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1. Introduction

1.1. Summary. This paper is a contribution to the study by lattice methods
of stationary submarkovian processes on a denumerable state space. Our re-
striction to such simple spaces is only for clarity; it is by no means a restriction
on the validity of the lattice methods. We have tried to present in this paper a
synthesis of results recently obtained in the field of submarkovian processes as
well as a certain number of new results.
We thought it preferable to introduce vector lattices only through their cones

of positive elements (to be called L-cones); the basic notions concerning them
are briefly summed up in this introduction. No representation using Stonian
spaces has been introduced in this work.

Let P = {Pt, t _ 0} be a submarkovian process on the denumerable set A.
Then to every stochastic function {Xt} defined for t > 0, with transition laws
given by P, is associated a family f = {ft, t > 0} of positive measures on A of
total mass _ 1 (the instantaneous laws of the Xt) such that
(1.1.1) f.Pt =fts, t > 0;
and conversely. There exists an initial distribution fo such that ft = foPt when,
but only when, {Xt} can also be defined for t = 0. Recent advances in the theory
have shown the interest of considering solutions of (1.1.1) with no restriction
on the total mass of the ft (which may even be infinite); for these more general
solutions of (1.1.1), we prove in section 2.1 the following three basic properties:

(a) the t-functions ft(i) are continuous on [0, 00);
(b) the set F(P) of all solutions f is an L-cone;
(c) the Laplace transform maps a "bounded solution" f onto a solution

f= {fs, x > O} of the equations fj[I + (y - x)Rs] = fs, where x, y > 0, and
conversely.

Since the positivity and the continuity properties of the matrices Pt are the
essential conditions under which these statements are true, it is remarked in
section 2.2 that similar statements are valid for the positive solutions g=
{gt, t > 0} of Ptg8 = g,+t with s, t > 0.
Given two processes P (on A) and P' (on A'), families C = {C, t; s, t > 0} of
positive matrices on A X A' that satisfy the relations
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(1.1.2) PusCs,PuC,e+Ut,CJ CPUC8t+u9 , 1, it > 0,
will be called forms from section 2.3 onwards. A positive matrix r on A X A'
may define a form by C., = PTrP' but the converse is false in general. The
relations (1.1.2) are a two-parameter generalization of (1.1.1); therefore, proper-
ties analogous to (a) to (c) hold for forms. However, the property analogous to
(b) will not be used here.

Properties of type (a) will be seen to be fundamental in proving continuity
and differentiability of the transition functions or of other functions related to a
process; they also lead to a great many simplifications in several of our proofs.
Properties of type (b) give basic structural results. As for the Laplace transform,
we have employed it primarily as a tool, always stating the results relative to
the process P rather than relative to its resolvent R.
The notion of form assumes its importance after a natural order relation

between submarkovian processes has been introduced in section 3.1 under the
name of "dominance"; in fact, theorem 3.1.1 can be considered as the central
result of this paper. In section 3.2, we show that this theorem immediately
implies as a very particular case the so-called generalized Kolmogorov equations
(Kolmogorov [16], Austin [1], Chung [5]); this example was also intended as a
demonstration of the general fact that the use of solutions of (1.1.1) rather than
the use of initial distributions lead to equations (here the generalized Kolmogorov
equations) rather than to inequalities (here the classical Kolmogorov inequali-
ties). Given two processes P and P' such that P' dominates P, we study in
section 3.3 (see also section 3.5) the mutual relations between F(P) and F(P').
Although the development of this paper is purely analytical, the following sto-
chastic interpretation of part of theorem 3.1.1 and theorem 3.3.2 could have
been given: if P' dominates P, there corresponds to every initial distribution a
probability space and two submarkovian stochastic functions X and X' with
the given initial distribution, with respective transition laws P and P' and such
that X, = X, as long as X has not "escaped to infinity"; this remains true if
instead of an initial distribution two families f and f' of instantaneous distribu-
tions are given which are in (u, u') correspondence. Moreover the expression
C.,t,,(i, j)ds is the probability that X: = j and that X escapes to infinity during
the time interval (s, s + ds), conditionally when the initial state is i.
With no continuity or measurability assumption, a semigroup {P,, t > O} of

submarkovian matrices on a set A is also shown in theorem 3.3.1 to be continu-
ous, that is, to be a submarkovian process on a subset of A, whenever it is
dominated by an auxiliary arbitrary process. Given a submarkovian process P
this general result leads us in section 3.4 to an elementary construction of the
process pB which describes the evolution of the submarkovian functions up to
the time they reach the "taboo set" B (see Chung [7]); pB is a process only on a
subset of B', say (a)'. We show that B --X. is the closure operation in a
Hausdorff topology on A, that the process pB only depends on B through R and
that the processes PB all together satisfy a capacity-type inequality (see Choquet
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[4]). The process pB may also be characterized as the largest process on a subset
of B which is dominated by the given process P on A, We put special emphasis
on the case B finite; in this case it is possible to give a satisfactory description of
the process P from the data of PB; this description is independent of whether
the states of B are stable or instantaneous. More details may be found in an-
other paper (Neveu [20]).
The last chapter is devoted to construction of submarkovian processes. The

general problem of characterizing and constructing all processes P' which domi-
nate a given process P is considered and nearly solved with the aid of two types
of constructions: (1) a perturbation construction which generalizes a well-known
construction due to Feller, so as to include escape to infinity and immediate
return in the set A of states according to given probability distributions on A;
(2) a construction related to absolute dominance, which necessitates the notion
of local time (Levy [17]) in order to be fully interpreted stochastically (for
such an interpretation, see Neveu [20]).
Our great debt to Feller's previous works (Feller [10], [11]) probably appears

most clearly in section 4; his two papers originate the systematic study of sub-
markovian processes by lattice methods, to which we bring the present contri-
bution.

1.2. Submarkovian processes. Let A be a denumerable nonvoid set. A matrix
P on A is said to be submarkovian [Markovian] if it is positive and if
,, P(i, j) _ 1 [= 1] for every i C A. In particular, for any subset B of A, the
matrix IB on A is submarkovian if it satisfies the two conditions (1) IB(i, j) = 1
if i = j C B and (2) IB(i, j) = 0 otherwise. The matrix IA I is Markovian.
For any submarkovian matrix P and any positive measure f [function g] on

A with finite or infinite values, we denote by fP [or Pg] the positive measure
[function] on A defined by the formula fP(j) = E_f(i)P(i,j) [or Pg(i) =
Ej P(i, j)g(j)] with the convention that c-oo = X c = oo or 0 as c > 0 or
c = 0. The cone L+(A) [L+(A)] of positive bounded measures [functions] on
A is invariant under any submarkovian matrix P; more precisely, we have
jJfP|J _ llflll and lIPgllJ _ jIgil. if lIlfill is defined on L+(A) as ,if(i) < oo
and if Ijgjl, is defined on L+(A) as sup,g(i) < X. The function equal to one
everywhere on A will be denoted by e, so that Pe . e [Pe = e] holds for any
submarkovian [Markovian] matrix. For any given positive measure f and func-
tion g, we put (f, g) = Fjf(i)g(i) . Xo, so that

(f, g) :9 Iifil I gi 1. if f Ez L1+(A); g E L+(A);
(1.2.1) (f, e) = llfflli iff C L+(A);

(fP, g) = (f, Pg) for any f, g.
Convergence of functions, measures, and matrices will always refer, unless
otherwise stated, to pointwise convergence; free use will be made of the classi-
cal monotone convergence theorems and of the Fatou lemma.
The term semigroup of submarkovian [Markovian] matrices will designate a

family {Pt, t > 0} of submarkovian [Markovian] matrices such that P.P, = Ps+t
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for s, t > 0, where t E R+ is a real strictly positive parameter. However, in
sections 3.3 and 3.4 semigroups {Pt, t E K} of submarkovian matrices depend-
ing on a parameter t in a dense semigroup K of R+ will be considered. Such a
semigroup which is also continuous in the sense that the t-functions Pt(i, j) are
continuous on [0, 00) with limits I(i, j) as t 1 0 for all i, j E A, will be called a
submarkovian [Markovian] process on A. The condition lim, o P8(i, i) = 1 for
all i E A, is known to be sufficient for a semigroup of submarkovian matrices
to be a submarkovian process; the proof of this fact rests on the following general
inequality which is valid at least for any f E L+(A)

(1.2.2) llfP8+t - fPtlll _ 2 Ef(i)[l - P.(i, i)] -O0, s 1;t > 0.

The matrices R. = f0 dt exp (-xt)Pt defined for 0 < x < X are called the

resolvent matrices of the process P = {Pt, t > 0}. To the three elementary
properties of the measures dt exp (-xt) on [0, c),

(a) dt exp (-xt) is a probability on [0, 00);
(b) | dtxexp (-xt)--O as x --*oo for everye > 0;
(c) dt exp (-xt) - dt exp (-yt) + (x - y) dt exp (-xt) * exp (-yt) = 0,

where * denotes the convolution product on [0, oo), there correspond the three
following properties of the resolvent matrices

(a) xR, is a submarkovian [Markovian] matrix for every x;
(b) xR -*I as x--> ;
(c) R. - Ry + (x - y)RJR, = 0 for every x, y. It will be convenient to re-

write (c) in the equivalent forms

(c') R. = [I + (y-x)R.]R. = R[I + (y-x)R], 0 < x, y <0o;
(c") I + (z - x)Rz = [I + (y - x)R.][I + (z - y)Ry]

- [I + (z - y)Rj][I + (y - x)R.],
0 <X, y, Z < o

1.3. Cones and lattices. Let E be a partially ordered linear space, that is, a
linear space on which a partial order is defined by f, < f2 if f2- fi E E+ where
E+ is a convex cone in E such that f C E+, -f C E+ #f = 0. The elements of
E+ are called positive (O is positive).
DEFINITION 1.3.1. An L-cone F in a partially ordered linear space E is a sub-

set of E+ with the two properties
(a) f,, f.,f^EFand E_cifiE E+X=*E_cifiCEFfor any setci,*cl ,cnofn

real constants (positive or negative) and for any n > 0;
(b) every nonvoid subset H of F which is bounded above by an element of F has a

least upper bound (l.u.b.) in F, denoted by VH.
It readily follows from this definition that (1) F is a convex subcone of E+

[a property which is not equivalent to (a)] and (2) any finite nonvoid subset
{ff1... , f,n} of F, being bounded above in F by fi + * + fn, has a l.u.b., also
to be denoted by fi V ... V fn.



LATTICE METHODS 351

LEMMA 1.3.1. Every nonvoid subset H of F has a greatest lower bound (g.l.b.)
in F, to be denoted by AH or by fi A AA f,n when H = {f" * * *, fn} .

PROOF. The general identity fi A f2 = fi + f2 - fi V f2 implies that g is a
lower bound of H in F if and only if g ho- (ho V h) + h for every h E H
and for a fixed but arbitrary ho in H. As a consequence, ho- VH(ho V h -h)
is the g.l.b. of H in F.
Two elements fi, f2 of an L-cone F are called disjoint when fi A f2 = 0, or

equivalently when fi V f2 = fi + f2.
DEFINITION 1.3.2. A convex subcone F1 of an L-cone F in E is said to be thick

in F if it satisfies the condition
(1) fE F, fi E F1, f _ f1 ofC F1.

If it also satisfies the condition
(2) every nonvoid subset H of F1 that is bounded above in F has a l.u.b. in F1

(that is, VH E F1 whenever it is in F), the convex subcone F1 of F will be called a
positive band of F.

It is obvious that a convex subcone F, of F that is thick in F is itself an L-cone
in the partially ordered linear space E.
An important remark. The notion of L-cone is equivalent to that of complete

vectorial lattice. Indeed it is easily verified that (1) the cone of positive elements
of any linear subspace of E which is a complete vector lattice for the order
induced by E, builds an L-cone; (2) the linear subspace of E generated by an
L-cone F (to be denoted here by [F]) is a complete vector lattice for the order
induced by E of which F is the cone of positive elements. Moreover, F1 is thick
in F if and only if [F1] is thick (Bourbaki [3], chapter II, section 1, no. 6, ex. 4)
in [F]; similarly F, is a positive band in F if and only if [F1] is a band (bande in
Bourbaki [3], closed 1-ideal in Birkhoff [2]).
We introduced the notion of L-cone because it seemed to us that in the appli-

cations to the study of submarkovian processes, only the positive elements of the
complete vector lattices to be considered were of interest (see also theorem 1.3.3
below and the related remark). It is also our opinion that the statement of the
fundamental Riesz theorem (theorem 1.3.1) is more natural (see its proof in
Bourbaki [3]) and more intuitive when it is given for L-cones than when it is
given for complete vector lattices.
THEOREM 1.3.1 (F. Riesz). Let H be a nonvoid subset of an L-cone F. Then

the set H1 of all elements f of F such that f _ F, hi for at least a finite family
{h1, * , h,} C H is the smallest convex subcone of F thick in F which contains H.
The set B1 of all existing l.u.b. of subsets of H1 is the smallest positive band of F
containing H. The set B2 of all elements of F disjoint from all elements of H is a
positive band; the set B2 is also the set of all elements of F disjoint from every element
of Bi.

Every element f of F is uniquely decomposable into the sum of an element of B1
and an element of B2; that is, F = B1 + B2. The set B1 is also the set of all elements
of F disjoint from every element of B2.
For the proof of this theorem we refer the reader to Bourbaki [3]. To every
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positive band B of F there corresponds the so-called complementary positive
band B- of all elements of F which are disjoint from every element of B; then,
F = B + Bi- and (B-L)I = B.
The next theorem will be seen to be of basic importance.
THEOREM 1.3.2. Let F and F' be two L-cones and let u and u' be two additive

increasing mappings respectively defined from F into F' and from F' into F such
that

utu > I on F, uu' _ I' on F'.

Here I and I' are identical mappings of F onto F and of F' onto F' respectively.
Then the L-cone F is isomorphic by u and u' to the positive band F' of F' of the
elements f' such that f' = u[u'(f')]; the complementary positive band (F')' of F'
in F' is composed of the elements f' such that u'(f') = 0.

PROOF. We first show that u'u = I on F. Indeed, iff E F let h = u'[u(f)] -
f C F. It then follows from u(h) uu'[u(f)] - u(f) _ 0 that u(h) = 0 and
that h = 0 since h _ u'[u(h)] = 0.
The subset G' = {g': u'(g') = 0} of F' is clearly a convex subcone of F' thick

in F'; to show that G' is a positive band, let us consider a subset H' of G' for
which VH' exists in F' and let us prove that VH' = G'. But for every h' C H',
we have

(1.3.1) u[u'(VH')] = u[u'(VH' - h')] _ VH' - h'.

Hence u[u'(VH')] = 0 and u'(VH') = u'u[u'(VH')] = 0, that is, VH' E G'.
If F' denotes the complementary positive band of G' so that G' = (F')l also,

we finally show that uu' = I' on ' so that our theorem will be reduced to
lemma 1.3.2 below. If f' C I', let h' = f' - uu'(f') E F'; from h' _ f' it follows
that h' E F'; from u'(h') = u'(f')- u'u[u'(f')] = 0, it follows that h' E G'.
This is possible only if h' = 0, that is, uu' = I' on F'.
LEMMA 1.3.2. The two L-cones F and F' are isomorphic if and only if there

exist two additive and increasing mappings u and u' respectively defined from F
into F' and from F' into F such that u'u = I on F, and uu' = I' on F'.

PROOF. Being additive and increasing, the mappings u and u' are necessarily
linear in the sense that

U

n Cii\ n n

(1.3.2) u =, ciu(fi), fi, * ,fn E F; , ci,f; E F.

Since the mappings u and u' are clearly oInto F, it only remains to show that
they commute with the V operation. But for every subset H of F which is
bounded above, we have u(VH) > VHu(h), since u is increasing. These two
elements of F' are necessarily equal since their u'-images in F are equal by
virtue of
(1.3.3) VH = u'[u(VH)] > u'[VJ/u(h)] > VHu'[u(h)] = VH.

We end this section by giving a class of L-cones which one frequently en-
counters (Feller [10]) in the theory of submarkovian processes.
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THEOREM 1.3.3. Let E be an L-cone and let q be a set of additive increasing and
continuous mappings from E into E which commute 2 by 2. Then the convex sub-
cone F of the elements of E which remain invariant under the mappings of q is an
L-cone for the order induced by E.
An increasing mapping Q from E to E is said to be order-continuous if

Q(VH) = VHQ(h) for every subset H of E which is bounded above and filter-
ing to the right.

PROOF. There is no restriction in supposing that q is an Abelian semigroup
of additive, increasing, and continuous mappings from E into E; then the rela-
tion Qi << Q2 defined as "there exists a Qo E q such that Q2 = QiQo" is transitive
and q is filtered by its subsets qQ = {Q1: Q << Qi}, where Q E q.
Let H be a subset of F bounded above by f E F; since f is also an upper bound

of H in E, sup H exists as a l.u.b. in E and sup H < f. In general, however,
sup H E F. But since the subset of E, that is, {Q(sup H); Q E q}, is filtering to
the right and is bounded above in E by f, as is shown by the successive inequali-
ties in E,

(1.3.4) h . sup H _ f;h = Qh _ Q(sup H) _ Qf = f, h (E H,
h < QI(sup H) _ Q2(sup H) - f, h (E H; Q, << Q2,

we may introduce the following element of E

(1.3.5) VH = sup Q(sup H) = lim Q(sup H) < f.
q q

From the continuity of the mappings Q it follows that

(1.3.6) Q1(VH) = lim Q1[Q(sup H)] = VH
q

so that VH E F. Then since VH _ f for every upper bound f of H in F, the
element VH is the l.u.b. of H in F.
REMARK. This theorem becomes false if L-cones are replaced by complete

vector lattices in its statement.

2. The basic cones

In sections 2.1 and 2.2 of this chapter a fixed submarkovian process P defined
on the denumerable set A will be considered.

2.1. The cone F. Let El = [M(A)]R+ be the partially ordered vector space
of the mappings f = {f,, t > O} of the positive real half-line R+ into the space
M(A) of measures on A. The lattice structure of El will be considered only in
the proof of theorem 2.1.2 below but never again. We denote by F or F(P) the
subset of El of the mappings f such that

(2.1.1) ° _ ft < X on A, t >O;
(2.1.2) fs+t = f,Pt, s, t > 0.

We denote by Fo the subset of M(A) of the positive measures fo on A such that
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0 < foPt < - on A for t > 0. Among other consequences, the followinig theorem
will allow us to imbed Fo in F in a natural way.
THEOREM 2.1.1. For every f E F, the t-functions ft(i), where i E A, are con-

tinuous on the semiclosed interval [0, oo); moreover fo = limt-oft is an element of
Fo such that foPt _ ft for t > 0.

PROOF. First, it is clear from the formula

(2.1.3) ft+(j) = f (i)P.(i,j), t,s > O;j E A,

by letting s vary, that the functions ft(i) are lower semicontinuous on (0, 00),
that is. that ft(i) = limu_t inf fu(i) for t > 0, i C A. The inequality

(2.1.4) f,+.(i) > f,+u(i)P8_uf(i, i), I > 0, s > O, -t < u < s; i C A,

implies, by letting u -> 0, that

(2.1.5) ft+(i) > lim sup fu(1)P(i, i), t > 0, s > 0; i E A.
u-t

By letting s j 0, we see that the right limits ft+ (i) = limu l t fu(i) exist for t > 0
i C A, and that, at least when t > 0, we have

(2.1.6) ft+(i) = rim supfu(i) _ ft(i), t > 0; i C A.
u-t

On the other hand, it follows from f Ps = ft+uPs_u for t > 0, s > u > 0, by
letting u I 0, that ftPs > f+P8(t, s > 0). This conclusion is compatible only
with ft+ > ft if ft+ = ft, since by what has been proved,

(2.1 .7) 0 _ [ft+(i) - ft(i)]Ps(i; i) _ [(.ft+- ft)P] (i)
= ft+Ps(i) - ftPs(i) _ 0,

and since P,(i, i) > 0. There remains to prove only that ft > fo+Pi where t > 0,
since this inequality will imply immediately that f+ E Fo. This is a consequence
of ft = fuPt-,, with t > u > 0 by letting u i 0.
The structure of F anid Fo and their relation are described by the following

basic result.
THEOREM 2.1.2. The set F is an L-cone in E'l. 7'he least upper boutnd Vnf of

the upper-bounded subset {f } of F is given by

(2.1.8) (Vnfl)t = lim T (sup fP)Pt-8, t > 0.
s8,O 5

Similarly, the upper lower bound of the nonvoid subset {ff} of F is given by

(2.1.9) (VBfl)t = lim { (inffO)PtP , t > 0.
s O 6

The set Fo is an L-cone in M(A) with the lattice operations defined as in AI(A).
The set of elements f = {ft, t > 0} of F such that ft = foPt where t > 0, for

fo = limt-o ft is a positive band of F which is isomorphic to Fo and will be indentified
with Fo; the complcmcntary positive band of Fo in F is composed of the elements f
for which fo = 0.
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The notations "sup" and "inf" are used for and only for the lattice operations
in M(A).

PROOF. Clearly, F satisfies the first axiom of the definition of the L-cones;
to show that it also satisfies the second axiom, let us consider a nonvoid subset
{ff} of F with an upper bound in F, say f. The inequalities

supff+, _ (supfA)P - ftP =1 3 s s, t > 0,

(2.1.10) (supf,)Pt7,_ (supf,3.)P,_s,1Pt_,
= (supfPv)P,_v _ f,, 0 < V < u < t,

show that the limit lim. I o t (sup fP)P,-. exists for t > 0 and is bounded by ft;
by virtue of the continuity of the mappings P, these limits define an element
of F which is then necessarily the least upper bound VfP of the family {fP}. This
proves that F is an L-cone and gives the formula for VfP; the derivation of the
formula for AfO is entirely similar.
The fact that Fo is an L-cone in M(A) is a direct consequence of the fact that

it is a convex subcone of M(A) thick in M+(A). The second part of theorem
2.1.2 is obtained as an application of theorem 1.3.2 to the L-cones F and Fo and
to the mappings

(2.1.11) u(f) = limft; uo(fo) = {f0P, t > 0}.

Indeed the existence of u and the inequality uou _ I on F have been proved in
theorem 1.1.1, whereas uuo 2 Io on Fo, that is, limtOfoPt 2 fo for fo E Fo,
results from foPt(i) 2 fo(i)P,(i, i).
COROLLARY. Every element f E F may be written in one and only one way as

f, = foP, +ft(t > 0). Where fo C Fo, fo = limt Ioft = limt-ofoPt, and where
{f', t > 0} E F, limg.of, = 0.
The following theorem leads to an alternate definition of the cone F as a cone

of vectorial measures on (0, X0) with values in the space M(A); it also gives the
clue to theorem 2.1.4 below on the Laplace transform of elements of F. We shall
denote by i(t + *) the measure on R+ obtained from a given measure ,u on R+
by a translation of amplitude t along R+, so that

(2.1.12) f ,u(t + ds) op(s) = f ,u(ds) p(s - t)
8>0 B>t

for any positive measurable real-valued function (p.
THEOREM 2.1.3. The most generalfamily {Mf( ; i); i C A} of positive measures

on the open interval R+ = (0, 00) such that

(2.1.13) ,u(t + .; j) = , ,u(;i)Pt(i, j), j C A, t > 0,

is given by ,u(ds; i) = f,(i) ds where {f., s > 0} is an arbitrary element of F.
PROOF. Given a family {,u(-; i); i C A} of positive measures on R+ satisfy-

ing the preceding hypothesis, let us put
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(2.1.14) ft(j) = t E ,A(ds; i)Pg(i,j), t > O,j E A.

is <t)

We first show that ft(j) < oo. Indeed, from the inequality Pt-1,(i, j)P,(j, j) _

P(i, j), it follows that

(2.1.15) ft(j) inf P(j,j) <
I

E f (ds;i)P,(i,j) f| (ds;j) < oo
Is <t)

t JI18<) It<s<2t)

The theorem will follow from formula

(2.1.]G) Ef|,(ds; i)Pt-8(i, j) f ds f,(j), t > O;j E A.
K K

where K is any Borel subset of the interval (0, t); to prove this formula we only
need to remark that the first member defines, for fixed t > 0, j E A, a set
function of K which is a translation-invariant positive measure on (0, t). This
set function is then necessarily equal to the second member of the formula as a
consequence of the definition of f. We denote by ds the Lebesgue measure.
The fact that f.P1 = fa+t with s, t > 0, that is, {ft, t > 0} E F, is an immedi-

ate consequence of the preceding formula. In order to show that ,u(dt; j) =
ft(j)dt, we shall prove that for any u, v > 0

(2.1.17) f 1.(dt;j) = f ft(j) dt
u <t_u+v u <t.u+v

by taking K = (t - u, t] in the above formula and integrating over (u, u + v].
Then
(2.1.18) u f ft(j) dt = , f f ,u(t - u) + ds; i]Pu-8(i, j)

(u,u+v] (u,u+v) (O,u]

=X f f dtji(t + ds;i)Pu-. (i,j)
(O,uJ (off']

= , |[ds[ f (dt;i)lPu_s(i,j)
(0,U] (8,S+2)

= f ds f A (dt;j) = u f I,u(dt;j).
(O,u] (us,u+v (u'u+v]

This concludes the proof of theorem 2.1.3.
Let Fb designate the convex subcone of the elements of F such that for every

7' > 0, or equivalently for some T > 0,

(2.1.19) oT ds (f8, e) < .

It is readily seen that Fb is thick in F. The hypothesis Pte _ e, where t 2 0
implies that the real-valued function (ft, e) of t is nondecreasing; this function
which in general may take infinite values, is finite for every f C Fb.
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THEOREM 2.1.4. The Laplace transform

(2.1.20) A = J dt7eKf,, 0 < x < ,

establishes a one-to-one correspondence between the elements f = Uft, t > 01 of Fb
and the families f = {fA, x > O} of bounded positive measures on A such that

(2.1.21) 1. = f.[I + (z -x)Rx], O < x, z < r
PROOF. Let f be an element of Fb. Then

(f e) = f
T dt e-x(t+nT)(fg, PnTe)

(2. 1.22) n0fQ

< (1 - ezT)1 T dt (ft, c)

shows that Ir is a bounded positive measure on A for every x > 0. To prove the
asserted equation it is sufficient to remark [as in the proof of property (c') of
the resolvent] that the convolution product on R+ of e-xl and e-zt is
(x -z)-1(e-zt -e-t), since then

(2.1.23) fzRx= f0 f0 ds dte-zse-IfPT

= f f(ds dt e-§ze-rtf

= (x - z)-1 f I ds (e-ZS - e-8)f

= (x -z)-V(z - z)-
To prove the converse part of theorem 2.1.4, consider a family {If, x > 0} of

bounded positive measures on A with the above property. Then as a consequence
of Bernstein's theorem on completely monotonic functions and the formula

(2.1.24) (_- d )n -f xRn > 0, x >0; n > 0,

there exists a family {,u(-; i); i E A} of positive measures on R+ such that

(2.1.25) h(i) = f0 e-x8,(ds; i), x > 0; i E A.

To finish the proof of theorem 2.1.4 it is now sufficient in virtue of theorem 2.1.3
to show that this family of measures is such that on R+

(2.1.26) 4(t + *;j) = ,u(-.;i)PN(i,j), t > O,j E A.

But this relation is obviously equivalent to

(2.1.27) fo, e-XSA(t + ds; j) = f.P,(j), x > O, t > O; j EE A.

Since, for every fixed x > 0, j E A, the two sides of this equation are right-
continuous in t, their equality is also equivalent to
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(2.1.28) Jo dt e-za f c-XS,I(t + ds; j) = f.R.(j), x, z > 0; j E A.

However, the first member of this equation is also equal to

(2.1.29) J0 (e-zt * e-xt)IA(dt;j) = (x - z)( - )
so that this equation and the preceding equivalent ones follow from the hypoth-
esis.
THEOREM 2.1.5. In the partially ordered vector space [LI(A)]R+, the subset of

the elements f = {f., x > 0} such that

(a) fx (E L+(A), x > O,
(b) fz = 3.[I + (z - x)Rx], X, z > 0,

forms an L-cone. The least upper bound of an upper-bounded family {f#, ,B E B}
in this cone is given by

(2.1.30) (VOif,J)Z = lim T (supJy)[I + (y - x)Rr].

T'his L-cone is isomorphic to the L-cone Fb by the Laplace transform and vill be
designated by Pb.

PROOF. The proof that the elements J form an L-cone is entirely similar to
the proof of theorem 2.1.2; it essentially rests on the property (c') of the resolvent
which implies that
(2.1.31) Su.P. _ (supfl)[I + (y - x)Rr] < fz 0 < x <y,

0 s
if f is an upper bound of the family {.r}. The details will be left to the reader.
The isomorphism of Fb and Pb is a direct consequence of theorem 2.1.4 and of
lemma 1.3.2.

Let Fe designate the convex subcone of F, also contained in Fb, of the elements
f such that
(2.1.32) sup Iftfli hinT (ft, e) < O-

t>o j

It is easily seen that Fe is thick in F. Its image PF in Fb by the Laplace transform
is the subset of Pb of the f such that

(2.1.33) sup lIxfZII, lim t (Xf, e) < .
X>O xtO

In fact the two preceding expressions are equal.
To end this section, we remark that the intersection of the two cones Fe(P)

and Fo(P) [to be designated by Feo(P)] is isomorphic to Ll (A) since

(2.1.34) (fo, e) = lim T (fopt, e)

for any fo E Fo(P).
2.2. The cone G. Let E2 = [N(A)]R+ be the partially ordered vector space

of the mappings g = {gt, t > 0} of the positive real half-line R+ into the space
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N(A) of real-valued functions on A. We denote by G the subset of E2 of the
mappings g such that

(a) 0 < gt < X on A, t > 0,
(b) gt+. = P1g., t, s > 0.

We denote by Go the subset of N(A) of the positive functions go on A such that
0 _ Ptgo < X on A for t > 0.
The cones G and Go have properties entirely analogous to the properties of

the cones F and Fo which are stated in theorems 2.1.1, 2.1.2, and 2.1.3. In order
to prove them, we need only remark that the proofs of these theorems did not
use the inequality Pie _ e, with t > 0, so that they are valid for any semigroup
{Pt, t > 0} of positive matrices on A such that the t-functions Pt(i, j) are con-
tinuous and equal to I(i, j) at t = 0. In particular, these theorems apply to the
adjoint semigroup P' = fPl'(i, j) = Pj(j; i)} of a continuous semigroup of sub-
markovian matrices. We state for further reference,
THEOREM 2.2.1. For every g E G, the t-functions gt(i), with i C A, are con-

tinuous on [0, X ); moreover, go = limt-o gt is an element of G0 such that Ptgo _ gt
where t > 0.
THEOREM 2.2.2. The set G is an L-cone in E2; the lattice operations are de-

fined by
(Vgl)t = lim T Pt- (sup gs),

(2.2.1) (Ag~)t = lim t PtA(inf 9), t > 0.

T'he set G0 is an L-cone in N(A) with the lattice operations defined as in N(A).
The set of elements g = {gt, t > 0} of G such that gt = Ptgo where t > 0, for

go = limt-o g9 is a positive band of G which is isomorphic to Go, and will be identified
with GO; the complementary positive band of Go in G is composed of the elements g
such that go = 0.

COROLLARY. Every element g E G may be written in one and only one way as

g, = Ptgo + gt, with t > 0, where go C G0, and go = limnt.0 gi = limt-o Pigo and
where {9g, t > 0} C G, limtro gt = 0.
THEOREM 2.2.3. The most general family {,u(*; i); i E A} of positive measures

on the open interval R+ = (0, 00) such that
(2.2.2) 1.(t + *;j) = E Pt(i,j)j(- ;.j), t > 0, i E A,

is given by ,u(ds; i) = g,s(i) ds where {g,, s > 0j- is an arbitrary element of G.
Let Gb designate the convex subcone of the elements of G such that for every

T > 0 (or equivalently for some T > 0)

(2.2.3) siup T1Odt g9t(i)] < X

Clearly, Gb is thick in G.
The counterpart of theorems 2.1.4 and 2.1.5 is inow the following; its proof is

left to the reader.
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THEOREM 2:24. The Laplace transform,

(2.2.4) d=dt e-g, 0 < x < O,

establishes one-to-one correspondence between the elements g = {dg, t > 0} of Gb and
the families g = {g., x < 0} of bounded positive functions on A such that

(2.2.5) 9X = [I + (Y -x)R.]9V O,, < X, Y < X
THEOREM 2.2.5. On the partially ordered vector space [L-(A)]R+ the subset of

the elements g = {l, x > 0} such that

(a) g eL+(A), 0< x<
(b) 9. = [I + (y -x)R.] y, O < x, y <

forms an L-cone. The least upper bound of an upper-bounded family {M} in this
cone is given by

(2.2.6) (V )O = lim T [I + (y - x)RZ](sup g).

This L-cone is isomorphic to the L-cone Gb by the Laplace transform and will be
designated by b-

Let p be the element of Gb such that

(2.2.7) e - P.e = f0 dt pt, s > 0.

The existence of such an element is a consequence of theorem 2.2.3. In fact,
since 1 - P,e(i) is, for every i E A, a position nondecreasing function of s on
R+ which tends to 0 as s 0O, there exists a family {p(.; i); i E A} of positive
measures on R+ such that 1 - P.e(i) = 1(0.) p(dt; i), with i E A, s > 0. Then

the hypothesis of theorem 2.2.3 is satisfied as it follows from

(2.2.8) Pt(e - P,e) = (e - Pt+,e) - (e -Pte), s, t > 0.

It may be remarked immediately that, as a consequeince of

(2.2.9) E [10 ds P8(.,j)] p,(j) = PTe - lim P,,e _ c,

the following implication holds for any j E A

(2.2.10) sup pt(j) > 0 f ds PJ(, j)<
on A.

2.3. The forms C. Let P and P' be two submarkovian processes defined on
the denumerable sets A and A' respectively. We shall call a family {C., ; s, t > 0}
of positive matrices on A X A' such that

(2.3.1) CU+B V+t = PUC8,9Pd, u, V, S, t > 0,
a "form relative to P and P'." An example- of such a form is given by
C.,t = g. ® ft, where s. t > 0. if g is an element of G(P) and f an element of
F(P').
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I'IEOREM1 2.3.1. For any formn =C C~,,; s, t > O} relativc to the proceces P
and P' the (s, t)-functions C8,t(i,j), with i C A4, j C A', may be extended to co)I-
tinuous functions on {s, t > O} . If we still denote this extension by C8,1 we have

(2.3.2) C.+S,V+t > PuCs,tPv u, v, s, t, _ O,
where the equality sign holds except perhaps if s = 0 and u > 0 or if t = 0 and
v > 0.

PROOF. The first part of the proof of this theorem is similar to the proof of
theorem 2.1.1. In an analogous way it can be proved that

(1) the (s, t)-functions C,,t(i, j) are lower semicontinuous on (s, t > 0),
(2) these functions have right limits on (s, t _ 0), say C9+, such that

(2.3.3) C,+(i,.i) = lirn C7, (i,.J)
u J,tt I1

= lim sup C,,,(i, j), s, t > 0,

(3) the functions C,,t coincide with CQ on (s, t > 0) and are continuous there,
(4) Cu++S,.+t > PCs+tP' s, t, u, v > O.
By the continuity we have just proved and by the properties of Fo(P'), we

get, when u, s, t > 0,
(2.3.4) CU+S,t = lim Ci,+8 t+v = lim [PuC,,t]Pt = PuCst.

v-0 vO0

It can be proved similarly that Cv8+t = C,,tP' for s, t, v > 0.
By fixing u, s > 0 and i C A, consider the first identity as a relation in F(P'):

(2.3.5) CU+,,(i, *) = E PU(i, k)C,,t(k, ) t > 0.

By equating the projections in Fo(P') of both sides of this relation, we obtain

(2.3.6) C++o = PCs+, s, it > 0,

since C8+0 = limt-o CG,t for s > 0. Similarly, we can show that

(2.3.7) C+ +1 = C+tP t, v > 0.

It remains to prove that the functions C,+t are continuous at every point
(u, 0) and (0, u) for u > 0; but as a consequence of Cu++,,, = PuCs+ where
u,s > 0; v > 0, we have

(2.3.8) lim inf CU++s > PuCs+0 = Ct++so, u, s > 0,
74-0,V >0

so that the functions C,+ are lower semicontinuous and, from what has been
proved above, are continuous.
COROLLARY. When F(P') = Fo(P'), [G(P) = Go(P)], every form C relative to

P and P' satisfies C,,t = C.,oPt, [C,t = PCo0,], for s, t > 0.
PROOF. This corollary is immediate since the hypothesis implies that for

every s > 0 and i C A the element {C,,t(i, .); t > 0} of F(P) belongs to Fo(P').



362 FOURTH BERKELEY SYMPOSIUM: NEVEU

A form C relative to P and P' will be said to be bounded when for every T > 0
(or equivalently for some T > 0)
(2.3.9) sup E T ds T i,dj <COO .

iEA lEA, foJ
THEOREM 2.3.2. The Laplace transform

(2.3.10) f=f ds dt e-(--+ut)C8,t, 0 < x, y <o,

establishes a one-to-one correspondence between bounded forms C relative to P and
P' and families {0.,v; 0 < x, y < oo} of positive matrices on A X A' such that

(a) sup E C.,v(i, j) < 0 < x, y <cc;
iEA lEA'

(b) CG = [I + (z -x)R,] 0,v,
= C.,z[I + (z - y)Ru], 0 < x, y, z < cc

PROOF. The deduction of the properties of C from the properties of the
bounded form C is easy and similar to the first part of the proof of theorem 2.1.4.
To prove the converse, we first remark that for fixed x > 0, i E A, we have

{C=,v(i, *); y > 0} is an element of Fb(P'), so that by 2.1.4 there exists a family
{r.,t; t > 0} of positive matrices on A X A' such that

(2.3.11) O., = f0" dt e-y"rF,t; rx,+v = r,,tP', v, t > 0; x > 0.

Moreover, since F_j[I + (y - x)R,] (i, j)Cy, (j, *) = C' ,(i, * ) holds in Pb(P'),
for every fixed x, u > 0 and i E A, we must have in Fb(P')
(2.3.12) E [I + (y - x)Rx](i, j)ry,t(j, *) = rP(i, ), t > 0.

Let us also remark that

(2.3.13) sup E r,,(i, j) < , x > 0, t > O'

since the left side is nonincreasing in t, so that

(2.3.14) (f0 ds e-z) sup r1.,t(i, j) < sup , Gz,,(i, j) < o.

For fixed t > 0 and j E A', we have that {1,s(* j); x > 0} is, by what has
already been proved, an element of Gb(P); by theorem 2.2.4, there exists a
family {Ca,t; s, t > 0} of positive matrices on A X A' such that

(2.3.15) r. , = |* ds e-xaC., , PUCJ,t` CU+J t U, S, t > 0.

Moreover, since rI,t+,(., j) = Ek r(-,k)P'(k, j) holds in Gb(P) for every
fixed t, v > 0, j E A', we must have in Gb(P)

(2.3.16) C8 +"(-, j) = I C.,"(., k)P'(k, j), s > 0.

It is thus proved that {C.,t; s, t > 0} is a form relative to P and P' whose
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Laplace transform is {C. v; x, y > O}; this form is obviously bounded, since for
T> O

(2.3.17) sup d0cs |0dt C.,t(i, j) _- e(+) pE 2,.(i, j) < %

3. Dominance

3.1. The dominance relation.
DEFINITIoN 3.1.1. Given two semigroups P and P' of submarkovian matrices

defined on the denumerable sets A and A', respectively, the s.g. P' will be said to
dominate the s.g. P (in notation PC P') if

(a) A C A',
(b) Pt(i,j) _ P1(i,j), ij E A; t > 0.
It will often be found convenient to extend the domain of definition of the

matrices Pt(t > 0) and R.(x > 0) to A' X A' by letting Pt(i, j) = 0 = Rz(i, j)
when (i, j) E (A' X A') - (A X A) and for t, x > 0.
THEOREM 3.1.1. Given two submarkovian processes P, P' such that P' dominates

P, there exist two bounded forms C = {C5,t; s, t _ 0} and D = {D8,t; s, t _ O}
defined relative to P and P', and to P' and P, respectively, such that

P, = Pt + ds C, t-, on A X A',
(3.1.1)t

pi = Pt + fo ds D.,t-. on A' X A for t > 0.

As a consequence, the following limits exist for s, t > 0:

lim P. - (P' -Pu)P' = C.,, on A X A'
(3.1.2) u4

1

lim P'(P' - Pu)Pt = D.,, on A'X A.
u40 U

PROOF. This theorem will be shown to be implied by theorems 2.3.1 and
2.3.2, by means of the following computations. Since the proofs of the two first
formulas of this theorem are similar, we shall content ourselves with proving
the first of these formulas.
Since property (c') of section 1.2 immediately implies that the two expressions

of the following definition are both equal on A X A' to R' - Rw + (z - x)RRZ',
we are allowed to introduce a family {Czz; x, z > 0} of matrices on A X A' by
the two equivalent formulas

(3.1.3) Cz2= [R.,,- R.](., i)[I + (x -z)R'.](i, *A'

- _ [I + (z - x)R.](., j)[R' - R.](j, ) on A X A'.
A

The hypothesis P C P' and the first (second) of these formulas imply that the
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matrix C.,, is positive when x > z (x . z). Since this family C obviously satisfies
the relations

(3.1.4) C, = CO, [I + (y - z)R'] = [I + (y - x)R.]CJy,, 0 < x, y, z < o
[compare again property (c') of section 1.2], there remains only to show that

(3.1.5) sup , C:,z(i,j) < °, X, z > 0,
i EA j EA'

in order to be able to apply theorem 2.3.2. But, if x > z, we have

(3.1.6) zOx,2'e = z [R' - Rx](., i)[1 + (x - z)R'e'(i)]
A'

< x Fi [R'- R.](., i) < e
A'

whereas if x < z,
(3.1.7) xC0,2e' = x E [I + (z - x)R,](, j)[R'e' - R2e'](j)

A

<=
x

[I + (z - x)R]( -,j) < e.Z A

Let IC, t; s, t > 0} be the bounded form relative to P and P' whose Laplace
transform is C; we then remark that on A X A', for every x > 0,

(3.1.8) fo dt e-x(P' -Pt) = R'-R = CZI

= 0f ds dt e-x(8+t)C,,,

=l dt e-xt f ds C.,

Since for every fixed i C A and j E A', the t-functions [P'- Pt](i, j) anid

fo C,t-,(i, j) are continuous by theorem 2.3.1, they must be equal, as was to be

shown.
To show the last formulas of this theorem, we remark that one has on A X A'

when u I 0 and for s, t > 0,

(3.19) P (P, - PU)Pt = PJ f dv C,,U.VPc

_ dv (Ct'±S,u-tt
u J

as well as a similar relation involving D.
3.2. Kolmogorov's equations. It is well known that for any submarkovian

process P defined on the denumerable set A, the limit

(3.2.1) qi = lims [1 - P(i, i)], i E A,
S~
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exists, that 0 5 qi _ - and that, at least when qi < o, one has

(3.2.2) P'(i, i) > C-qmy s > O.
These results are indeed elementary consequences of the following properties
of the function so(s) = -log P.(i, i) defined on R+ for any fixed i E A,
(3.2.3) 0 .5 P(s) -* 0(s . 0); p(s + t) _ P(s) + w(t), s, t > 0.

If the subset AZ = {i: qi < 00} of A is nonvoid, the submarkovian process
Px defined on AZ by
(3.2.4) Pr(i,;) = eQitIAo(i,j) t > 0,

is clearly dominated by P, so that theorem 3.1.1 associates to the processes P'
and P two bounded forms C and D. Observe, however, that F(P-) = Fo(P0)
and that G(P-) = Go(P-), so that the corollary of theorem 2.3.1 shows that the
bounded forms C and D are such that

35C.,#( j) = e-Oi0Co,t(i, j), i E A; jE A; s, t > 0,
(3.2.5) DD,,(i, j) = DA,o(i, j)e-qit, i E A; j E A-; s, t > 0.

Theorem 3.1.1 thus gives on A, for t > 0 and i E A

Pt(i, *) = e-qiI(i, .) + fo ds e-i(-8)Co,8(i, *),
(3.2.6)

P,(-, i) = I(-, i)e-Qit + f0ds D.,o(., i)e-qi(t-8).

The t-functions P#(i, j) are then necessarily continuously differentiable on [0, 00)
for jE A., and

dt [eqiPt(i, *)] = e0iLco0,(i, ),
(3.2.7) d

-[P,(., i)eQit] = Do,j(-, i)eQildt

are valid on A for i E A., and t _ 0. We remark that these formulas imply that
C0m0 = Do,o on AX X A-, a result which will be stated in a more general form in
theorem 3.3.4.

Let us restate the preceding results in the following theorem, which also takes
into account the following properties of any form

(3.2.8) CO,t > Co,oP1; Dt,o _ PtDo,o.
This theorem was first proved by D. G. Austin [1]; its integral form, that is,
formulas (3.2.6), was proven by probabilistic methods in a paper due to Chung
[5]. However, the hypothesis used by these authors is slightly more restrictive.
THEOREM 3.2.1. Let P be a submarkovian process on A and suppose that the

subset Ax of A on which qi = lim8.o 1/sll - P.(i, i)] <0 i8 nonvoid. Then the
t-functions Pt(i, j) are continuously differentiable on [0, o0) when i or j E A-;
moreover they satisfy the following relations on A for every i E AX,
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dt P,+.(i, * dt Neil Ps,
dt P.+,(-* = [Id- lt(. I i)] S, t > 0;

(3.2.9) d c) [dP(, )P

ds dt

P,, (i ) > P d P,(-, i) , s > O.

3.3. Further study of the dominance relation. Doob [8] has shownl that a semi-
group P of permutation matrices (and a fortiori of submarkovian matrices) on a
denumerable infinite set A need not have any continuity property. If, however,
the semigroup P of submarkovian matrices dominates a submarkovian process
P' defined on the same set A, it follows from

(3.3.1) 1 ]'t(i, i) Pt(i, i) 1, ( )<t I 0; i E 81,
that P is itself a submarkovian process oni A. A similar result also holds if the
semigroup P is dominated by a submarkoviaii process P', as is showni in the
following theorem.
THEOREM 3.3.1. Let {PW, t > 0} be a subnmarkovian process on A'. 7'hen any

semigroup {Pt, t > 0} of submarkovian matrices on A' (or on7 a subset of A') such
that Pt _ P't for t > 0, is necessarily a submarkovian process on a certain subset
A of A', that is,

(a) Pt(i, j) = 0 if iorjA andt> 0,
(b) the t-functions Pt(i, j) are continuous on [0, oo) and limet.o Pt (i, j) = IA (i, j).
This theorem remains true if the semigroup {Pt, t C K} of submarkovia:..

nmtrices is supposed to be defined only for values of t in a dense semigroup K of R+.
To avoid repetition, we shall prove this theorem and the following result

together.
THEOREM 3.3.2. Let P and P' be two submarkovian processes such that P C P'.

7'hen there exists a convex subcone F of F(P) which is thick in F(P) and a positive
band F' of F(P') with the following properties:

(a) the L-cones F and F' are isomorphic by the mappings u and u',
[u(f)]t = lim T Ef(i)Pt'-(i, ) on A', f E F,

(3.3.2) 8.0 A

[u'(f')]t = lim I Ef_(i)Pt-,(i, *) on A, f' C F'
.4~0 A

(b) for every f E F(P) not belonging to F, for at least one j E A' and one t > 0,
we have
(3.3.3) limT Ef8(i)Pt _8(i, j) = + x

140 A

for every f' in (F')', we have, for all t > 0,
(3.3.4) lim I 7f's(i)P-s(i, *) = 0 on A.

e 0 A
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In particular, F,e(P) is contained in F and is isomorphic to (L positive band of
F,(P') by it and u'. The restriction of u to Fe,o(P) = L' (A) is identical to the
canonical imbedding of L' (A) in L+(A') = Fe,o(P%) that is, we have

lim t P.(i, *)P,_- = Pt(i, ) on A', i C A;
(3.3.5) a"

lim J, P'(i, *)Pt-, = Pt(i, *) [or 0] on A, i E A [or i E A' - A].
8

Except for the assertion concerning Fe(P), an analogous theorem could be
proved relative to the L-cones G(P) and G(P'); it suffices to replace expressions
like lim.O T f8P,-s or limr.0o I fsPt-, in the preceding formulation by their
analogues limp I o T P-s,g8 or lim..o I Pt_gs.

PROOF. In order to prove theorem 3.3.1, its generalization and theorem 3.3.2,
we consider a submarkovian process P' on A' and a semigroup {Pt, t C K} of
submarkovian matrices on A' such that Pt _ Pt for t C K, where K is a dense
semigroup of R+. We first remark that the two L-cones F(P) and G(P) may
still be defined for the semigroup P; if the general element of F(P) is a family
{ft, t C K} of positive finite measures on A' such that ft+J = ftP. for s, t E K,
the first part of theorem 2.1.2 showing that F(P) is an L-cone and using no
continuity property of P remains valid; similarly for G(P).
For any element f C F(P), the inequality

(3.3.6) fuPs+t > fuP.Pt = fu+8P' u, s C K; t > 0,
shows that for fixed t > 0, the positive (perhaps infinite) measures f.Pt-s on A'
decrease with s C K on (0, t]. We designate by F the subset of elementsf of F(P)
such that HimKT& O T f,Pt'-, is a finite measure for every t > 0 and denote by
u(f) = {[u(f)]t, t > O} this family of measures which clearly is an element of
F(P'). The subset F of F(P) is moreover a convex subcone thick in F(P); let us
also remark that [u(f)]t > ft on A' for t E K.
For any element f' C F(P'), the inequality

(3.3.7) f'P,,+t _ f'P'sPt = f'+sl't u > 0; s, t C K,

shows that for fixed t C K, the positive finite measures f'Pt_. increase with
s E K on (0, t]. As a consequence, the formula [u'(f')]t = limKE. o I f'Pt de-
fines, when t varies in K, an element u'(f') of F(P) such that [u'(f')], _ f, on
A' for t E K. This last inequality implies that [u'(f')],P._, _ f: when s E K
and t > s in R+, so that u'(f') is an element of F and that uu' < I' on F(P').
Similarly it follows from [u(f)]t > ft for f E F and t E K that [u(f)]SPt_, _ ft
when t > s in K, so that the general inequality u'u _ I holds on F.

Since the mappings u and u' are obviously additive and increasing on F and
F(P%) we have just proved that the hypotheses of theorem 1.3.2 are satisfied.
The first part of theorem 3.3.2 is thus proved under a weaker hypothesis on P.
A similar result holds for the L-cones G(P) and G(P'). We shall now prove that
P may be extended to a submarkovian process on a subset of A'.
For any i C A', the u-image in F(P') of {Pt(i, -), t E K} exists and is
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bounded above by {PI(i, *), t > 0O, that is, by fi C Fo(P'). This is possible
only if there exists a real constant c(i) E [0, 1] such that on A'
(3.3.8) P,(i, .) < lim t P8(i j)P-,(j, ) = c(i)P'(i, )

KE8 4O j

for t > 0 (the first inequality only when t E K). This relation and the inequality

(3.3.9) 0 _E P,(i, j)P'-,(j, i) < Pt(i, i) - Ps(i, i)Pt-_(i, i) -* 0

as K -* s 4 0 valid for t > 0, i C A', imply that P,(i, i)Pt_s(i, i) converges to
c(i)P'I(i, i) as K 3 s 4 0, that is, that

(3.3.10) lim P'(i, i) = c(i), i C A.
KAs J,O

Similar reasoning shows that for every i E A' there exists a real constant
d(i) C [0, 1] such that on A', for t > 0,

(3.3.11) Pt(-, i) lim T F P8-,(, j)P,(j, i) = Pt(i, i) d(i).
K3s JO j

This constaint d(i) being also equal to lim, f oP,(i, i) does not differ fromi c(i).
Moreover, from
(3.3.12) P,+'#(i, i) = E P.(i, j)P-(j, i)

i

_ c(i) P,'I(i, j)P''(j, i)] d(i) = c2(i)PI'+s(, i)

follows, when u, v E K, and (u + v) 4 0, that c(i) _ c2(i), that is, that c(i) 0
or 1.

If the subset A of A' is defined as the one on which c(.) = 1, we have -now
shown that

(1) Pt(i,j) = 0 if i or j E A, t E K;

(2) lim P.(i, i) = i if i E A.
K3e fiO

This proves that the t-functions Pt(i, j) are uniformly continuous on K, since
by the submarkovian property of the matrices Pt we have

(3.3.13) E P,+8(i, j) - Ps(i, i)l < EI IPt(i, K) - I(i, K)IP8(K, .j)
3 ~~~~~~~j,K

_ 2[1 - Pt(i, i)] - 0

when s C K, with K E t J, 0, for every i E A. It is clear by this inequality that
the unique continuous extension of the t-functions P#(i, j) to R+ gives a sub-
markovian process on A. Theorem 3.3.1 and its generalization are thus proved.
To conclude the proof of theorem 3.3.2, we remark that if f E Fe(P), then

for t > 0

(3.3.14) E [u(f)](k) =
_ lim1 fsPt'-.(k) _ lim T E fs(j) < o.

A' A'n, sn > e0 A

This proves that F,(P) C P and, since [u(f)]t >_ ft, even that
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(3.3.15) lim T ([u(f)], e') = limT (ft, e).

Finally, to prove that if fo E L+ (A), then u(fo) = fo, where fo denotes the
element of L+(A) as well as its canonical images in Fe(P) and Fe(P'), we deduce
from what precedes that for t > 0

(3.3.16) [u(fo)]t = limT foPsP'- s

= E fo(i) [lim T P,(i, *)P:t_-]
A a.O0

= Efo(i)P'f(i, *).
A

From theorem 3.3.2 we deduce the following result, which will be needed later.
THEOREM 3.3.3. Let C' be a form relative to the two given submarkovian proc-

esses P and P'. If P* is a third submarkovian process and if P* C P', then the
formula

(3.3.17) Cs*J = lim J, C Upt*_g) s, t > 0,

defines a form C relative to P and P*. If P' C P* (instead of the converse relation),
.then the formula

(3.3.18) C*1 = lim T C',8P*", s, t > O,
u40

defines, if this limit is everywhere finite, a form C relative to P and P*. Moreover,
one has in the first case

(3.3-.19) lim t C*7.Pt_ < C'.1, s, t > 0,

whereas in the second case equality holds, that is,

(3.3.20) lim C*UP1'_u = Cs t, s, t > 0.
u I o

PROOF. This theorem is obtained immediately from theorem 3.3.2, by fixing
s > 0 and i E A in the forms C',t(i, -) and C,*.,(i, *), since we obtain in this way
elements of F(P') and of F(P*).

This theorem allows us to state the following complement to theorem 3.1.1.
THEOREM 3.3.4. Let the hypotheses and notation be those of theorem 3.1.1. Then

the common values of the limit matrices on A X A

(3.3.21) Q. t = lim I C8.,uPtu = lim 1 P-uDu.t, s, t > 0,
u 4O Uio

define a form Q = {Q.,,; s, t > 0} relative to P and P. Moreover, the following
relations hold on A X A

lim P. 1 (P'- P)] Pt = Q. t, s, t 2 0;
(3.3.22) Qa.o =u I

Q,,0= C.,o, Qo, Do, 8 ! 0,
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and

(3.3.23) CS,o(j, *) = 0, Do.(., j) = 0

on A when jE A' - A.
PROOF. From theorem 3.3.3, we deduce that Q.,t = lim u o .C.,Pt de-

fines, when s, t E (0, xo), a form relative to P and P'. From theorem 3.1.1, we
deduce that for u, t > 0,

(3.3.24) (P' - P.)Pt = lim 4 (P' -P)P'Pt-r
v ; o

= lim | (f dw Cu +w Pt-,,

>g dw Qu-w,t+wy

so that we obtain for s, u > 0 and t > v > 0,

(3.3.25) (1f dw C8+X_u-8+w) Pt-, _ P. u (P' -P.)P,

> 1 ;dw Q+u-w,t+w.

Finally, by letting u I 0 and then v J0, we obtain

(3.3.26) Q.., = lim P.u (P - Pu)Pt, s >O, t > 0.

An analogous argument shows that Q': = limu o IPsuCut defines, for
8, t E (0, 00), a form relative to P and P', and that

(3.3.27) = lim P u(P - Pu)Pt s > , t > 0.
uO U

This implies that Q = Q' and that Q,,o = C.,o, Qo,. = Do0, for s > 0. In particu-
lar, C.,o(-, j) = 0 when j E A' - A and similarly DJ,o(j, -) = 0 when
j E A' - A. From theorem 3.1.1 we conclude finally that on A X A

(3.3.28) CO n = DO,O = Qo,o = lim u (P'- Pu).

3.4. 7'opology on the set of states. In this section we shall use the results of
theorems 3.3.1 and 3.3.2, to prove
THEOREM 3.4.1. Given a submarkovian process P defined on A, there exists a

topology on A and for every closed set B of A a submarkovian process pB on BC, with
the following probabilistic interpretation: for every separable submarkovian function
{Xt, t 2 0} with transition probabilities P, we have for t > 0 and for every BC A

(3.4.1) PI(i, j) = P{X, = j; X. C BCfor s < tlXo = i},
where D is the closure of the subset B of A. More generally,
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(3.4.2) 0 < PP(i, j) - E pFUHm (i, j) + + (- q(pj)
m=l

= P{ele2e3IX =

where, for brevity, we denote
el: X =j,
e2: X& B, s < t,
e3: Xs.mE Bm-B for at least one Sm<t,< =

with B and B., for m = 1, * **, q, arbitrary subsets of A.
PROOF. Let K., where n > 1, be the set of strictly positive real numbers t

such that 2nt is an integer and let K be the union of the Kn in R+; each of the
sets Kn is a semigroup under addition and so is K; moreover, K is dense in R+.
For any subset B of A and any n > 1, we introduce by recurrence on s C Kn

a family of positive matrices on A X A

(3.4.3) Il2-' = P2-^; fls+2- =
sHL (, k)P2-(k, ).

keB

The following properties of these matrices are evident
(a) 0 < flBS < P., s E Kn;
(b) llNB = , fl9 (., k) Ir" (k, *), s, t C K,.

k{B

They imply, with s + t = u and s = 2-n in (b), that

(3.4.4) E IIH" (i, j) < 1 - P2-(i, i), iC B; 2-n < u E K,.
j(ZA

Moreover the expression

(3.4.5) PB,n (i, j) _ , JB1UB§.R (i, j) + * + (- 1), H1BUBU UB. (i, j)
m=1

has a probabilistic interpretation similar to the one given by the last formula
of the theorem provided that the parameter values are restricted to Kn; as a
consequence this expression is always nonnegative.
The elementary inequality on A X A

(3.4.6) fl2 n+l (i, j) = E P2-.+,(i, k)P2-(.+I,(k, j)
kEB

< P2-(i, j) = II2 (i,j)
easily implies that the matrices III" decrease as n increases; we are thus allowed
to introduce the limit matrices

(HI (i, j) = lim I HBn (i j)
n te

on A, for s E K, so that

(a) 0 < [I, _ P. on A for sC K;
(b) Hs+= 10 (- k) 1II (k,*) for s, t E K.

kiEB
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Moreover llu' (i, *) = 0 when i C B and u E K, so that {HB¶ s e K} is a semi-
group of submarkovian matrices on A dominated by the process P.
By the generalized version of theorem 3.3.1, there corresponds to B a subset

B of A such that {II,, SEs K} may be extended in a unique way to a submar-
kovian process {]I', s > 0} on (B)c; in the case where II, =_ 0, we put B = A.
From II.' (i, -) = 0 for i E B, it follows that B C B.
We now show that jfIB = fl for s E K so that the flB process depends on B

only through P and so that B = B. We first remark that B C B implies by
construction of the II processes that nIF < H.'. Conversely, since ][I = 0 outside
of (B)c X (B)c and since II' is a semigroup dominated by P, it follows easily by
recurrence on s E K,, that HB _ flB-l so that, letting n T o, we have H' < H"
for s C K.
We let PB designate, for any subset B of A such that B = B the submarkovian

process equal to 11B' for any B' such that B' = B. Then the last inequality of
theorem 3.4.1 follows from the similar inequality for the HB,n by letting n -+ oo.
We use this inequality to show that the subsets B such that B = B are the
closed sets of a topology on A; since it has already been shown that B C B = B
for any B, and that+ = k,.X = A, it is sufficient to show that B1 U B2 = B1 U B2
or even that B1 U B2 C B1 U B2 for any two subsets B1, B2 of A. But by the
aforementioned inequality (with B = 4,) we have, for every i C A,

(3.4.8) P#(i, i) + PT W2(i, i) > Pt (i, i) + P1'(i, i).
As t J, 0, this shows that B1 U B2 C B1 U B2.
The following theorem gives a characterization of the process {Pt', t > 0} as

a maximal element for the dominance relation.
THEOREM 3.4.2. Any semigroup {Qj, t > 0} (defined perhaps only for t in a

dense semigroup of R+) of submarkovian matrices on A which is dominated by a
submarkovian process P on A and which is such that either Qt(i, *) = 0 on A for
i C B, t > 0 or such that Qt(*, i) = 0 on A for i C B, t > 0 is a submarkovian
process on a subset of (B)c which is dominated by P".

PROOF. By theorem 3.3.1, or its generalized version, Q is necessarily a sub-
markovian process on a subset of A which is dominated by P. The second hy-
pothesis on Q then implies by induction on s E Kn that Q, < HB.f, where s C Kn,
so that, letting n T oo, we have QJ < H' (S C K). By continuity, this implies
that Q C P".

COROLLARY. On the subset AX = {i: qi < oo} of A (compare section 3.2) the
induced topology is the discrete topology of A-. For any subset B of A such that
(B)c is a finite subset (a fortiori if BC is finite), one has B = B U (A )c.
PROOF. The first assertion is equivalent to qk < o and k X B =X k X B; this

follows from theorem 3.4.2 by taking Qi = exp (-qkt)Itk). This already implies
for any B, that B C B U (AX)c. To show the converse inclusion when (B), is
finite, we remark that Pg is then of the form exp (tQ) on (B)C so that
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(3.4.9) Pj(i, i) > P"(i, k) _ OQUi,i i XZ B; t > O,
so that (B)c C A-.

For any closed set B = X of the topology on A, let CB and DI denote the
forms relative to the process pB and P, or P and pB, introduced by theorem
3.1.1. We proceed to evaluate these forms in terms of the matrices rIB,n. Let us
first introduce the following families of positive measures on R+

pB,n(.; i, j) = E e,(.)H:B'n (ij j),
(3.4.10) aeK.

3B1n( *;j, i) = E e B(*)', (j, i)
8 CK.

for any B C A, n > 0 and i E A, j E B. It is easily checked, and clear from
the probabilistic interpretations (in terms of first and last passage time through
B) of these measures, that we have on R+

(3.4.11) pB(u + *; i,J) = flEBlu(i, k)pB n(.; k, j),
(3.4.11) kZ

uB.n(ub + *; j, i) = E oB,(n j, k) ufl (k, i)
kEB

when B C A, n > 0, U E K., and i C A, j E B, and that we have also

(3.4.12) p (i, j) _ nB,n (i, j) fJ 2 pBn(ds; i, k)Pv,(k, j)
8<vE

fk|E -8(i, k)ABn(ds; k, j)

when B C A, n > 0, v C Kn, and i, j E A. By passing to the limit as n 0 o, we
obtain the following result.
LEMMA 3.4.1. For every B C A, j E A, and t > 0 the following vague con-

vergences of positive measures on (0, t) hold as n T oo,

(3.4.13) , e,n(ds; i k)P -(k,J) Eo(ds)P#(,'j), i (E B

(3.4.14) E P,-.(j, k)'n(ds; k; i) rE°(d8)P((j, i), i E ;
kEeRB {ds Ds"t-,(j, i), iEP.

PROOF. These two formulas are proved in exactly the same way; we limit
ourselves to proving the first one. Let us first remark that formula (3.4.12)
implies that for B C A, n > 0, v E Kn, w > 0 and i, j E A, we have

(3.4.15) f | pB.n(ds; i, k)Pv±+w(k,j) =
_ [P(i, 1) - IB(i, 1)]P.(l,j)

O<8J<VkE
and that the second member increases to [(P - PF)P.] (i, j) as n T oo. In par-
ticular, if i C B, we have proved that for v C K, v < t in R+, and j C A, we
have as n T oo,
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(3.4.16) f | pBP'(ds; i, kl)P,_8(k, j) - Pt(i, j).

This relation is equivalent to the first case of the formula of the lemma.
Let us now combine the above equality with formula (3.4.11) in order to

obtain for any B C A, n > 0, u E K, v E K, w > 0, and i, j E A

(3.4.17) f E_ pB.n(u + ds; i, k)P,,-.+(k, j)

= E lnn" (i, k)[(P, - InB.n)P.](k, j).

The last member is bounded above by Pu+,+w(i, j) and therefore converges to
[P1(Pr- P)P.] (i, j) as n T oo. Using the definition of C' we have thus shown
that when i 2 B

(3.4.18) f E2 pB,n (ds; i, k)Pe,_(k, j) f ds t j)
U<J<U+V E U<J<U++V

for any u E K, v E K, t > u + v, and j C A, as n T o. This relation is equiva-
lent to the second case of the formula of the lemma.

In the particular case where B is a finite subset of A, the lemma 3.4.1 leads to
the following result.
THEOREM 3.4.3. Any finite subset B of A is closed. Moreover, for anyfinite sub-

set B there exists a family {rB; u _ 0} of positive matrices on Bc X B and a family
{AB; u> O} of positive matrices on B X Bc with the following properties:

(a) the u-functions rP(i, j) and AU(j, i) are continuous on [0, x) and

r+ = 1)BrB; 7A+V = AB PR!, V > 0;
(3.4.19) rB > pBA>; AB I->0
on Bc X B and B X Bc respectively;

(b) the following formulas hold on BC X A avnd A X BC respectively:

p(30= B+ ] F-'(., k;)P,-,(k, );
(3.4.20) k(=B Jo

Pu= Pu + E fo dv Pu-,(, k) AD (k, *), t > 0.

PROOF. The following reasoning for the measures pB,n can be carried through,
mutatis mutandis, for the measures 0yBmn; to avoid repetition we leave this to the
reader.
Lemma 3.4.1 first implies that lim sup.-. f0 p5."(ds; i, j) < X for every i E A,

j C B, and t > 0. This means that the sequence pB.n(; i, j) of positive measures
on [0, oo) has at least one limit in the vague topology for every B C A, i C A,
j E B as n -X oo.

Let us now suppose that B is a fixed finite subset of A and that p(-; i, j) is a
vague limit of pBt.n(.; i, j) as n °-+ o, with i C A, j C B. Lemma 3.4.1 implies
that on [0, t] for j C A,
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(3.4.21) E p(ds; i, k)P,.(k, j) = {.e(dsPj(i, j), i
k(=B 3CGE

When i E X, this relation implies first that the measures p(.; i, k) are concen-
trated at 0, and thus (3.4.21) reduces to

(3.4.22) _ p({O}; i, k)Pt(k, j) = P,(i, j), i E B, j C A; t > 0.
kGEB

This implies, by letting t IJ 0, that B = and that p(-; i, k) = Eo(.)IB(i, k)
when i, k E B.
When i E X, the above relation and the continuity properties of CB imply

that

(3.4.23) ds CBO(i, j) = ,p(ds; ijj), E B,

and that C, = CsIO1P. Letting r. be the restriction of CBO to BC X B, we obtain
the formulas of theorem 3.4.3, relative to the matrices r as corollaries of theorem
2.3.1 and theorem 3.1.1.
Of the following two corollaries, the first is an easy consequence of the integral

formulas of the theorem, whereas the second has already been proved.
COROLLARY 3.4.1. As u J, O, the following limits hold:

(3.4.24) to (P uPB) kEB rO(., kc) o(k, *) on Bc X BC,

(3.4.25) 1 Pu rOB on Bc X B,
U

(3.4.26) 1 Pu AO' on BX BC.
U

COROLLARY 3.4.2. For any finite subset B of A, the following limits hold in the
vague topology on measures on [0, oo), when n T co, for every j C A,

(3.4.27) em,(ds i.j) f eo(6)IB(i, j), i B,
*ods(5rIB(i,j), i C B;

{fEo(ds)IB(j, i), i Cz B,(3.4.28) dBsn(d j i) dA,' (j i), i q B.

In another paper [2], we proved the following results among others as conse-
quences of the preceding proposition:

(a) the positive matrices on B X B defined by

(3.4.29) A' = E D'(., k)C _(k, ),
kiZB

for u > v > 0, do not depend on v and satisfy the inequality

(3.4.30) fo du Au(i, j) <X

wheni 6 jin B;
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(b) there exists a matrix QB on B such that

(3.4.31) QlB(i,j) 2O, i#j,
(3431) ~2 QB(.-,j) 0 onB,

with the properties

(3.4.32) lim 1 Pg(i, j) QB(i, j) - duA (i, j), i #6 j,

(3.4.33) lim 1 -P'(i, i) - )= 1, i B.
t-f0 ds sA,,(i, i) + tf ds A.(i, i)-tQB(i, i)

Moreover a simple necessary and sufficient condition was found on the matrices
CI, Du, where u > 0, and QB, given the process PB on Bc, for a process P to
exist with all the properties stated in theorem 3.5.1 and here above. This process
is proved to be unique and in fact its restriction on B is given by

(3.4.34) j: dt e-xtPt(i, j)

= exp [fo dt (1-e-xt)At + XIB- QB] i,j E B.

3.5. Transitivity of the dominance relation. The purpose of this section is to
study the consequences of the transitivity of the dominance relation. We desig-
nate by pI, p2, P3 three submarkovian processes such that PI C pI and that
P2 C P3, so that obviously we also have PI C P3. For any couple a < b in
{1, 2, 3} we designate by Fab the convex subcone thick in F(Pa) and by Fla the
positive band of F(Pb) which were defined in theorem 3.3.2 relative to the proc-
esses pa C Pb. It was shown there that Fab and Fba are isomorphic by the map-
ping Uab and ub" defined by

[uab(fa)]t = im TfP- t >f;f_ a F(pa

[ub(fb)1t = limJ,f5P_, t> O;fb E F(Pb).
8 ~0

The best transitivity result that could be expected is valid as is shown in the
following theorem.
THEOREM 3.5.1. With the preceding notation we have

(3.5.2) u21(F2' n F23) = F'3, u23(F21 nlF2) = F31
and
(3.5.3) U13 = UOU12 on F'3, U3' = U21U32 on F31.

PROOF. Let f2 be an element of F2fn FP3 with images fl = u2l(f2) and
f = u23(f') in F12 and F32 respectively. Then the inequality fl _ f2 _ fl, which
holds for t > 0, impliesthatfl: [u'(f3)]t - [u2(f3)]t = fl. This last inequality
and the fact that u3'(f3) E F(P') imply
(3.5.4) f'l . [u'1(f3)],f [u21(f2)]t = fi,
that is, fI = u3l(f3). A similar argument shows that f3 = ul3(f ).
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Conversely, if fl and f3 are elements in F'3 and F31, respectively, such that
u13(fl) = f3 and u3"(f3) = fl, let us definef2 as ul"(f') and f'2 as u32(f3) in F(P2).
Clearly, we have ft <ft _f2 _ ft for t > 0, so that u'3(f') _ u23(f2) _
u23(f'2) _ f3 hold in F(P3). However, by hypothesis this triple inequality must
be a triple equality and by applying U'2 to the last three terms, one obtains
f2 = f-2= U32(f3). Since we also have by construction f2 = u12(fl), we have
shown that f2 C F23 n F21. The proof of the theorem is concluded.
A theorem similar to theorem 3.5.1 is of course valid for the cones G(Pa),

with a = 1, 2, 3.
Let us denote by Cab(Dba), where a < b in {1, 2, 3}, the bounded forms de-

fined in theorem 3.1.1 relative to the processes pa and Pb (Pb and Pa). These
forms satisfy the following relations.
THEOREM 3.5.2. Each of the forms C'3 and D3' is the suml of two similar forms

C13 = lim Pl_.C23 + lim t C2UP3_U,
(3.5.5)

3

u so
3

u I
I355 = lim . DUPt_U + lim T P3-uD, s, t > 0.

PROOF. This theorem is easily deduced from theorem 3.3.3 by the following
argument based on monotone convergence. Since the two given formulas are
proved in exactly the same way, we content ourselves with proving the first of
them.
By theorem 3.3.3 we are allowed to introduce the following two forms relative

to PI and P3
(3.5.6) ~ C't = lim I Pl_uC23, C" = lim T C2 P?3u

u;O uWO

To show that the second of these two forms exists we remark that CS _C=3t.
Then from the following identity, which is valid when s, t, u > 0,

(..) pl(p3 _pl)p3(3.5.7) P (P u I

Pl(P - pl) (lim T P2P:3.) + (lim 1 pl_ p2) (p3 _ p2)p3
wsO we O

or equivalently, from

(3.5.8) f0" dv C3+v,t+uv

= lim T (uddv + + lim i P JoJ dv w+vt+U_s)
we deduce that

(3.5.9) fU dv S+ t+U-V = Ju dv C.+'t+u r + fo dv G'+ t+u -

and by continuity, letting u i 0, that Ct = Cs + C',, as was to be shown.

4. Construction of processes
4.1. Perturbationforms and Feller's construction.
DEFINITIoN 4.1.1. A perturbation from H relative to a submnarkovian process P
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defined on thte denumerable set A is a family {Ilt, s, t > 0} of positive matrices on
A X A such that

(a) Puri, it.=,, , fl )"= tt s, i, > 0;
(b) 11.,te <p,: s, t > 0.

Note that p is defined in section 2.2. We remark that a h;Iarkovian process
admits no perturbation form other than 0.
Theorem 2.3.1 implies that the (s, t) functions 118,t(i, j) may be extended to

{s, t > 0} as continuous functions such that
(4.1.1l) P1 u"I8,0 Hu±s,,,=IT1+0 l o,s+u 5, u > 0,

1Pu¾IOs <_11 u,,8 HS,opu _ IIs,u s, u > 0.

Since the mapping of (0, co) in G defined by t {II8te, s > 01 is readily seen
to be decreasing, we are allowed to introduce the element {7r., s > 01 of G by
(4.1.2) 7Jr = lim Tllb,t e _ p, s> 0.

tG0
In the very special case where the process P is of the form P,(i, j) =

exp (-qit)I(i, j) where t > 0; i, j E A, for a finite nonnegative function q on
A, all perturbation forms IT relative to P are given by
(4.1.3) 1I8,t(i, j) = e-Q'8Q(i, j)e-it, s, t _ 0; i, j E A,

where Q is an arbitrary positive matrix on A such that Fj Q(i, j) _ qi. In this
particular case, a well-known construction due to Feller associates to {Pt, t > 01
and to Q a "jump process" on A. Our first aim in this section is to extend this
construction to general P and IT (such an extension has also been considered
by Moyal [18]).
To every integer n > 1, we associate a family of positive matrices on A X A

depending on n + 1 positive real indices through the formula

(4.1.4) ISo ,,"S . 1180,8* Ul 11U,82-U2 . .HU-1,I,J

where so > 0, si > ul > 0, **, sn1 > un-I > 0, Sn > 0. It is easily seen that
the right member does not depend on the choice of the ui. We then form the
positive matrices

(4.1.5) P f= f dt, ... dtn t ., n _ 1; s > 0,
Zt. !8

anid put Ps°) = Ps with s > 0. These matrices satisfy the following relatiolls,
which also permit us to define them by recurrence on n,

p(n+i) = lim t J du IIu,. P1n2U
(4.1.6) e4,I Os

p( +i) = lim T |du Pu').I.s_u n > O, s > 0.

To show the validity of the second formula, for example, it is enough to remark
that
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(4.1.7) J8 duP()=eliefs-u| dt, dt-dtnt+( 'AA

and that the second member of this identity depends on E only through the
domain of integration.
We then show by induction on N that the matrices _ P(') are submarkovian

for s > 0. This is certainly true for N = 0. If it is true for N and for all s, it
is also true for N + 1 by the following argument

(4.1.8) P1 e P8e + lim f du HU,.PsE)u-f) e_ Ic + 0 (0m~
_ Pse + fo duiru
=e - f08du (pu - r.) _ e, s > 0.

The dependence of the matrices P(") on s is exhibited by
n

(4.1.9) P = E s, t> 0; n > 0.
m=0

To show this identity, we remark that

(4.1.10) P`P)(n-r) = f ds ... dsm dt, ... dtn_m ")J
28i .Se
Iti <t

so that the indicated formula results from the fact that in the cone of positive
(n + 1)-dimensional vectors x = {xo, ***, xj}, we have

THEOREM 4.1.1. The formlula

(4.1.12) p8 = I J)(n), s > 0,
nn=

defines a submarkovian process P on A= A which dominates the process P. The
forms C and D associated to these two processes by theorem 3.2.1 are such that

lim =n =C+,t, lim I P =

(4.1.12) uPs uWOn, >

lim t Cs,uPt-u = llS,tx lim Jt PstDt = Hs,t
u40 u«0

for s, t > 0.
PROOF. From the construction above, it is clear that {P8, s > 0} is a semi-

group of submarkovian matrices, since
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(4.1.14) PaAt = y Thm)pPn = sp(m) = S, t > 0.
m,n-0 m-O

The continuity of this semigroup is an immediate consequence of P, > P8, when
s > 0, for then

(4.1.15) 0< -P,(i , i) _1- P.(i, i)-0, s 0; i e A.
To establish the relations between II and C (the proof of the relations be-

tween II and D is similar) we first remark that for s, t > 0

1 -
(4.1.16) C., lim P, (P. -P)P

2 lim P. 1 l1

1 s

= lim - | dv IIs+v,t+u-v = Hast.
u-O U o

It then follows from theorem 3.3.2 that the formula
(4.1.17) C',. = lim T IIH. Pt-. _ C.,

cIO

defines a form C' relative to P and P such that

(4.1.18) IHl g = lim I C8P14, s, t > 0;

but

(4.1.19) fods C't-S = lim T| ds n,f( PtQ-fo t~40 f\0 /

= Pt - Pt = f0 ds C8,,-,
so that, by continuity, the two forms C and C' are equal.
THEOREM 4.1.2. Suppose that the perturbation form II defined relative to the

submarkovian process P is such that III,, = Ha.,o Pt with s, t > 0. Then the Laplace
transform establishes for every x > 0 an isomorphism between the positive band of
Gb(P) on which lim s o0l P,-8g,, = 0, with t > 0 (compare theorem 3.3.3), and the
L-cone of positive bounded solutions of the single equation

(4.1.20) (J ds e-Z II.,O) h = h, h C 1+(A).

It follows from theorem 4.1.1 and from the special form of H that

(4.1.21) Pt = Pt + Jo du Hu,o Pt-u t > 0,

so that we have, for any element g E Gb(ft
(4.1.22) #t = Pt-.a. = Pt-.#. + fta duJu,o gt-u t > 0.
Then the condition lim,-o 4 Pt-.#. = 0, with t > 0, is for any 9 E Gb(P) equiva-
lent to
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(4.1.23) ot = f0tduf,o #tu, t > 0,

or, after a Laplace transform, to
(4.1.24) 9. = W., x > 0,

introducing the notation Q. = fo du exp (-xu) Hu,o for the present proof.
But on the other hand, it follows from the construction of P, that

(4.1.25) A. = Qn) R., x > 0,

so that we have, for any bounded positive solution h of Qz,h = h,

(4.1.26) [I + (xo - x)Az]h = h + ( Q-) (xo - x)R.Q..h

= h + (F, Q-) (Qhh-h)

= lim Q'h > 0.
n--

Here we have used the fact that [I + (xo- x)Rz]Qz. = Q. for x > 0. The pre-
ceding computation shows that {[I + (xo- x)R.]h, x > 0} is an element of
Gb(P) since all the functions [I + (xo- x)Rj]h are positive and bounded. If
{g,, s > 0} is the corresponding element in Gb(P), it follows from Qzg = Ox,
with x > 0, that lim.-o Pt-.gs = 0 for t > 0.
COROLLARY 4.1.1. Suppose that the perturbation form II defined relative to the

submarkovian process P is such that IL,t = 1L,o Pt with s, t > 0. In order for the
P process constructed in theorem 4.1.1 to be Markovian, it is necessary that for all
x > 0 and sufficient that for one x > 0,

(a) [J e-xu du fluo] e = e - xR=e,

(b) [f0 e-28 du Hu.o] h = h has no bounded positive solution other than 0.

In the notation of the preceding paragraph we remark that

(4.1.27) xk=e + (fo0 Qn) (p. - Qe) = E Q"(e - Qxe)

= lim Qze,
n_-,

where e= e-xR,e (compare section 2.3). Since the condition x!4e = e is
necessary (for all x > 0) and sufficient (for one x > 0) for the process P to be
Markovian, a similar condition is that Qze = p and that lim,_x Q:e = 0. To
prove the corollary it is therefore sufficient to prove that its condition (b) is
equivalent to lim., Q'e = 0; but this follows from the fact that limn- Qne is a
bounded positive solution of Q.h = h and that conversely any such solution,
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being bounded above by ch for a constant c > 0, is also bounded above by
c limn_ Q:e.
THEOREM 4.1.3. Given two submarkovian processes P and P' defined on A and

A' and such that P C P', the form Q defined in theorem 3.3.4, QJ,t =
limu«o P8(1/u)(Pu- Pu)Pt is a perturbation form on A for the process P. The
"perturbated process" P on A constructed from P and Q as in theorem 4.1.1, is such
that P C P C P'. Moreover, for any perturbation form I on A relative to P and
for the corresponding perturbated process P(") of P by II the following equivalences
hold
(4.1.28) P(n) C P' X~P(II) C X ,t '- Q., t s5 t > O.
PROOF. To show that Q is a perturbation form relative to P, we remark that

(4.1.29) Qs, te < lim P8 - (P' - P,4)Pte . lim PS - (e - Pue)
u o u u O u

= Ps, s,t > 0.

The proof that P C P' is made by induction on N in ,n<N P(n) _ P', with
t > 0 (notation of section 4.1). This inequality is clearly satisfied for N = 1.
If it is satisfied for the parameter value N, then

(4.1.30) E p(n) = Pt + lim du Qu,e ( E_P(n)u_.n_N ei4n0-i °o du Q~,8 n<N

< Pt + lim du Cu.eP-ue = P'.

If II is a perturbation form relative to P, it clearly follows from the construc-
tion of a perturbated process that P(") C P whenever HL, t _ Qs,t for s, t > 0.
The converse implication p(M) c P =X IH Q follows from theorems 3.3.4 and
4.1.1 by means of

(4.1.31) IT,. = lim P" U (P'(H) - t)7O
u;O u

. lim P. (P P,,)Pt = Q,,t, s, t> 0.

This concludes the proof of theorem 4.1.3.
The preceding results give a partial solution to the following fundamental

problem: how can one characterize and construct all the submarkovian processes
P' which dominate a given process P on A?

Let P' be a fixed submarkovian process on A'. Up to now we have constructed
for any process P on A such that P C P', a perturbated process P on A such
that P C P. This construction can obviously be repeated on P to give a per-
turbated process p(2) of P on A which is such that P C P C p(2) C P'. In the
general case the process P(O) is different from P, that is, the form Q(2) defined by
St= lim o uP(1/u)(P - Pu)Pt is different from 0. An example where

Q(2) F$ 0 was first constructed by Kendall under the denotation "flash of
flashes." We remark that theorem 3.5.1 shows that limb1o , POUQ(?, = 0,
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lim. 4 o . Q?.!Pt-, = 0 for s, t > 0. Repeating the preceding construction over
and over, we obtain a sequence P C P C p(2) C ... C p(n) of processes which
are all dominated by -P'. Moreover, -since the set of submarkovian processes on
a fixed set A is easily seen to be inductive, the preceding sequence may be ex-
tended to a transfinite sequence and to a last process P* on A which is still
dominated by P'. In the case where P* = P', which is possible only if A = A',
one may consider the problem of the characterization and construction of P'
from P solved; the solution has been given by successive perturbations.

In the general case, the process P* on A, being the last in our perturbation
procedure, has the further property that

(4.1.32) lim P* 1 (P - P*)P* = 0, s,t > 0.
u-0 u

We have thus reduced the general problem of characterization and construc-
tion of a process P' from a process P such that P C P' to the analogous problem
in the particular case where a relation such as the preceding (with P instead of
P*) is valid.

4.2. Absolute dominance. Given two submarkovian processes P on A and
P' on A', we say P is absolutely dominated by P if

(1) P C P', that is, if A C A' and if Pt _ P' on A for t > 0,
(2) limu-o P8u-'(P' -Pu)Pt = 0 for s, t > 0.
In the following, we shall designate by 5f the positive band of F(P') composed

of the elements f' such that lim, 4 o ,f'Pt-_ = 0 for t > 0 (compare theorem
3.3.2); the positive band 9 of G(P') is similarly defined as the set of g' for which
lim, o I Pt-8g's = 0 for t > 0. We also let gb = 5V n Fb(P'), and 5e = a n F.(P')
while gb = 9 n Gb(P'). The main result of this section will show that a = fb =
o;e, that 9 = 9b and that 5 and 9 are in duality whenever Ve or gb is a finite
dimensional cone.
For every closed subset B of A, the process pB constructed in section 3.4 is

absolutely dominated by P; in this particular case, the following theorem re-
duces to theorems 4 and 5 of [20].
THEOREM 4.2.1. Let P on A and P' on A' be two submarkovian processes such

that P is absolutely dominated by P' and suppose that either 5e or gb is a finite
dimensional cone. Then there exists a finite set Q which contains A' - A and for
every w C ft there exist

(1) an element of W;e, to be denoted by {P (w, .), t > 0} equal to {P't(i, *), t > 0}
if X = i E A' - A, for which limt ,o T ,A'P'&(W, i) = 1 and such that the most
general element of 5f is given by

(4.2.1) f' = , t(w)PI(w, *) on A', t > 0,

where t is an arbitrary positive measure on Q;
(2) an element of 9b, to be denoted by {P'l(., w), t > 0} equal to {P't(, i), t > 0}

if w = i E A' - A, such that the most general element of 9 is given by
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(4.2.2) g' = E P'(., w)X(w) on A', t > 0,

where 77 is an arbitrary positive function on Q;
(3) an element of Fb(P), to be denoted by {Ft(, ), t > 0, and an element of

Gb(P), to be denoted by {Gt(., w), t > 0, such that

C.,t = E G.(., .)P'(w, ) on A X A', s, t > 0,
(4.2.3) s

t= P'(-, w)F,(w, ) on A' X A, s, t > 0,

if C and D designate the forms defined by theorem 3.1.1 relative to the given processes.
Moreover if the two sets {Ht, t > 0 and {Ht, t > 0 of positive matrices on 9

are defined (independently of s) by
[ll(wl, Ow2) = E P[.s(w,) i) Pv(i, W2),

(4.2.4) ieA'
Ht(c2, wI) = , Ft-.(W2, i) G.(i, WI), 0 < s < t,

iiEA

[so that I1t(w, ) = Pt(w, *) and Ht(*, w) = P,(, w) on A' - A] there exists a
matrix Q on 9 such that for every x > 0

(4.2.5) (fo dt e-xl nt) = XI(A'-A) + fo dt (1 - et)Ht-Q

The following inequalities also hold

G,(., w) < pt on A,

(1dt min (1, t)Ht(w, w) < x, X E Q,

(4.2.6) fo dtHt(& , a,) = +oc, X A' -A,

0° o dt H,(wo, W2) . Q(WI, 02), 1 F! W2,

°_ lim F{ (Wl, i) [I - f dtG#(i, 2)]}

_ -E Q(oI, 02), wl C Q.
.>2

In what precedes, all the elements introduced are uniquely determined by the proc-
esses P and P' except for {Pt(-, co), t > 0, {Ft(w, .), t > 0, and {Q(c, -)} when

A' - A, which can be replaced by {P't(-, w)c,,, t > O, {c-'Ft(co, .), t > 0,
and {c,, Q(w, .)}, where 0 < c< < o.

PROOF. We shall prove this theorem under the hypothesis that 5;e is finite-
dimensional; the case where 3b is assumed to be finite-dimensional is proved in
the same way. Since any finite-dimensional L-cone is isomorphic to the cone of
positive vectors of a finite-dimensional Cartesian space, the hypothesis immedi-
ately implies the existence of a basis in 5Ye, that is, of elements of ae with the
properties in (1) of the statement of the theorem (with W, instead of 5;). A set
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Q is defined in this way; also A' - A is isomorphic to a subset of Q since
{Pt(i, .), t > 0} is, for every i C A' - A, an element of We and A' - A is
identified with this subset.

Since for every s > 0, i E A, we have {C.,t(i, *), t > 0} is an element of 5e
by the absolute dominance hypothesis, there exists a positive function G.(i, *)
on Q such that

(4.2.7) C.,t(i, *) = E G.(i, w)P'(w, *) on A', s, t > 0.
n

Moreover, it follows from PuC.,t = CU+J,t, with u, s, t > 0, and from the fact
that C is bounded that {Gt(., w), t > 0)} E Gb(P) for every w E Q. The first of
formulas (4.2.3) has thus been shown to hold.

Let us prove that

(4.2.8) E G(., c p-)= p8-ps on A, 8> 0,
when p. = lim.u o I P.-up',, an element of G(P). This formula is in fact a direct
consequence of the following formula, valid on A,

(4.2.9) Jo du pu- du p' = P'e' - Pte

fo du Gu(., w)P1'_ue'(,w),

as is seen by multiplying by (1/t)P, on the left and letting t tend to 0. This
allows us to define a positive function y on A by

(4.2.10) -y(i) = 1 - du , Gu(i, co) > 1 - du pu(i) > 0.

To show that gb is finite-dimensional whenever ae is finite-dimensional, we
first extend the definition of D8 t from A' X A to (A + Q) X A by letting,
independently of u,

(4.2.11) PSt,)'' u(w, *)D.,tj, s > u > 0; t > O

so that by theorem 3.1.1 the following formula holds on A, for t > 0,

(4.2.12) Pt(c, *) = lim [Ps(w, *) (Pt,s + fo duDt--u

=lim [Ps(w, -)Pt-, + f0 du Dt_,,,(w, I)]
=| duUDtu,u(w.)

On the other hand, we extend the domain of definition of any g' = {gt, t > 0} E g
to A + Q by letting, independently of u,

(4.2.13) g'(W) = (P'-U(W, *), gu)
so that by theorem 3.1.1, the following formula holds on A, for s > 0,



386 FOURTH BERKELEY SYMPOSIUM: NEVEU

(4.2.14) g' = lim ±P.-,+ | du Cu 8_u) Jt

= lim [P tg t+ IXjdu Gu(, w)g3-u(w)]

- fi du Gu(-, )gS-u(.).
Combining the two preceding formulas and letting, independently of u,
(4.2.15) D6,t(w1, W2) = (D8.(.1, *), Gt.u(, C02)), S > 0, t > U > 0,
we obtain, for g' C , co C Q, and s, t > 0,
(4.2.16) g)+S(g) = (P"(w, *) g/S)

= 2 P'(w, i)g,(i)+ f| du |dvf wi)g'( )

or equivalently, for any g' C gb, after a double Laplace transform,
(4.2.17) (w) = g'(w) + (y - x) 2 R'(co, i)g9(i)

A'- A

+ E [fo- ds e-x8fo dt (e-xl - e-'t)D8,&(, wi)] 9g('wi)

for x,y > 0 andw C U.
This last equation together with (4.2.14) shows that the mapping of /b into

the cone of positive functions on Qdefined by g -9 v is one to one, for every
fixed y > 0. Hence, dim (9b) _ dim (5e) < oo. The beginning of the present
proof may now be transposed from '3 to gb to obtain the existence of

(1) a finite set 52', containing A' - A;
(2) elements {P'(., w'), t > 0} of 9b with Pt(., w) = P9(., i) when ' =

i C A' - A such that {,Q PI(., w')'q(w), t > 0} is the most general element of
!b when I > O;

(3) element {FI(w', .), t > O} C Fb(P) such that on A' X A

(4.2.18) D,,t = E P'(-, w')Ft(w', ), s, t > 0.

With this notation and putting, independently of s,

(4.2.19) flt(w,co') = E Ps(w i)Pts(i, 'W),
A'

( E g, QC Q'; t > s > 0,
we may rewrite equations (4.2.12) and (4.2.14) as

P'((cw, *) = E du HItu (w, c')Fu(w', *)
(4.2.20) 0

P'(-, ') = E |odu G.(-, w) I,-u (w, w') on A, s, t > 0,
whereas equation (4.2.16) takes the form
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(4.2.21) Hi,4. (I, T') Z Hr (w, i1)L (i, c )
A'-A

+ fZ dut, fod H,,, (w, 4)IIz+'(&4, (1) ITt- (,i ,')

if {Ht, t > O} oni 52' X Q is definie(d as in (4.2.4).
The Laplace transform {fIf, x > O} of {Ht, t > 0} exists and is finite since by

the definition of IH we have fIl (cw, w') < jR'(., )' < Xc. Let us also intro-
duce on Q' X Q the positive matrices Zx defined by

(4.2.22) Z,(w', cW) = XIA'-A(W, W) + fO (I (1 - c-rt)HI,(w', w,)

= XIA'-A(O', CO) + x (JO di e-xF,(w, -) Jo dt Gt(*, w)

These matrices aIe finite since {FFt(', .), t > 0' E IFb(P) for every w' C- Q' and
since E_ fo dt Gt(., c) _ e on A. An easy computation then shows that (4.2.21)
is equivalent, by a double Laplace transform, to the following equation, valid
for w C Q, c' C Q', and x, y > 0,
(4.2.23) II(, co') - 1l(w, ')

=E E fItk Col4)[ZA(clo, ) - ZZ(c4, ci)] fl (c,, co').
WI' WI

Let us remark further that the matrices IIi, defined oln Q X Q' are invertible,
since if there existed a function p 0 on Q' [or Q] such that for a fixed y,
E. ft" (-,wI)77(car) = 0 on Q [or fl(c)HI(* ) = 0 on Q'], the formulas
(4.2.23) and (4.2.20) would imply

E P,(., o')7(W') = 0,
(4.2.24) n,

(42 )[()P(co, *) = 0], on A', s > 0,

which is impossible.
This property of the matrices flx together with (4.2.23) implies the existence

on Q' X Q2 of a matrice Q independent of x such that for every x > 0,

F. IIz (-W, )[Z-(c0', *)W(C,*) IQ,
(4.2.25)

a,

UZ [Z.(-, ) - Q(., W)] ft-(c, *) =I
It

A systematic study of equations such as (4.2.23) was given in [20]; in order
to apply theorem 3 of this reference, we need only remark that

(a) lim I1f= O on Q X Q;
X 0

(b) lim fl.Zz = lim (In + fII Q) In on Q X Q,

limZr ft = lim (Q fII + I") = In on Q' X Q';
z- x zx-



388 FOURTH BERKELEY SYMPOSIUM: NEVEU

f. dt xext {AA P'(-, i) + E Yt(I i)[1 7(i)

_ 1 on U.
As a consequence of the theorem cited, there exists a one-to-oine correspondence
between Q and U' (which reduces to the identical mapping on A' - A) by
which Q and U' are identified so that the inequalities (4.2.6) relative to H are
valid. These inequalities also show that the preceding correspondence between
Q and Q' is uniquely determined.
To conclude the proof of theorem 4.2.1, there remains to be proved the last

of the inequalities (4.2.6). We shall prove therefore that if q' = {q', t > O} is the
component of p' = {pt; t > O} in 9b SO that

q= PQ(,w')q(w') on A',
(4.2.26)

q,(w)
RIlH (w, w')q(w') on g
U'

for a positive function q on Q', then this function q is given by

(4.2.27) q(w') = -E Q(w', w)-lim T E F.(co', i)'y(i).
a uI0 A

We first remark that by (4.2.8)

(4.2.28) -y - Po = fl du pu - fo du Gu(,w) = fo dup. > 0

so that (F(c(w', .), -y) is a nonincreasing function of u for

(4.2.29) (Fu+,(w', *), y) = (Fu(w', ), Pvy) _ (Fu(w', .), ry), t, V > 0.

On the other hand, the relation

(4.2.30) wfII (-, w')[Z.(w', co) -Q(w', w)] = 1 on Q

is equivalent to the following equation on Q,

(4.2.31) E P1(-, i) + P1(-, i)[1 - 7(i)]
A-A' A

= 1+ [l ds Hs(, w')] Q(w',w),
that is, to

(4.2.32) 1 - P'e(w) = E Il ds ii (, w') [-, Q(w', ) - (F,-.(.', .y)j
On the other hand, it follows from p't = q' + lim,8 o T P-,PS that

(4.2.33) 1 - P'e'(w)

= f0tds q'(-) + lim [f0 ds P'(, )

= E |0 ds Hi (w, w') [q((c') + lim f0 dv (F(w',, PAu)].
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However, since

(4.2.34) f|0 dv (F.,(.', *,p = lo dv(Fu(W', *,p'

= (FU(w', *), -Pt-y),
we have obtained

(4.2.35) 1 -Pe'(w)

=@ ds H, (co, w') [q(w') + luimT (F.(,', -), y) - (F_(w', ) y)]

This equation compared with (4.2.32) gives (4.2.27).
Theorem 4.2.1 admits the following full converse.
THEOREM 4.2.2. Suppose we are given,
(a) a submarkovian process P on A;
(b) a finite set Q and a subset O' of Q;
(c) elements {Ft(w, *), t > O} E Fb(P) and {Gt(-, w), t > 0} E Gb(P) for

every w E Q;
(d) a matrix Q on D. Let ub further suppose that the inequalities (4.2.6) are satis-

fied with D' instead of A' - A and with {Ht, t > O} defined by (4.2.4). Then the
following formulas uniquely define, for every t > 0, positive matrices P't on A + Q
whose restrictions to A + Q' constitute a submarkovian process on A + o'

(f0 dt e-TP') = XIsA + Jo dt (1 -et)H, - Q on Q X Q,
x > 0,

(4.2.36) l"t = P, + f0tds E G8*, ci;)Pts(w, .)

on AX(A+Q),

Pt = Pt + dsE P'-s(-,w)F.(w, *)

on (A+Q)XA.

This process P' has moreover all the properties stated in theorem 4.2.1 with the same
notation.

Proof. The verification that the preceding formulas define a submarkovian
process P' with the stated properties will be left to the reader, who is also re-
ferred to [20] where an entirely similar verification is made in theorem 5.
COROLLARY 4.2.1. With the same notation as in the preceding theorem,

lim1 Ptd(i,j) Q (i, j) s H.(i,j), i F4j in A' - A,
t-o t o

(4.2.37)
lim {[1 - Pt(i, i)] - tQ(i, i) + f ds min (s, t)H,(i, i)} = 1,
t-0 Jo

i C A' - A,
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and as a consequence

(4.2.38) lim [I - I"'(i, i)] = -Q(i, i) + f (IS J,(i, i) _ X,t0t0
iE A'-A.

COROLLARY 4.2.2. For the process P' to be Markovian on A' it is necessary and
sufficient that the first and last inequalities of (4.2.6) be equalities.
PROOF. Immediate by formulas (4.2.8) and (4.2.27).
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