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1. Introduction

Some of the simpler theoretical models which have been proposed for phe-
nomena (for example, the competition between species or the occurrence of
epidemics) which involve stochastic interactions between several populations
have the common feature that they are Markov processes, homogeneous in time,
with a countable set of states (m, n) where m and n represent the sizes of two
populations. These processes are specified by prescribing the rates at which
transitions occur, only transitions to "neighboring" states being allowed: a
formal definition of such "competition processes" will be given in section 2.

It is usually difficult to find explicit formulas for the transition probabilities
pij(t) of a Markov process, or even for their limiting values 7rij as t -- oo, when
the process is defined in terms of the transition rates. However, there are simpler
questions worth an answer, relating to recurrence and mean recurrence times
and, if there are absorbing states, to absorption probabilities and mean absorp-
tion times. We shall discuss such problems for competition processes.

2. Definitions and statement of results

2.1. We consider a time-homogeneous Markov process with a countable set
of states i, j, k, - - , continuous time parameter t, and transition matrix
{p1j(t)}. The process will be specified by prescribing the transition rates

(1) =qij p' (O)
subject to the conditions

qij _ O, i#j,

(2) -qii= qi 0,
E qij qi < w.

joi

At least one such transition matrix exists; if there is exactly one, we call the set
Q = {qij} and the unique associated transition matrix regular. (Thus regularity
means that the prescribed transition rates do in fact specify the process: see [7]
for further discussion.)

Suppose now that the states are labeled (m, n) where m, n = 0, 1, 2, **,
and that Q has the structure
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J qij
(m + 1, n) a(m, n) for i = (n, n),
(m,n + 1) b(m,n)
(m - 1, n) c(m, n)

(3) (m,n - 1) d(m,n)
(m - 1,n + 1) e(m,n)
(m + 1,n - 1) f(m,n)

other j $i 0

where a(m, n), * , f(m, n) _ 0, and qii is determined from (2), that is,

(4) -qii = qi = a(m, n) + b(m, n) + - + f(m, n).
Also, because there are no states with m < 0 or n < 0, we must have

c(0,n) =e(0,n) = 0 for n =0, 1, 2,***;
(5) d(m, 0) = f(m, 0) = 0 for m = 0,1, 2, .

More briefly, jumlips from (m, n) always lead to one of the adjacent states
(m i 1, n), (m, n + 1), (m - 1, n + 1), (m + 1, n - 1), but the boundaries
m = 0 and n = 0 of the positive (m, n)-quadrant cannot be crossed.
A process for which Q has this form will be called a competition process; it is

the natural analogue, in two dimensions, of the familiar orne-dimensional birth
and death process.

2.2. The limits
(6) rij = lim pij(t)

t-o

always exist; the structure of the set {lrij} and the resulting classification of
states are described in [6], where also some methods for calculating the 7rij from
the qij (for regular Q) are given. We have no explicit formulas for the 7rij arising
from a competition process, but we shall give conditions on the qij which ensure
that the process is "nondissipative" in the sense that

(7) 7ri, = 1, for all i.

It will be convenient to supplement (3) to (5) by further assumptions about Q,
relating to the absorbing states (with qi = 0) and to communication between
states. We say that j is accessible from i if there is a chain of states ki = i,
k,, * * *, k,,1, k1 = j such that qk.k,+, > 0 for r = 1, - - *, n - 1 (this implies
that pi3(t) > 0 for t > 0), and that Q is irreducible if each j is accessible from
every i. Now define two types of competition processes

Type I. a(m, n) = ... = f(m, n) = 0 when m = 0 or n = 0, so that all
states (m, 0) and (0, n) are absorbing. Further,

(8) a(m, n) + b(m, n) > 0, c(m, n) + d(m, n) >0

when m > 0 and n > 0; for each nonabsorbing state i, some absorbing state j
and every nonabsorbing state j is accessible from i.
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Type II. Q is irreducible (so that there are no absorbing states) and (8) holds
for all (m, n) - (0, 0). Note that, necessarily, c(O, 0) = d(O, 0) = 0 because of
(5), but that a(O, 0) + b(O, 0) > 0 because (0, 0) is not absorbing.
These definitions are designed to include two interesting examples.
Example 1 (see section 3.4 in Kendall [5]). This example, relating to competi-

tion between two species, has

a(m, n) = am, b(m, n) = 3n, c(m, n) = ymn,
d(m, n) = bmn, e(m, n) = f(m, n) = 0, a, , > O.

This, as it stands, does not belong to type I, but it will be noted that once m or
n becomes zero it remains zero; then one population becomes extinct and the
other grows according to a simple birth process. Thus the most immediately
interesting question is that of extinction probabilities, and if in treating this
question one adopts the standard device of "freezing" the states (m, 0) anid
(0, n) by making them absorbing then the process becomes of type I. The non-
dissipation property (7) then states that extinction of one or other of the popu-
lations is almost certain. If this is so, one will naturally ask also whether the
mean time for extinction is finite.
Example 2 (Bartlett [1], section 2). This example relates to the growth of an

epidemic; here m and n are the respective numbers of susceptible and infectious
persons, and if one allows for immigration then

(10) a(m, n) = a, b(m, n) = fi, c(m, n) = yan,
d(m, n) = An, e(m, n) = emn, f(m, n) = 0, a,3 _ ;;y,v , E > 0.

Here an immediate question (when a + , > 0, that is, immigration occurs)
is whether the process is "positive recurrent" (in the terminology of [6]), or
equivalently, whether it is nondissipative.

2.3. To state ouir results, put

(1) Irk = max [a(m, n) + b(m, n)],
Sk = min [c(m, n) + d(m, n)],

max and min being taken over (m, n) with m + n = k and in > 0, n > 0
(type I), m _ 0, n > 0 (type II). Thus rk, Sk are defined and positive when
k _ 2 for type I, defined when k _ 0 and positive except for so for type II.
THEOREM 1. A sufficient condition for regularity is

(12) + Sk + + Sk ... S
( k=2 rk rkrk-1 rk ... r2=

THEOREM 2. For a regular process of type I, let A denote the set of absorbing
states, D the remaining set of states (m, n) with m > 0 and n > 0. Then 7rij = 1 if
i = j E A, while ?rij = 0 if j C D, and 7rijfor i E D andj E A is the probability
that the process, starting at i, will ultimately enter (and then remain in) the state j.
Hence ao = Jj 7rij, with i C D, is the probability that some absorbing state is
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reached from i. Either ai < 1 for all i E D or ai = 1 for all i E D; the latter
occurs if

(13) =52* k X
k=2 r2 . . .rk

THEOREM 3. If in theorem 2 ai = 1 for all i E D, let Ti be the mean time to
reach A, starting at i C D. Then Ti < o for all i C D if

4 r2 ... rk-<
k=2 S2 ... Sk

THEOREM 4. For a regular process of type II, either 7rij = 0 for all i, j, or
wij = 7rj > 0 is independent of i and ,j;rj = 1; the latter occurs if
(15) Er1 * <

k= 1 SI ... Sk

For the twvo examples mentioned in section 2.2, theorems 1 anld 4 show that
the process in example 2 is regular and positive recurrent (when a, f3 > 0); for
the process in example 1, theorem 1 proves regularity but theorems 2 and 3 do
not always apply. We therefore prove separately
THEOREM 5. For the process in example 1, absorption is certain and the mean

absorption times Ti are finite.

3. Proofs of theorems

3.1. For theorem 1 we use the regularity criterion (theorem 6 in [7]):
(A) Q = {qij} is regular if, for each X > 0, the equations

(16) Xzi = qij z,

where 0 _ zi < 1, have only the trivial solution z =- 0.
To deduce theorem 1 from (A), suppose first that we are dealing with type II,

let (12) hold, and let {zi} satisfy (16) and 0 _ zi < 1. Writing z(m, n) for zi
wheni i = (m, n),

(17) [X + a(mn, n) + + f(mn, ni)] z(mti, i)
_ a(m, n) z(m + 1, n) + b(m, n) z(m, it 1)

+ c(m, n) z(n- 1, n) + d(m, n) z(m, n - 1)
+ e(m, n) z(m - 1, n + 1) + f(m, n) z(m + 1, n -1)

for m _ 0 anid n > 0; the values assigined to z(-1, n) and z(m, -1) are imma-
terial because of (5). Now put
(18) Zk = max z(m, n),
max being taken over (m, n) with m > 0, n > 0, m. + 7 = k. If this maximum
is attained at (mk, nk), then (17) gives
(19) [X + ak + - * + fk]Zl _ (ak + bk)Z%k+ + (Ck + dk)Zk-1 + (C,. + fk)Zk,
where ak = a(mk, nk), - * *, fi- = f(min, nk). Thus



COMPETITION PROCESSES 425

(20) (ak + bk) (Zk+l - Z,) _ (c, + dk) (Zk - Zk-1) + XZk
for k _ 0 if we define Z-1 arbitrarily. It follows, by induction, since Zk _ 0 for
k > 0, that Zk+l - Zk _ 0, and therefore, because ak + bk _ rk and Ck + dk > Sk
[compare (Il)], that

(21) rk(Zk+l - Zk) _ Sk(Zk - Zk-1) + XZk.
If z(ni,t n) is not identically zero, let ko be the first k for which Zk > 0. Then (21),
combined with the fact that Zk increases with k, leads to

(22) _+1 Z (Z_ - Zk-1) + r Zk0, k _ ko,
rk rk

whencre

(23) Z+l - Zk- Zko + k + + .Sk *Sko+11Irk rk-rk1 rk, ... rk, I
_ B [ + k + + Sk . ..3

Irk rkrk-1 rk *-- r2

where B > 0 is independent of k. But from (12) it then follows that
,(Zk+l-Zk) diverges so that Zk -X 0, contrary to the assumption that

z(m, n) _ 1. Thus z(m, n) = 0, as required.
The proof of theorem 1 for type I is almost identical: it is only necessary to

observe, in using (A), that any zi _ 0 satisfying (16) must be equal to zero
whenever qi = - qii = 0 (that is, i is an absorbing state), so that absorbing
states can in effect be ignored. Thus the argument for type II, referring to states
with m > 0 and n _ 0, merely needs rewording for type I so as to refer onlly to
states with m > 0 and n > 0.

3.2. For theorem 2, all but the last assertion, that (13) is sufficient to ensure
ai = 1 for all i E D, follows from the description of the structure of {7r4jj given
in [6], section 4. To prove the last assertion, we use a test for nondissipation
which is the analogue for continuous time processes of a test for discrete time
processes due to Foster [2] and Kendall [4].

(B) Suppose Q regular. If there exist ui _ 0 sntch that uii-i as i x and

(24) E qij ?j _ 0 for all i,

then

(25) E rij 1 for all i.

We postpone the proof of (B) to section 3.5; to deduce theorem 2 from (B) we
try to find ui = u(m, n) = U,,+n which satisfy (24). Since (24) holds automat-
ically for absorbing i, we require that

(26) [a(m, n) + - * + f(m, n)] Um+n _ [a(m, n) + b(in, n)] Um+n+l
+ c(m, n) + d(in, n)] Um+nl- + [e((m, n) + f(m, n)] Um+n

for m > 0 and n > 0. This will be so if we define Uk recursively by
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(27) Sk(Uk - Uk-1) = rk(Uk+l - Uk) for k >_ 2,
with U, = O and U2 = 1, say. This gives

(28) Uk = 1 + I + .+ S2 .. Sk-1
r2 r2 -... rk-

and therefore Uk - oo as k -+ oo when (13) holds, and (B) can be applied with
(29) ui = Um+n for i = (m, n).

3.3. For theorems 3 and 5, we use the criterion (C): Suppose Q regular;
denote the sets of nonabsorbing and absorbing states by D and A; let ai, with i C D,
be the probability of reaching some state in A from i, and ri, with i E D, the expected
time to reach A from i. If there exist finite uj _ 0 such that
(30) Eqi>ju+1<0, iED,
then ai = 1 and ri _ ui <c.
To prove theorem 3, suppose that (14) holds anid take ui = Um+n > 0 when

i = (m, n). Then (30) will hold if
(31) (a + b)Um+n+l + (c + d)Um+n-I + 1 < (a + b + c + d)Um+n
when m > 0, n > 0, where a = a(m, n), *- . Thus it suffices to have Uk in-
creasing and

(32) rk(Uk+l - Uk) + 1 _ Sk(Uk - Uk-1)
for k _ 2. This can be achieved by setting Uk+l- Uk = Vk, choosing U, > 0,
V, _ 0, and defining Vk recursively by rk Vk + 1 = sk Vk_i, with k > 2, so that

(33) Vk = 2 ..Sk [V _(1 + r2 + + r2 ... rk-1
r **.*rk \ S2 S253 S2 ... Sk JJ

Since (14) holds, we can ensure that Vk _ 0 by choosing V1 sufficiently large.
The ui used in the proof of theorem 3 are too crude to prove theorem 5. In

example 1,
rk = (k - 2) max(a, ,B) + (a + ,B),
Sk = (y + )Q(k- 1),

and therefore (14) is violated if max(a, f3) > -y + S. The ui we use are defined,
when i = (m, n), by

(35) u(m, n) = m + n + A [1_pm) + (1_pn)]

wvhere the choice of A (large) and p (small) is described later. For (30) we then
require
(36) ymn(1 + Apn) + amn(l + Ap"')

- am(1 + Apm-i) - j3n(1 + Apn-1) > 1.
We choose p _ 1 so that
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11
(37) Po -5 2 6 P9 -9 2 ^//

then choose the integer N so that
(38) pNa> a + 1, pNy _ , + 1,

and finally A so that

(39) 2 bApN-1 >a+1, - ApN-1> +1(39) ~ 2 2

We now check (36), whose left member we call v(m, n), in four possible cases.
(i) m <- N, n <- N.

(40) v(m, n) > -yn(1 + Ap-1) - On(1 + Apn)

+ bm(1 + Apn-') - am(1 + Apm)
= m[- a + Apm-l( - pa)] + n[,y - + Ap-'(,y - p#)].

Here we have

(41) -a + Apm-l(S-cpa) _ ^ a + Apv-1( )

>5-a+a+ 1>1,
similarly

(42) y -13+ Ap(,y - p1) >1,

hence v(m, n) > m +n> 1.
(ii) m > N, n > N.

(43) v(m, n)
> ('yN -,)n + A(p'yN - 1)npn-' + (6N - a)m + A(p8N -a)mp
> m + n > 1,

since yN _ 13 + 1, SN _ a + 1 and pyN > 13, p8N> a.
(iii) m < N, n > N.

(44) v(m, n)
_ zyn(l + Apn-1) - 1n(l + Apn) + (5N - a)m + A(pBN - a)mpm-
> m + n >1,

as in (i) and (ii).
(iv) m > N, n N.

Similar to case (iii).
3.4. In theorem 4 the first assertion again follows from general theory (com-

pare [6]). To prove that (15) is sufficient for nondissipation, we cannot apply (B),
because (24) can be shown (as in [4]) to imply the existence of a finite closed set
of states. Instead we use a criterion whose analogue for discrete time is due to
Foster [3].



428 FOURTH BERKELEY SYMPOSIUM: REUTER

(D) Suppose Q regular and irreducible. If there exist a state I and Ui 2 0 such
that

E_ qijuj + 1 _, 0, i 6 I,
(45)

E qijuj finite, i = I,

then ,_irij = 1 for all i.
The construction of such ui, taking I = (0, 0), and assuming (15) to hold, is

almost identical with that in section 3.3.
Proofs of (D), together with those of (B) and (C), follow in section 3.5.
3.5. We now prove the criteria (B) to (D) used above.
For (B) and (D) we need two facts connected with ,ij(X), the Laplace trans-

form of the p1j(t) associated with a regular Q (compare [7]). First

(46) 7rij = lim X ij(X)

and secondly
(E) If ui > 0, vi is bounded below, X > 0, and

(47) Xui _ vi + Lqi,uj,
then

(48) uj _ E Soij(x)vj.

(E) is an extension of theorem 5 in [7], and can be proved similarly.
To prove (B) note that (24) implies, for each X > 0, that

(49) Xui > Xui + qijuj;

thus (E), with vi = Xui, gives
(50) ui >_ L )"PiA< )ujj

Letting X I 0 and using (46), we get
(51) us > rijuj

and the argument of Kendall in [4] then shows that Fj 7rij = 1 for all i.
To prove (D), write (45) as

(52) 0 _ ci + L qijuj,
where ci = l for i # I and ci = -_j qijuj. Then
(53) Xui > ci + E qijtj, X > 0,

whence by (E)
(54) uj > E ij(x)cj

= E PiA(X) + 'ip(x)cx
X-1 + (cl-l)soiG\)
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l)ecause 3jpq,(t) = 1 so that ;jpij(X) = X-1. Hence

(55) XuIl > I + (cy - l)Xvir(x),
and X X 0 gives
(56) 0 >_ 1 + (CI -l)7ril-.
This shows that 7riI $ 0 for all i, and the irreducibility of Q then implies that
F.j7ri = 1 for all i.

Finally we prove (C). There is no real loss in assuming that there is just one
absorbing state, i = 0 say (otherwise we modify Q so as to combine all absorbing
states into one). The fact that ai = 1 follows from the argument in (D) above.
Since co = 0, relation (56) gives
(57) 1-7rio _ °
so that a!i = rio = 1. Next, note that pio(t) is increasing and pto(t) is the prob-
ability density of the absorption time. Hence

(58) fi= fo tp,o(t) dt.

We can express this in terms of (pio(X) by observing that X-1(1 - e-') T t as
X M 0, so that

(59) ri = lim f X'(1 -e-e')p,o(t) dtx, ~o fJ0
= lim 1- XsOio(x)

X1~0 x

where the last evaluation follows by integrating the previous integral by parts.
Now suppose that ui _ 0 and

(60) L qijuj + 1 _ 0, i wd 0-
Then, for X > 0,

Xui _ (1 -bio) + E qijuj,
(61) j

Ui >- E Pi(X) = X`[1 - xo(x)]
jo0

so that, letting X 0, we get

(62) ri = lim X-'[l - Xvoo(X)] _ ui.
?0
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