measure function

(28) IL (gl) £ Po(e),

depending on the parameter t, satisfies the condition (22) for all & € B and Q.
Proor. For the stationary process the measure u is proportional to the

Lebesgue measure u(dt) = o dt, where « is the intensity of calls. Roughly speak-

ing, the matter is quite simple: the new measure Py(8) is equal to P(8|0) and
formula (28) is a special case of
(29) Pejt) = P&t + ),
which seems to be obvious in view of the assumed stationarity. For a precise
proof, let P(&|) be any conditional probability measure satisfying (22). It fol-
lows from the stationarity that for each & € B, s € R, and for almost every i,
in the sense of the Lebesgue measure, the relation (29) holds. In view of the
Fubini theorem we know that there is a number # such that, for almost every
s and for all 8 € B, we have P(8lty) = P(8%|ty + s). The quantifier “for all §”
can be put at the end because P(-|f) is a measure and it suffices to consider only
some countable class of sets & generating the whole field B. It is easy to see that
the measure Py(8) £ P(&b|t,) satisfies the assertion of theorem 5. The proof of
the uniqueness of the measure P, is omitted because it is quite simple.
ReMArRk 1. Now our conditional probability measure P(-|t) can be deter-
mined in a unique manner by equation (29). This “regular’”’ P(-|t) will be used
later.

(25)
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Remark 2. Now the equation (23) takes the form
(30) [ §@N (@, QP@w) = a [ Po(da) [ fw) dt.
Q

Next we give another description of P,. We say that a B-measurable function
f(w) defined on Q is continuous if and only if it is bounded and if for each fixed
o € Q the function f(w?) of the real variable ¢ is continuous.

THEOREM 6. If f is continuous, then

@31) lim — / f(@)P(de) = f F(@)Polde),

-0 o1
(NS 21y

where 0 & I, an interval. Or, in another form,
(32) lim Ep[fIN(I) 2 1] = EPy(f).
\Il—0

Proor. From formula (30) we have
. 1
) Jim o [ SN, D)
_ N R o
= [ P fim i [ s = [ P

and on the other hand
6 | [f@Ne DP@ — g [ sepas)
{(NUI) 21}
saplf@igg [ WD — 1P

(N(I) z1j

The right side tends to zero together with the length of I (compare the theorem
of Koroliuk, p. 39 of [2]).

COROLLARY. Po(Q) = 1, where @ ¥ {0:0 € w}.

For the proof of the preceding very intuitive equahty, we consider a sequence
{fn(w)} of continuous functions defined as

0, d(w) =
(35) fn(w) =

J= 3])—‘

1 — nd(w), d(w) <

where d(w) is the distance of the set » from the point { = 0. By theorem 6 we
have f fa(@)Po(dw) = 1 for n =1, 2, ---, and hence in the limit we obtain
Po() = 1.

We introduce now a sequence {7,(w)} of functions defined on the subspace
Qo sketched in figure 2.
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t=0
Figure 2

Sequence {n.(w)} of distances of successive calls.

THEOREM 7. The random variables {n.} n = 0, 1, £2, - -+ in the measure

space (Qo, % N B, Po) are
(i) nonnegative 9, > 0,

(ii) they have finite first moment Ep(n,) = o' < o,

(i) -, m, n2, - form a stationary sequence with respect to the measure Po.
Conversely each sequence of random variables {n.} satisfying (i) to (iil) can be ob-
tained in this way. Moreover, the correspondence between P and Pg is one to one
and it 1s given by

(36) [ $@)P@e) = « [Pd) [[" ) dt,
2

which 1s valid for all measurable and P-integrable function f.
Proor. Let a be a positive number. We have, in virtue of the stationarity,

@37) f F(w)P(de)
{N(—a,0) >0}
- £ F(w)P(dw)
{NT) >O NI x11) =0, N(I41) =0}
> / J(m-09) P(da),
k=1

{N(I4) >0,N(Io) =

(=]

yor o N(I2) =0}

where 8 Z a/n and I Z [ks, (k + 1) 8]. Consequently, we obtain
ma(w)

8) [ sora =5 [ pas s s,

{N(—a,0) >0}

where m, Z nfo/n] — 1 and ¢ 4 min (o, a). When n — «, the Riemann sums
(39) 5 3 flumo- / " S de
= 0

in a bounded manner with respect to the variable w. In virtue of theorem 6 we
obtain

(40) [ f(@)Pdw) = a / Po(dw) L mintm ) ety dl.

{N(—a,0) >0}
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Finally, if ¢ — 4 in the last formula, we obtain the equality (36) for each
continuous f and, consequently, for each P-integrable function.
Now from formula (36) we obtain, by putting f = 1,

#1) 1=a ] mPo(dw) and  Ep(n) = o,
Qo
Next we must prove property (iii). Let xs(w) be the characteristic function of

the event {w: N(w, I) = 1}, where I = (0, d),.
From (31) and (36) we have for each continuous f

(#2) [ sepsas) = tim 25 [ ser)

: ) l ™t —t
= lim f Polde) } f S )x(e?) dt

i [ P L [ -
) }gnos[ o) 8 /max(mw.O) flo) dt
- / Fwm) Po(de).

£/

Hence we have obtained the important equality
(43) [ f@Pude) = [ flo=m)Po(de),
D Qo

valid for all continuous f, and consequently for all bounded measurable functions
since, by iterated passage to the limit, we obtain all measurable functions from
continuous functions. The last formula expresses the stationarity of {5.}. Hence
statements (i) to (iii) are proved.

We shall now give the proof of the inverse implication. We suppose that (i)
to (iii) hold and a probability measure P, satisfies (43). We define the measure
P by formula (36).

(44) [ $@)P@a) £ g [Po(da) [[” ) dt,
where )

(45) 8 £ [ [n(@)Puds) ]

From (43) we obtain )

(46) [ stp@a) = b [Putde) [TE750 s at

fork = 1,2, - -+ and consequently,
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m+...

@7) ] f@P(e) = g lim [Pode) oy ﬁ ™ fwty dt,
(97

and by analogy for arbitrary real s

48 ~VP(dw) = B lim [Polde) —— [T (o) dt

4 [feop@s =5 im [P 5 [ fa dt.
Qo

Hence

(49) [ $eP@s) = [ fw)P@e),

that is, the measure P is invariant.
In addition we must prove that the conditional probability induced by P and
denoted for the moment by P* is identical with P,. We have by (36)

(50) f f(@)P(dw) = « [ P*(dw) ﬁ] " f(wt) dt.
Let x; have the same meaning as before. We obtain

(51) [ %6(@)P(dw) = 8 [Po(de) min (3, m),
and "

(2) lim: / xi(@)P(ds) = o, lim;8 [Polde) min (5, m) = .
§—0 §—0
Qo

Therefore, a = 8.
From (44) we have, by the previous reasoning, the equality

(53) [ P*da)f(@) = [ Pa(def@=)

which is valid for all continuous f. Then P* = P,.
Finally we give an analogy of theorem 3 which can be proved in a similar way.
TuaeoreM 8. The measure P is metrically transitive if and only if the measure
P, is metrically transitive. ’
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