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1. Introduction

The classical theory of the summation of independent random variables as
expounded in the book [8] in its simplest case considers the increasing sums
Sn = X1 + - * * + Xnt. For the properly normed and centered sums Z. =
Sn/Bn- An the behavior in the limit of the probability measures generated by
{Zn} on the real axis is studied.
The most general theorems are the integral theorems on the limit behavior of

(1.1) P{Z < x}.
Although the theory of local limit theorems is rather well developed [8], it is not
yet of such finished character as that of integral limit theorems. Limit theorems
for the expression (1.1) usually suppose that n -> oo and x is a fixed number.
However, many problems occurring in such different fields as mathematical

statistics [4], [2], information theory [5], [19], statistical physics of polymers
[18], rubber chemistry [17], and even analytical arithmetics [11] require certain
information on the limit behavior of (1.1) not contained in the classical limit
theorems. The information required concerns the asymptotic behavior of
(1.2) P{Zn > x}
for "large values" of x, that is for x = x,, increasing as n increases; the corre-
sponding problems will be called problems on the probability of large deviations.
As probabilities of events of this kind are generally small, in general, the usual
methods of establishing the limit theorems (characteristic functions, partial
differential equations) are too rough to give satisfactorily general results and
the desired asymptotic results were considered in the literature under certain
very stringent conditions imposed upon the variables X,.
The first theorem on the probability of large deviations was published by

A. I. Khinchin [10] in 1929 and related to the particular case of the Bernoulli
variables. The same case was treated more completely by N. V. Smirnov [16].
In 1938 appeared the fundamental paper [4] of H. Cram6r containing the first
result of a general nature in the theory of large deviations. It was improved
by W. Feller [7] and by V. V. Petrov [12].
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Now, we shall formulate V. V. Petrov's result, restricting ourselves to the case
of identically distributed variables for the sake of simplicity. Let X1, ,X,
be a sequence of independent identically distributed variables with

E(Xj) = 0, D(Xj) =

(1 *3) S. = Xi + ***+ X., Zn = _

F.(z) = P{Z. < x, G(x) = - f e-"/2du.

H. Cramer's [3] condition (C)

(1.4) E exp (alXjl) <

must hold for some a > 0. Then for x > 1, x = o(_Vn) and n oo we have
1 -,G(x) X

(1.5) 1 G(x) = exp Lor X\/V)L+
(1.6) F() = exp X/_ X + o x

where X(z) is a power series involving the cumulants of the variables Xj and
convergent for Izi < eo, Eo > 0. Later on, W. Richter [13], [14], [15] introduced
systematically the saddlepoint method into the theory of large deviations. For
a particular case, this was done earlier by H. Daniels [4]. Under Cramer's con-
dition (C), Richter deduced several local limit theorems for large deviations,
established the connection of Cram6r's method with the saddlepoint method,
and investigated the necessity of condition (C) for the formulas (1.5) and (1.6)
to hold for x = o(x/n).

All the results hitherto obtainied used Cramer's conditionl (C). The analytical
meaning of the condition (C) is that the characteristic function (ch.f.) of the
Xi is analytical in some neighborhood of zero, and so in the corresponding strip.
This enables us to apply complex function theory and the saddlepoint method.
But if the condition (C) is violated, the methods hitherto applied fail. The

purpose of this paper is to give some applications of a new approach which
enables us to obtain rather general results. Of the class of problems subject to
this method we shall treat here only the problem of normal convergence and the
problem of limit theorems valid for all values of x for n x.

2. Zone of normal convergence: integral limit theorems

We consider here the normal convergence problem for large deviations for the
sake of simplicity only for independent identically distributed variables.

Let X,, * * *, X", * be independent identically distributed variables with
E(Xj) = 0, D(Xj) = 1, Z. = (X1 + * * * + X.)/Vn. Let I(n) -*oo be any
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monotone function. The sequence of the segments [0, *(n)l will be called a zone
of normal convergence (z.n.c.) if, for n - ,

P {Zn > xI
(2.1) 1_ [ e-u2/2 du

for any x C [0, *i(n)]. A z.n.c. [-I(n), 0] is defined similarly. The definition
does not require the convergence to be uniform, although in all the theorems
obtained it will be.
Under Cram6r's condition (C) for' any I(n) = o(nll6), both [0, I(n)] and

[-W(n), 0] will be z.n.c. The zones with I(n) o(nll6) will be called narrow
zones. Our two first theorems relate to the zones with *(n) = n', where a > 0
is a constant.
THEOREM 1. If for any a < 1/2, the zone [0, na] and the zone [-n, 0] are

z.n.c., then all the variables Xi are normal.
Of course, this is also sufficient for the zones [0, na] and [-na, 0] to be z.n.c.

This last fact is trivial. Thus, we see that it is sufficient to investigate the values
of a < 1/2.
THEOREM 2. Let p(n) -X oo be a monotone function increasing as slowly as we

please and let 0 < a < 1/2. If a < 1/6, a necessary condition for the zones
[0, nWp(n)] and [-nwp(n), 0] to be z.n.c. is

4a

(2.2) E exp IX,12a+1 < 00.

This condition is sufficient for the zones [0, nwlp(n)] and [-nw/p(n), 0] to be z.n.c.
and the convergence is then uniform. If 1/6 _ a < 1/2, consider the sequence of
the critical numbers

(2.3) 6413 2s +3 2
Let

(2.4) - s +1 < a < 2 s + 2

2 s+3 ` 2 s+4
If the zones [0, nap(n)] and [-nap(n), 0] are z.n.c., the condition (2.2) must hold
and moreover all the moments of X, up to (s + 3) must coincide with the moments
of the normal law. These two conditions are sufficient for the zones [0, na/p(n)] and
[-ne/p(n), 0] to be z.n.c. This convergence is then uniform.
As the normal law is completely determined by the sequence of the corre-

sponding moments, theorem 1 is an immediate consequence of theorem 2.
We consider now the narrow zones with *I(n) = o(n16) other than [0, ne].

A condition necessary for the zones [0, *I'(n)p(n)] and [-*I(n)p(n), 0] and suffi-
cient for the zones [0, '(n)/p(n)] and [-'(n)/p(n), 0] to be z.n.c. is of the type

(2.5) E exp h(IXjI) <0,

where h(x) is a monotone function depending upon *(n).
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It is simpler, however, to describe T(n) in terms of h(x). To this end we con-
sider several classes of functions of h(x). The functions h(x) will be assumed to
be positive, monotone, and differentiable.
- Class I will denote the functions h(x) satisfying the condition
(2.6) (log x)2+ro < h(x) < X112 X 1.

Here Po > 0 is any small fixed number. Functions increasing faster than x112
will not be required for the narrow zone investigations.

Class II consists of the functions h(x) under the condition
(2.7) pi(x) log x _ h(x) _ (log x)2+ro,
where x _ 1, pi(x), p2(x), * in what follows are given positive monotone func-
tions increasing as slowly as we please.
-Class III consists of functions h(x) such that
(2.8) 3 log x < h(x) < M log x,

where M _ 3 is a given constant. The inequality h(x) _ 3 log x is connected
with the existence of the third moment.

Consider now the functions of class I as defined by (2.6). We put

(2.9) h(x) = exp [H (log x)].
Then H(z) is a monotone differentiable function. We introduce the following
supplementary conditions
(2.10) H'(z) _ 1,

(2.11) H'(z) exp H(z) - o Z 00X.

These conditions follow from (2.6) if H'(z) is assumed to be monotone; other-
wise we adopt them to simplify the results.
Given a function h(x) of class I, under the supplementary conditions (2.10)

and (2.11), or of class II, we determine new functions A(n) by means of the
equation

(2.12) h[\/n A(n)] = [A(n)]2.

THEOREM 3. The condition

(2.13) E exp h(jXjI) < ,

where h(x) belongs to class I [with (2.10) and (2.11)] or class II, is necessary for
the zones [0, A(n)p(n)] and [-A(n)p(n), 0] to be z.n.c. and sufficient for the zones
[0, A(n)/p(n)] and [-A(n)/p(n), 0] to be z.n.c. The convergence in this case is
uniform.
We pass now to the functions h(x) belonging to class III. This case can be

studied by classical means [8]. For the sake of completeness we formulate
THEOREM 4. Condition 2.13 where h(x) belongs to class III, is necessary for

the zones [0, p(n) (log n)1/2] and [-p(n) (log n)1/2, 0] to be z.n.c. and sufficient for
the zones [0, (log n)112/p(n)] and [-(log n)"2/p(n), 0] to be z.n.c.
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Thus, if ElXjll' = Xo for a fixed M, the z.n.c. cannot be essentially wider than
[0, (log n) 12]. It is, roughly speaking, of this size if EIXJlM < X with M > 3.
The case ElXl I = Xc (nonexistence of the third moment) was studied by several
authors (see [8] for the literature).
The case (2.8), which is class III of the functions h(x), corresponds to slowly

decreasing "probability tails" P{X, > x}. In this case, as we shall show later,
a new type of limit theorems holds: limit theorems valid for the whole x-axis.

3. Local limit theorems

In the preceding section we considered integral limit theorems. We pass now
to the local limit theorems relating to normal convergence. These theorems are
usually considered for variables possessing a probability density or for integer
valued variables. We can consider also the probability measures on the ring of
integers of an algebraic number field. We shall restrict ourselves to the class (d)
of all random variables possessing a continuous bounded density g(x). Then Zn
(see section 2) will also have a continuous density pz.(x). The zone [0, '(n)]
will be called a zone of uniform local normal convergence (z_.ulnc.) if

(3.1) Pz.(X) 1,

as n -- co, uniformly for x C [0, '(n)]. The z.u.l.n.c. [-I(n), 0] are defined
similarly.
THEOREM 5. For the variables Xi belonging to the class (d) the z.u.l.n.c. behave

wvith respect to the necessary and sufficient conditions indicated in theorems 1 to 4
in the same way as the z.n.c. for the general random variables in theorems 1 to 4.
The local limit theorems for large deviations are easier to prove than the

corresponding integral ones, by the method proposed here. In fact, the existence
of the probability density g(x) greatly facilitates the proof.

4. Proof of necessity of condition (2.2)

We shall be able to expound here the proofs for only the simplest cases so as
to present the new approach in its most transparent form; the proofs of all the
theorems 1 to 5, although not basically different, are more involved and will be
published elsewhere. In particular, we shall treat only the zones [0, na] and
[-7e, 0] with 0 < a < 1/2 and only local limit theorems. However, since a
part of the necessary conditions for the integral theorems is almost trivial, we
shall begin by dwelling upon it.

Let the zones [0, nap(n)] and [-nap(n), 0] be z.n.c. We shall prove that
(4.1) [4]

(4.1) Eexp llxjl2a+1< o
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Suppose (4.1) does not hold. Then it is easy to see that there exists either a
sequence x.m>4c such that

(4.2) P{Xi > xm} > exp [I 2xm2.]
or a sequence -Xmx -oo such that

-4a

(4.3) P{X, < -xm} > exp [2x 2a+l

Suppose that (4.2) holds. For a sufficiently large m, choose n such that
Xm. na+i2p(n). The zone [0, nap(n)] being a z.n.c., we must have

p4fZ >
wp < n_n2_[p(n)12(4.4)A t ' 2 <exp- 16j

But the event Z. > n,p(n)/2 wvill surely occur if the two independent events
X1 > n?+e 2p(n) and I(X2 + X3 + * + X,n)/x/nj < 1 occur simultaneously.
Hence, by the central limit theorem,-where co > 0 is a constant,

(4.5) P{Zn > 2nap }> Co P {X1>

> Co Cxp >- 2n 7[p(n)]2-

by (4.2). Since a < 1/2, it follows that 4a/(2a + 1) < 1 and (4.5) contradicts
(4.4). The case (4.3) is treated similarly. The proof of the necessity of (4.1) for
the zones [0, nap(n)] and [-nap(n), 0] to be z.u.l.n.c. is constructed in a similar
way.

5. Sufficiency with 0 < a < 1/6

We now pass to the local limit theorem. Let the variables Xi possess the
bounded continuous density g(x)]We introduce some notation. By the letter B
we shall denote a bounded function of the parameters considered, not always
the same. bo, 61, *. ; Eo, El, * * * will be small positive constants; Co, Cl, ;
co, cl, * positive constants. Write

(5.1) 'p(t) = Eeitxi = f eitug(u) du.

The function lVo(t) 2 is a nonnegative Fourier transform and therefore (compare
[1], p. 20) we have V(t)l2 E L1(-oo, o), so that

(5.2) f '.0 Is(t) 12 dt < o
Hence we have

(5.3) Pz,(X) = 2-X [so(t)]ne -n itx dt.

Let (4.1) be satisfied. Suppose first that a < 1/6. We must prove that
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[0, na/p(n)] and [-nW/p(n), 0] are zu..n.c. We shall study only the first zone,
tfe _second one being treated analogously. Take .x. such that

(5.4) 0 x- n)
In view of (4.1) the function so(t) is infinitely differentiable on the whole axis
and so, for any T > 0, Iti _ T, and p > 0 an integer,

(5.- po(t) = so(0) + tlP'(0) + Rp(t),
where
(5.6) IRp(t)I _ 2 sup oP'(t)).
Moreover, so'(0) = 0; s"(0) =-1. From this it follows that for It| _ eO,

(5.7) So(t) = 1 _t2 + Bt3;, Is() < 1 t'-
2 ~~~~~4

Further, in view of the existence of the bounded continuous density g(x), we
have, for |tI > co,
(5.8) kP(t)I < 1; po(t) - 0 as t- +4.
Combining (5.2), (5.3), and (5.8) we get

(5.9) PZ.(X) = [S,(t)]ne- vwnitx dt + Be-con.
2w

Put

(5.10) # 1

In view of (5.7) for n- 5 Itl <. eo, we obtain

(5.11) Iso(t)ln 1 _ n = B exp (-cin'-2y)
= B exp (-cin2a).

Hence from (5.9) we obtain

(5.12) pz.(x) = '\ f [so(t)]" exp (-/n itx) dt + B exp (-bon'-).

6. Approximation to o(t)
The function (5.5) is not analytic in general and so the Taylor series for it

diverges. We must choose an appropriate approximation to it in the segment
Itl _ n-, that is, choose a convenient ,in the formula (5.5 We need estimates
of spo(q)(0) for q _ p. We get
(6.1) so(2)(t) = |. eitx(ix)qg(x) dx.
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Hence

(6.2) lsj (*x(t)Q| jJ x 9g(X) dx.

Putting®)= (1 + 2a)/4a, we obtain from (4.1)

(6.3) f|'. exp (Ixj|lk)g(x) dx <0a,
whence we easily obtain

(6.4) jp(q,(t)l = B,1r(kq).
Let us write K(t) = log. o(t) where K(O) 0, Itl _ n-;. From (5.12) we obtain

(6.5) pz,.(x) = -\22| exp [nK(t) -\v' itx] dt + B exp (-Bon2a).

Moreover, from (5.7) we conclude that, for tl < eo,

(6.6) K(t) = B.r -

We need estimates for K(W)(to), for Itol _ eO/2. Putting

(6.7) 0(t + to) = 'P(to) + + +1! ~~~~q!
we have

(6.8) K(q)(t0)= [log@(t+
In fact, to compute K(W)(to) = [log po(t)](q), with t = to, we need only the deriva-
tives (o(P)(to), with p . q, and these coincide with C(P)(to). If&'is a circle Jt _
where @(t + to) has no zeros,then log @p(t + to) is analytic for it_5 . and

x (6.9) K(q)(to) = 2q-i log 0(t++ °) dt.
CP

{ Consider now (6.7). From (6.4) we have

(6.10) (p (! = B exp [Bp + (k - l)p log p].

We choose now for Cp the circle
(6.11) Itl < exp [-Co - (k - 1) log q].
For sufficiently large CO, we have inside C,

(6.12) E o(P(to) tp < 1

as is easily seen from (6.10) and (6.11). Hence, on C, we have

(6.13) -2 < I;so(t + to) I < 2-2 2

in view of (5.7) Hence, from,(6.9), for Itol _ eo/2,
(6.14) K(M(to) = B exp (Bq + kq log q).
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WVe write ilow the expansion (5.5) for the function K(t) instead of zp(t) anid we
put

(6.15) Lp=(n) ]

where the function pi(n) will be fixed later on depending upon p(n). Hence, for
It _ n-Y, as in (5.6),

(6.16) BtR(t) |-Bexp m[B + (k - 1) log m ilog n]

= B exp m[B - (k - 1) log pi(n)]
by definition of , and k. iMoreover, k = (2a + 1)/4a > 1 because a < 1/2;
in fact., a < 1/6. Hence, foir Iti _n-A,

( )t2 ,m tr n2a(6.17) nK(t) = n- +nn~, + Bexp -12 r=3 r!~~~~~ p1(n),
Now, Re nK(t) _ 0 for Itl _ n-M. Putting

(6.18) K3(t) m rr

wve obtain

(6.19)

pz,Xx) = exp [-2 + nK3(t) -Vn itx] dt + B exp [-62 ()]

We consider now the entire function

(6.20) exp [nK3()] + FZ Xr
r=3 r

With a < 1/6, j, = 1/2 - a > 1/3, and for iti _ n-, we have n'3(t3/3!) =
Bn-,. Taking this into account, and using the estimate, as in (6.14),

(6.21) Tr = K(r)(0) = B exp (Br + kr log r), r > 3,
we obtain, after an easy computation, - ; '

(6.22) nK3(t) = B, _ < 2n-,
r! rdt

(6.23) Xr = exp [nK3(t)1 -r+j = BrT! 2rnr,
jtj .2n-, -

(6.24) exp [nK3(t)] = x + B.2--, Itl < n-,.
r=3

7. Conclusion of the proof

Putting (6.24) into (6.19) and taking (6.15) into account, we find that
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(7.1) pz,(x) = exp + tr) exp (-itx it) dl
exp (-'X1+Bep ( -3

+ B iexp ( 3 ~p(n) /
The next step is to extend the limits of integration in (7.1) from -oo to Co.
Putting t = tV, we obtain

(7.2) Pz&(x) = J exp 2) + 2, ( _ exp (-itx) dtJ7 -1/2- 2L r=3 r. \vn/J

+Bexp 63 1n
I Pi (n)j

In order to obtain the required extension of the limit of integration, we estimate,
for 3 _ r _ m,

(7.3) t; e-t2/2 xZtr! = Br exp (-4 nl-22)P(-)f(f-112)r
Now

(7.4) Brr(r)n(M-1I2)r = B exp [Br + r log r -r(- log n

= Bexpr [B + log m - - log n]

= B exp [-r log p,(n)].

Summing over r _ m we obtain from (7.3)

(7.5) Y f e-Z2/2 XI (=) rd = B exp (-64n2a).
3 <:5r:5m 11l2- r!

Of course, the integrals J can be subjected to the same treatment, and we

get

(7.6) Pz.(x) = 2 exp (-_2)[J +
m xt )r] exp (-i(x) d)

+ Bexp_6.3 n2 ))
We are thus led to the expressions

(7.7) n-r/2J__ e- 2/2 e-itxr d= n-rI{(r )(x)e- X/2]

for 3 . r _ m. The polynomials HP)(x) are Hermite polynomials in ax for suit-
able a > 0. Let now

(7.8) lxl < no,()
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For 3 _ r < C(, when C1 is any constant, we have for (7.7) the value

(7.9) Be-x'/ Lp(n) J

Summing these for r = 3, 4, * r < C1, we get the estimate

1
(7.10) Bex'[p()]3

Consider now C1 < r _ m. We use the following expression for Hermite's poly-
nomials HQ(x) (see [7], p. 193).

rq,/21 (-182 )q2
(7.11) H,,(x) = q 81=0 s! (q - 2s)

Hence (x 2 0, 00 assumed to be equal to 1),

xq-2sJ
(7.12) IH°')(x)l = B2q! max

s.q9/2 8!(q - 2s)!

Let s = qp with 0 _ p _ 1/2 where 0 < x _ na/p(n) and C1 < q < m. Then
(7.12) has the value

(7.13) B max exp q{B + (1 - 2p) [a log n - log p(n)]
p

- p log q - p log p - (1 - 2p) log q - (1 - 2p) log (1 - 2p) + log q}.

Multiplying (7.13) by n-q/l = exp [-(q log n)/2] and by

(7.14) xl = Bnq = B exp (qlt log n),

we get, after an elementary computation,

(7.15) B max exp q[B - (1 - 2p) log p(n) + p log q - p2a log n].
p

As log q < log m = 2a log n - log pi(n) + B, we can replace (7.15) by

(7.16) B max exp q[B - (1 - 2p) log p(n) - p log p(n)].
p

If p > 1/4, then p log p(n) > log p(n)/4; if p _ 1/4, then (1 - 2p) log p(n) _

log p(n)/2. Hence (7.16) can be replaced by

(7.17) B[p(n)]e2q, C1 < q <_ m.

Inserting this into (7.6) and summing over q, we obtain

(7.18) pz.(x) = e-2[/2 + -] + B exp [53 n()]

Note that C1 is supposed to be chosen > 1/E2. The relation (7.18) holds for
0 . x _ nw/p(n). We take now pi(n) = p(n), from which
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(7.19) pZ-(X) = g1 e-x2/2 [1 + B ],.<- x+ p(n)(7.19) pz,Xx)~~~-V27r L p(n)j-p(n)'
which was to be proved. The case where - nG/p(n) _ x < 0 is treated similarly.

8. Proof of sufficiency when 1/6 S oa < 1/2

We pass now to the case 1/6 _ a < 1/2. The principal scheme of reasoning
remains the same as in the previous case, for which a < 1/6; we shall indicate
only the points where it differs substantially from the previous scheme.

Let 1/6 < a < 1/2 and assume condition (4.1) holds. In view of (5.7) and (4.1)
we know that K(t) = log So(t) possesses all derivatives for Itl _ eO, and that
*, = K(&)(0), when multiplied into a suitable power of i = V - 1, becomes the
rth cumulant of X,. As is well known ([9], pp. 61-63), the rth cumulant depends
only upon the moments up to the rth, and conversely. If the third, fourth, *. *,
rth cumulant vanish, while EXj = 0 and D(Xj) = 1, then all the moments up to
the rth are the moments of the normal law N(0, 1). Consider the sequence of
the critical numbers (2.3) and suppose that

(8.1) s 3 a <2 8 -
2s+3= 2 s+4

Consider the numbers *3, *4, * * - , ''+3. If all these numbers vanish (and so the
first s + 3 moments of Xj are normal), we proceed as in the previous case. We
put ,u = 1/2 - a, and hence A _ 1/3, and carry out the above computations.
Instead of (6.17) we have now

(8.2) nK(t) --i- + n 57 'ex-5
(-)2 + r=s+4 r! + B e P1 (n)

for jtl _ n-#. Since ,u = 1/2 - a > 1/(s + 3), we have
t8+4 1 -(8+4)/8.+3) - 1/(s+3)(8.3) n*I,+3(+4)! =Bn ==Bn

Reasoning now as in section 7, we obtain the local limit theorem for 0 xx _
na/p(n) and - na/p(n) _ x < 0.

9. Proof of necessity when 1/6 . ca < 1/2

Suppose now that not all the numbers *!3, *4, * , +3 vanish; let 'I'so+3 be
the first nonvanishing number for so _ s. We then set

(9.1) A = 1I
80+3

We can show that in this case there will be no local normal convergence even in
the zone [0, n1/2-A] which is obviously smaller than the zone [0, nap(n)]. We
choose m = [n12g/C2] with a sufficiently large C2. We have then, proceeding as
in sections 6 and 7,
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(9.2) pz.(x) = 2 |2 exp [-2 + K.o+3(t) - i\/n tx] dt

+ B exp (-Brn1-2y).
In this case

(9.3) K.+3(t) = E
r=,,+3 r.

Further,

(9.4) exp [nK,,+3(t)] 1 + E X
r=so+3 r

It is important to notice that

(9.5) X.so+:3 = :. 'I'e+3 #t 0.
Taking niow
(9.6) xO = on > 0,
with a sufficiently small t, and proceeding as in section 7, we obtain, after some
computations similar to that of section 7,

e42 + Xao+3 H0) -(x)e/2 (/io+(9.7) pz.(x) = V2 2w ( +33)!(xo)e

+ Be4/2 77so+4

for a sufficiently small X > 0. Taking (9.5) into account we see that the second
term on the right side is of the form

(9.8) ao*'8,+3 (so+ e 7127S0+3[1 + o(l)]

as n -x o, where ao . 0. Hence, there is no local normal convergence in the
zone [0, nl"2-"] and likewise in the zone [0, nacp(n)].

Hence, if there is uniform local normal convergence in the zones [0, na] and
[-na, 0] for all a < 1/2, then all I, must vanish and so all the Xj are normal.

10. An integral theorem uniform for the whole x-axis

There is an interesting class of probability densities g(x) for which an integral
limit theorem for the normal sum Z. holds for the whole x-axis.

Consider the class of all even continuous probability densities g(x) such that
for x _ 1

(10.1) P{X, > XI

|gX(u)d Aa + A + ... + A+5 (X44a5+)
where a > 3, a being an integer, Aj being constants. Note that the evenness
condition is assumed for simplicity only. Let Xl, X2, *.. , X,, be random vari-
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ables with probability density g(x) of this class. Then E(Xj) = 0. Write
D(Xj) = a2 Z. = (X1 + *-+ Xn)/Ian.
THEOREM 6. For x > 1 and as n -- oo we have uniformly with respect to x,

(10.2) 1 P{Zn > X}_1,

V f ee-u2/2 du + r(x, \/n)

where r(x, Vn) is a rational function of both variables determinied by the coefficients
Aa, * * A40+5 in (10.1). Moreover, .for x _ ?n3/2+1/a log n, qwe havc

(10.3) r(x, -Vn) nnIP{X1 > aXVN/n) = nf g(u) d&.

Of course, g (x) being even, an analogous relation holds for x < - 1, while for
-1 < x < 1 the classical normal convergence theorem acts.
Simple examples of theorem 6 are given by rational densities. For instance,

if g(x) = 2/7r(X2 + 1)2, so that D(Xj) = 1, we have

(10.4) P{Zn > x}
_ Cc- 2/2du + 2_.\/2-7r /37r\/sn.xl

forx > l,°-oo and

(10.5) 2 _1 7 P{Xi > x /n

for x _ n3/2+1/4 log n.
We shall indicate here briefly the principal points of the corresponding proof.

We take o- = 1. The case

(10.6) x > n3/2 +1/l log,,
is treated in an elementary manner. If y > nt, then the event Sn > y implies at
least one of the events Xj > y/n. Denote by Hkm,a,... ,ak for k < n, the hypoth-
esis that X,tl > y/n, X., > y/nt, ... , Xlk > Y/,7 while this is not true for any
other Xj. Hence

(10.7) P{S,, > y = E P{H1,,, P{S,, > y|Hj,l,}(ar)
+ E E P{l,w PIa)pSn, > yHtl &'

k > 2 (al,

the summation being extended to all ordered sets of distinct numbers a, < a2 <
.. . < ak. Now, in view of (10.1) it is easy to compute that for

(10.8) y _ n2+l/a log n1,

the double sum on the right side of (10.7) is of order smaller than the first term,
so

(10.9) P{S. > y}'- E P{H],a }P{Sn > yIHl,a,} = nP {H1,1}P{S, > y!H],1}.
(ai)
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Moreover, it is easy to see that

(10.10) PISn > yjHj,j) 11. PJX' > Vilx > 8

Inserting this into (10.9) we get

P{S. > y} '-nP{Xi > y}, y > n2+1/alogn,
or

(10.11) P{Zn > x} - nP{X, > x\/n}
for

(10.12) x > ?13/2+1/a log n.

We must now investigate the behavior of P{Zn > x} for 1 _ x < n3I2+l1a log n.
It is possible to do so by the method expounded in sections 6 and 7.

Let p(t) be a characteristic function. A function -y(t) will be called a radial
continuation of <p(t) for the ray t _ 0, if it is defined in some neighborhood of
t = 0 and coincides with (p(t) in this neighborhood for t > 0 (a radial continua-
tion for t < 0 is similarly defined). The function so(t) = (Itl + 1) exp (-Iti), for
instance, corresponding to the density g(x) = 2/7r(x2 + 1)2, has two radial
continuations: -y(t) = (t + 1) exp (-t) for t > 0, and -y(t) = (-t + 1) exp (t)
for t _ 0. Both continuations are entire functions (though different ones). Note
that they are not even, while Sp(t) is even.

11. Continuation of the proof

From (10.1) we deduce by integration by parts that so(t) has a radial continua-
tion -y(t), coinciding with it for t > 0, which is differentiable at least b = 4a + 2
times. We proceed now to calculate pz,(x) (the integral theorem can be obtained
later by integration). As g(x) is even, sp(t) is real and we obtain

(11.1) pz^(x) = .\ Re f [,(t)]ne-/nitx dt.

Applying the reasoning of section 5 [compare (5.9)] we get

(11.2) pz (x) = /n Re " [,o(t)]ne-vn itx dt + Be-con

=- Re f y(t)]ne-e" itx dt + Be-'o.
Further

t2(11.3) so() = y(t) = 1-2 +O(t3), 0 < t fO.2
From this,

(11.4)log n/v=\+n(11.4)pz~~(x) = -Re I ~ [.y(t)]ne-V\;iitx dt + Be- 3.log2 n.7r J
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Also

y(t) = -yo(t) + Bltl",
(11.5) = t2 b-ly (q)(0)

Yo(t) = -2- + E3 (t! + Btb,2 q= q!

for Itl _ Eo. For ItI < log n/\n, we have

(11.6) 'y(t) = yo(t) + Ben-b/2+.
for any E > 0, Bf depending upon E. Further

(11.7) K(t) = log -y(t) = log -yo(t) + B,nr-b/2+% 0 < t log n.

Further, for 0 _ t _ log n/\/n,
t2 b-1 tq

(11.8) log -yo(t)= -2+ b - + Btb.

+-b12 +I,For 0 _ t _ log n/Vn, we have Bntb = B,n-b/2+i±e
Thus

(11.9) PZ,(X)

= flogRe| exp n(--2 + E \q t _ \/nI itx) dt +Ben-b/2+ +e.

If we write K3(t) = ,-'q ='qtq/q! we obtain

(11.10) nK3(t) = Ben-l/2+e, 0 < t _ g n

Hence
(11.11) exp [nK3(t)] = 1 + K4(t, n) + B.nb/2+l+e
where

(11.12) K4(t, n) = E

Hence, taking t = t/N/<, we get

(11.13) pz (x)

1 flog n / /22\F
=-Re exp (-2)[1+ K( n)]exp (-itx) dt + B.n-4/2+i+.

Extending the integration limit to c= (the error is estimated trivially),

(11.14) pz.(x)

= 1-e-z2/2 + Re f exp (-i) K4( =_ n) exp (-itx) dt + B.n-b/2+l+E.
.\/27r 02 \/n-

The function K4(Q/xn/, n) is a polynomial with respect to t/V/n. The evaluation
of (11.14) is thus reduced to the evaluation of the integrals
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(11.15) E(x, r) = Re fo e- 2/2eikxe dt

for large values of x. If r is an even number,

(11.16) E(x, r) = 1 f_ e-2/2eitxr dt

is easily expressed in terms of exp (-x2/2) and Hermite's polynomials [compare
(7.7)]. If r is odd there is apparently no expression in terms of the elementary
function but for large values of x, (11.15) can be easily evaluated by integration
by parts. Thus, for r = 1, we have E(x, r) _ J/x2.
We must now show that the formula (11.14) holds for the values of x satisfying

(11.17) 1 < x < nS/2+1/a log n.

Comparing nP{Xl > x\/n'} [compare (10.12)] to the remainder term
Ben-b/2+l+e in (11.14) we deduce that n-b/2+1+ must be smaller than the prod-
uct n(n2+1/a+e)-a = n-2a-e'; from this b/2 - 1 > 2a or b > 4a + 2. Under
this condition we obtain the local theorem valid up to n3/2+1/a+e uniformly and
hence, by integration, the integral theorem. The relation (10.12) enables us to
obtain it for the whole x-axis.

12. Concluding remarks

The condition of evenness was assumed only to simplify the final formulas;
if it is not fulfilled, (11.14) will only involve | in addition to | Moreover,

the analogous limit theorem on the whole axis can be obtained for the variables
Xi such that

(12.1) P{x, > x} |f ) + x 2> 1,

where a, > 4a + 5 and G(v) is a function of bounded variation. A similar rela-
tion must hold for negative values of x.
The new approach expounded here is applicable also to independent variables

which are not identically distributed and to the investigation of nonnormal
convergence.
The asymptotic behavior of the large deviations of order statistics can be also

studied by this method.
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