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1. Introduction

The percolation process considered is over the lattice of integer points (x, y),
the bonds (all of unit length) being parallel to the x- and y-axes and positively
oriented. The "x" bonds have probability 1 - p and the "y" bonds probability
I - p' of being dammed. Estimates are given for "critical" pairs of values p, p'.
The terminology used is that introduced by S. R. Broadbent and J. M.

Hammersley in [1] and the medium here considered is a crystal in the sense
defined there. Its atoms are the points (x, y), where x and y are integers, while
its bonds are of two types, dammed with probability q = 1- p, q' =1-'
respectively, namely

(x, y) (x + 1,y) with q = 1-p,
(x, y) (x, y + 1) with q' = 1 -p'.

Given a single wet atom as source, and the general principle that fluid flows
from a wet atom along an undammed oriented bond to wet another atom, we
now consider the

PROBLEM. For what values of p and p' is it true that, with probability 1, only
a finite number of atoms in all will be wet?
We shall see that the answer to this question is unchanged if the source con-

sists of any finite number of wet atoms. We shall further see that there exists
a curve passing through the points (0, 1) and (1, 0) such that if the point (p, p')
lies inside the curve [that is, on the same side as the origin (0, 0)] then, with
probability 1, only a finite number of atoms will be wet, whereas, if (p, p') lies
outside the curve, there is a nonzero probability that an infinity of atoms will
be wet.
Hammersley [2], [3] has given lower and upper bounds for the value of p

where the line p = p' meets this curve. Estimates are here given for the values
of p where the line p = p cos 0, p' = p sin 0 meets the curve, for all values of
O = 0, ir/32, * * *, 7r/2. This is believed to be the first published example of a
percolation process in which the bonds have not all the same probability of being
dammed.
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2. The Markov chain
There are many ways in which the process described can be considered as a

Markov chain. For example, we may consider the successive states to be defined
on successive diagonals, x + y = constant, by the specification of all the wet
atoms on that particular diagonal. In this light we see that the states are enu-
merable, there is a single absorbing state (namely, the zero state, consisting of
no wet atoms) which is accessible from all other states, and all the nonzero
states form a single aperiodic intercommunicating class. Hence, if P denotes the
stochastic matrix which defines this Markov chain 9 (its first row referring to
the zero state), it follows that II = lim - (p)n exists, and that its elements ir,
satisfy the following conditions,

(2) lroo = 1, rij = O i ,
and

either (3a) 7rio = 1 all i,
(3) or (3b) 7rwo < 1 i$ O.

In the case (3a) there is unit probability that some diagonal, and every sub-
sequent diagonal, has no wet atoms, so that the total number of wet atoms is
finite, whereas in the case (3b), provided i $ 0 (that is, that there is at least
one wet atom as source) there is nonzero probability that every diagonal con-
tains at least one wet atom, so that the total number of wet atoms is infinite.

Recalling (F. G. Foster [4]) the definition of a nondissipative Markov chain
as one for which Ej 7rij = 1 for all i, we see that there is nonzero probability of
an infinity of wet atoms, from any nonzero source, if and only if the Markov chain
is not nondissipative. This proves the remark immediately following the state-
ment of the problem in section 1 and also enables us to restate the
PROBLEM. For what values of p and p' is the Markov chain nondissipative?
A direct attack on this problem has proved intractable, so we turn our atten-

tion to the simpler problem provided by a class of pseudopercolation processes
$, related to our main process .

3. The processes 3,
For each positive integer r, the process $3, is the same as $3 with the modifica-

tion that additional sources (wet atoms) are introduced in the course of the
process itself in the following manner; namely, that every rth diagonal (and
these alone) have the property that all atoms on the diagonal between any two
wet atoms are themselves wet. Thus any state j = 0, 1, 2, * * * of the Markov
chain 3,. is given by specifying merely the total number j of (necessarily con-
tiguous) wet atoms on the diagonal in question, while the transition probabili-
ties are obtained from those of the rth power of P by identifying states of 93
with the same total span (=j) and deleting the rows corresponding to states of
9 in which the wet atoms are not all contiguous.
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Before proceeding to study the "critical curve" (see section 1) for the process
9, we may mention its relevance to the problem of finding the critical curve for

Since any particular realization of 3, certainly contains at least as many wet
atoms as the corresponding realization of the process 9, the critical curve for
3, certainly lies inside or on the critical curve for ,., so that we may obtain
sequences of lower bounds for the critical probabilities for 9. On the other hand,
by letting r -* o, we obtain processes 93, as nearly as we please coinciding with
9, so that our sequences will tend to the required critical probabilities for 9.
A rigorous proof of this observation has been provided by Hammersley and is
given in section 10.
Now it is easily seen that the elements pvj) of the stochastic matrix p(r) defin-

ing the Markov chain 9,. satisfy the conditions of the corollary to theorem 3 of
[5], pages 832-833, in particular we may take 1 - a = [min(p, p')]r. Notice that
the subscripts in the first condition (48) should be ioj, not ijo.
Hence the following limit exists

(4) E = E()(p, p') = lim E (j-
i bX j=o

and the process 93r is nondissipative if E < 0 and not if E > 0.
Since the general considerations of section 2 apply as well to r as to 93, it

follows that the critical curve for the process r is the locus of points (p, p')
such that
(5) E(r)(p, p') = 0.

4. The end-effects of $3,
For any given diagonal x + y = br of the subset corresponding to states of

93,., let W denote the aggregate of wet atoms on this diagonal and define

(6) t = min {x: (x, y) E W}, 7 = min {y: (x, y) E W},
with o= = X if W is null. Also let t* and q* denote the corresponding quan-
tities on the next diagonal (for 93,), namely x + y = (b + l)r, and let

(7) hk(r(p, p';i) = P{t*- > kii},
where i is the state of the former diagonal x + y = br. Finally let

(8) hk= hI)(p, p') = lim hk()(p, p'; i).

Then the following propositions are obvious.
(9) h(r)(p, p'; i) is independent of i if i > k.

(10) lim E{t* -1 *#do} = E h2r)(p, p') = ,(r)(p, p'), say

(11) E(")(p, p') = E{j - i} = r -a(r)(p, p') - g(r)(p', p).
We now turn to the evaluation of ht (p, p') and hence of o(r)(p, p').
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5. The processes $13i and $32
In the case of ¶13 we easily calculate

(12) h'1 (p, p'; i) = q'(qqt)k-l i > k _ 1,

where q = 1-p, q' = 1-p'.
Hence, from (6) and (12), the critical curve for $1 is

(13) p + P 1PP
Similarly for the process 2 we find

(14) hf2'(p, p'; i) I pt2 i > 1,
h'2'(p, p'; i) = [1- p'(l - qq')]2[l 1-qq)2]k 2 i > k > 2.

Hence, 1- (2)(p, p') = [2p'(1- qq') -1](1 - qq')
and the critical curve for 2 iS given by

(15) (p + p')(p + p' -pp) = 1.

In particular, for the symmetric case p = p', (13) and (15) provide lower
bounds for the critical probability pd for 13, namely,

(16) Pd > 2 - -\/2 = 0.58578*.*

Pd _ (t|t3 - 2t2 + - = 0) = 0.59697- -.-2

The second lower bound here was quoted by Hammersley in [6], together with
the improved lower bound provided by 933.

6. The end-effect as a Markov chain

Suppose that the condition (wet or dry) of all the atoms {(x, - x) : x > 0} is
known. Consider the chain formed by the consecutive vertical segments

(17) SC= {(c, s-c) :1 s < r} c = 0, 1, 2,*-.
Any such segment may be in any one of 2r distinct states (that is, specifications
of its wet and dry atoms) which may be determined uniquely, and ordered
0, 1, ***, 2r - 1, by specifying the integer

(18) i = i(Sc) = E rv(s),
where
(19) v(s) = vc(s) = 1 if the atom (c, s - c) is dry

0 wet

Clearly, if the atom (0, 0) is wet, we have

,p r if io = 0,
(20) P-i(So) = i0} = (p )rrnq if io = 2m - 1, 1n 1, *,

L0 otherwise.
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The stochastic matrix of transition probabilities from states of S. to states of
SC+1 depends (apart from p and p') only on the (known) conditions of the two
atoms (c, - c) and (c + 1, - c -1). Let us denote the four stochastic matrices
in question by A(), with a, /3 = 0, 1, where

a ( {1 if the atom (c, -c) is dry,
(21)

0 wet,
/=3 if (c + 1, -c -1) is dry,
0 ~~~~~~wet.

Then each of the matrices A.'s is square of order 2r by 2r, and we easily verify
that they are defined recursively by the equations

-=(1 - qq')AO) qq'A(S0 )1 [pA(r) qA(1o1
L (1 - qq')A() qq'Afl J - LpA(r) qA(r1

A,r+l) _rP 1 _rr (r) 1r
( =pA([ro q'Arjl Al - LQ(r) A(ITI 1'

with
(23) Q = AS = Aff = A1°l2 = [1].

7. The operations # and p

We may regard (22) as an operation which transforms a set of four matrices
A,'r, into a set of four matrices A',`r). Let us denote this operation by d. Then, if
aco, aoi, a10, an1 are any four numbers, regarded as square matrices of order 20, it
follows that 0't(aoo, ao0, aio, all) denotes a set of four square matrices of order 2r.
These four matrices will be identified individually as

(24) t,s(aoo, ao0, aio, an), a,: 0, 1.

Similarly, the operation p, defined by

F (1 - qq')uf + qq'U( 1 (r+1) - [puo + quol
U =L(1 - qq')u( + qq1u(r' u1 - [pUSr + uf1l]

u(r+l) FP'u4 + q'u (or u '1+1) [U(O)l110 - [pU(r + '( urI
transforms a set of four column vectors into another such set of four with twice
the dimension, and an r-fold iteration of this transformation on four scalars aaB
(regarded as vectors of dimension 1) yields four vectors of dimension 2t which
will be denoted individually by 4p (aoo, aoi, a1o, all) with a, ,B = 0, 1.

Thus, for example, the sum of all the columns of the 2? by 2r matrix
',,(a, b, c, d) is the vector orl(a, b, c, d).

8. The evaluation of h,')(p, p') and aM()(p, p')
We may suppose that we have an infinite source of wet atoms

{(x, -x): x 2 0}. Then hk is the probability that the first k segments S., with
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c = 0, 1, ***, k - 1, are all.in states whose labels i(S.) are odd numbers. Hence,
in order to calculate hk, we may confine attention exclusively to the 2nd, 4th, * * *,
states, whose labels i are 1, 3, *.*, 2 -1. The appropriate one-step transition-
probability matrix (which is not, of course, a stochastic matrix) consists of half
the rows and columns of A((2 and is

(26) B = B(r)(p, p') = t0'o(qq', q, q', 1).

Then hk[)(p, p') is the sum of the absolute probabilities of all such states in the
kth segment Skl1, given the transition matrix B, and the initial probabilities
(20). That is to say,

(27) hk = hkr'(p, p') = y(B)k-lu
where y is a row vector and u a column vector whose elements are defined re-
spectively by

tl 1 for i = 0, 1, **2-1 I
(28) fp'r-1--q' if i = 2n - 1, m = 0, 1, ,r - 1

{pirlmq/ otherwise.
Hence, from (11)
(29) a(r)(p, p') = y(I -B)-lu,
where B, y, and u are defined in (26) and (28).
We now notice that, for r 2 2, each even-numbered row of B is q times its

successor (so that B is singular). Hence, if T denotes the square matrix of order
2r-1 whose elements t1j are defined by

{q if i = 2j,
(30) tlj = if 2j- i = -1 or 2r-1,

C0 otherwise,
then, on replacing B by T-'BT and transforming y and u appropriately, we find
that a- is given by (29) with

(31 ) uif = Ip if 0 _ i _ 2r-2 lX

I(1 + plq)p'r 2q' if i = 0,
pfr-2-mrqP if i = 2- 2 m = 1,2, *, r - 2,

(32) yi =pfr-IqI if i =2r2
0 otherwise.

(33) B= [C D

where
C = ,0-2(qq'(2 - qq'), q(l + pq'), q'(1 + p'q), 1),

(34) D = t%Y2(q'(1 - qq'), pq', p'q', 0),
and obviously
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(35) (I -B)-' = [I-C) °] X [I D]
Taking out separately the contribution to a- arising from Yk, where k = 2r-2,

we find that
(36) u(r)(p, p') = pt-lq'p + q'z(I -C)-v
where q = 1-p, q' = 1 - p', C is given by (34),

pfr-2(1 + p'q) if i = 0,
(37) zi = +ppq) if i = 2 - 1, m = 1, 2, **,r - 2,

t0 for all other values of i, 0 _ i < 2r-2 -1,
and v, the sum of the columns of I + pD is defined by

(38) v =s002[I + pq'(1 - qq'), 1 + p2q 1 + pp'q', 1].

9. The critical curves for the processes 3,, 1 < r _ 9

The solutions for the cases r = 1, 2 are given by (13), (15). For other values
of r we let p = p cosO, p' = p sinO, where 6 = k7r/32 and k = 1, * * 8. Then
p(r, k) denotes the critical value of p, for which E(r)(p cos 6, p sin 0) 0. This
quantity is tabulated in table I, with accuracy within 10-7 for 1 _ r _ 7, 3.10-5

TABLE I

VALUES OF p(r, k)

r k= 1 k =2 k=3 k=4 k=5 k=6 k=7 k=8

1 .9554740 .9191702 .8899865 .8670910 .8498639 .8378578 .8307705 .8284271
2 .9564690 .9224798 .8961947 .8762765 .8617366 .8518512 .8461185 .8442406
3 .9573331 .9250638 .9006607 .8824817 .8693897 .8605815 .8555107 .8538558
4 .9580929 .9271526 .9040640 .8870145 .8748159 .8666500 .8619658 .8604401
5 .9587677 .9288843 .9067607 .8904986 .8789034 .8711645 .8667360 .8652954
6 .9593722 .9303478 .9089599 .8932760 .8821163 .8746839 .8704384 .8690590
7 .9599177 .9316042 .9107938 .8955524 .8847233 .8775227 .8734161 .8720830
8 .96041 .93270 .91235 .89746 .88689 .87987 .87588 .87458
9 .9602 .9340 .9126 .8990 .8887 .8818 .8775 .8767

Xo .9668 .9440 .9240 .9110 .9015 .8951 .8919 .8905

for r = 8, and 10-3 for r = 9. In fact, when r = 9, the accuracy is probably
10-4 except that the case k = 7 is somewhat doubtful and the cases k = 1, 2, 3
are rather difficult to compute. Included in table I is the set of values of p(oo, k)
obtained by the method of extrapolation explained in section 11.

10. Proof of convergence to the required limit

This proof is due to J. M. Hammersley. Consider the countable sample space
Q = {cw} consisting of all the different specifications of dammed and undammed
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bonds. Then fixing p and p' induces a fixed probability measure A = ,(p, p') on
the subsets of Q2.

Define the following subsets of Q
S = {w : $3 wets infinitely many atoms},

Sn, = {co :3 wets some atom on x + y = n},
Sr = {w :3, wets infinitely many atoms},
Sn = {co: r wets some atom on x + y = n}.

We have to prove that ,u(S) = 0 if and only if limn1nO,u(Sn) = 0, and we shall
in fact prove the stronger result (45).
The following relations are evident:

(39) S= SnCf Sn+1 C Sn
n=1

(40) ~~~~SC S, C Sr= .(40) rCTS Sr.
From (39) and the standard theory of measure functionis
(41) lim A(Sn) = A(S).

n--+

Hence for prescribed E > 0, there exists N(E) such that

(42) A(Sn) <nu(S) + E, n > N(E).

By (40) we have

(43) 4(S) _ it(ST) <_ (Sr).
From (42) and (43) it follows that

(44) A(S) < M(Sn) <M(S) + e, n > N(E),
and hence
(45) lim (S') = u(S),

n --

because f is arbitrary.

11. The critical curve for the process 13

We fix k (= 1, 2, ..., 8). Then the sequence {p(r, k) r = 1, 2, *.*} is a
monotonic increasing sequence whose limit p(oo, k) provides a point on the re-
quired critical curve. It transpires that a formula which converges rapidly and
which correctly gives the first nine terms of the sequence, to the accuracy to
which they are known, is

(46) p(r, k) = p(co, k) - AXr -B - Cvr,

where A, B, C, X, I, v are suitably chosen positive constants depending on k.
Their values, together with those of p and p', are tabulated in table II. It will
be noticed that the symmetric case (p = p') is given by k = 8 and the table
can be continued to k = 16 (0 = ir/2) by interchanging p and p'. In the sym-
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TABLE II

k-1 k -
2

k - k-4 k-5 k= 6 k - 7 k - 8

p. .9668 .9440 .9240 .9110 .9015 .8951 .8919 .8905

x .9345 .9280 .8930 .8886 .8820 .8774 .8790 .8760
A .7445 .7348 .6341 .6152 .5914 .5780 .5817 .5744
P .2501 .4187 .2884 .2679 .2465 .2395 .2457 .2412

A .0101 .0178 .0250 .0300 .0342 .0371 .0385 .0393
B .0013 .0065 .0084 .0125 .0154 .0173 .0190 .0191
C .0000 .0005 .0007 .0014 .0021 .0028 .0036 .0037

P .9622 .9259 .8842 .8417 .7950 .7442 .6895 .6297
P' .0948 .1842 .2682 .3486 .4249 .4973 .5658 .6297

metric case, Hammersley [3] has shown rigorously that p = p' < 0.849585 --.
It must be emphasized that the extrapolation here is purely conjectural-all
that has been rigorously provided is a few terms of a monotone sequence which
is known to converge to the required limit.
The computation was carried out on Mercury in the Oxford University

Computing Laboratory, and I here express my gratitude to the staff for their
assistance. It will be seen from (22) that the calculation was particularly well
adapted to the use of binary digits.
My thanks are also due to Mr. Hammersley, with whom I have had many

valuable discussions.
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