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1. Introduction

The present paper develops the following idea of which I told Lebesgue almost
forty years ago. It is possible to define on the circle of length unity a set r such
that the circle is the union of a countable infinity of sets rk which are disjoint
and superposable on r by rotation. If Kh is the union of those rk for which
k -h mod p, where p > 1 is an integer, the circle is also the union of p disjoint
sets Kh which are superposable by rotation. For an extension of the Lebesgue
measure invariant under rotation the rk cannot be measurable. However, the
Kh can be measurable, their common measure being i/p.

After a brief preliminary section (section 2), these results will be established
in section 3.

Lebesgue, who was not interested in arguments depending on Zermelo's
axiom of choice, led me away from a further study of these sets. Besides, I was
soon to learn that the sets r had already been defined by Vitali. I do not know
whether the sets K had also attracted his attention.
The reason for my present return to these problems is the remark that my

old results can be substantially improved by using G. Hamel's theorem accord-
ing to which the real numbers possess a basis {w,}. Every real number x is then
uniquely defined by a noncountable family of rational component8 a,. Restricting
one of the a, to be an element of the interval [0, 1), one obtains a set of the
Vitali type. From this it is possible to construct sets Kh, which are easily made
measurable by a suitable extension of the Lebesgue measure. The application
of the same procedure to any finite set of components a, yields a new extension.
An extension of the Lebesgue measure which reaches considerably further can

be obtained through the use of two Hamel bases {w} and {c'}. Consider then
the numbers x and y = f(x) which correspond for these two bases to the same
rational components a,. If f(l) = 1, as will be assumed here, the fractional part
g(x) of f(x), defined for x E [0, 1), is a one-to-one function of x. Suppose that,
in the square [0, 1) X [0, 1), the complement of the graph 9 of the function g
has interior measure zero. If E is a measurable subset of the square having
Lebesgue measure m(E) and if 8 denotes the set of values of x for which
[x, g(x)] C E, then ,*(g) = m(E) defines an extension of the Lebesgue measure.
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This extension is countably additive and invariant under shifts provided that
x and y be defined modulo unity.

It is a consequence of a theorem due to H. Cartan and G. Choquet and com-
municated to me by one of these authors, that the condition imposed on 9 is
satisfied under very general circumstances. It even appears that the cases where
this condition is not satisfied may be considered very special. Indeed, the belief
that this was in fact the case is the reason why I undertook the present work,
whose interest would have been considerably lessened had this not been so.

Since the completion of this work, H. Cartan has brought to my attention a
paper by K. Kodaira and S. Kakutani [1]. These authors have established the
existence of invariant extensions of the Lebesgue measure. Their main theorems
go further than mine in the sense that they point out the vastness of the a-fields
on which these measures can be defined. In a subsequent article [2], S. Kakutani
and J. C. Oxtoby construct a measure which is invariant under all transforma-
tions preserving Lebesgue measure.
The following exposition, at least when the notion of the Hamel basis is ac-

cepted, is considerably more concrete, and so may not be valueless.

2. The notion of a randomly chosen integer

When an integer-valued random variable can effectively take any one of an
infinite set of values, the probability cannot possibly be uniformly distributed
over these values. Indeed, these probabilities are the terms of a convergent series
having sum unity, so that the terms converge to zero without being equal to
zero.
When speaking of a randomly chosen integer N, one attempts to salvage the

uniformity of the distribution of probability, giving up in the process the re-
quirement that the probability of belonging to a sequence S be a countably
additive function of S. To this end consider an integer-valued random variable
uniformly distributed over the interval [1, n] if the positive integers are under
discussion or over the interval [- n, +n] if all real integers are being considered.
The probability an of belonging to S is then the relative frequency of the numbers
belonging to S among those of the interval. By definition, the probability of S
is the limit of a,n if this limit exists.

This is a limit frequency and not a true probability. The limit does not always
exist. Furthermore, on the family of sequences for which it is defined, it is
finitely but not countably additive.
In the sequel we shall restrict our considerations to sequences S, which are

arithmetic progressions of step p, indefinitely extended in both directions. For
every p, there are p sequences of type Sp, containing respectively the numbers
1, 2, * *, p. The probability of each Sp is then 1/p. A finite family of such se-
quences is contained in a finite Borel field presenting no difficulty, since the
question of countable additivity does not arise there. However one can inquire
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whether it is possible to define a countably additive probability IP(E) such that
P(Sp) = 1/p for every sequence S,.
The answer is in the negative, even if one deals only with the sequences S',

obtained by taking p = 27. The sequence SO is the same as S1, that is, SO is the
set of all real integers. The result is a consequence of the following theorem.
THEOREM. The smallest Borel field B containing all the sequences Se contains

every singleton and, consequently, every subset of the set of real integers.
PROOF. Let {a} be the set containing only the element a. Every integer

k F a can be written in a unique manner in the form k = a + (2h + 1)2q-1,
where h and q are integers and q > 0. Take for S' the set of integers
a + (2h + 1)2Q-1 obtained when q is a fixed positive integer and h varies from
- to +0 . Every k $ a belongs to one and only one Se having a positive sub-
script. Therefore Sc = U[{a}, SI, S2', * * * and since S' E B we have {a} E B
also.
The requirement of countable additivity for P(E) is satisfied here for the

union of disjoint sets S', for q > 0, but not for the union of sets of the type {a}.
Another example can be constructed as follows. Let us restrict ourselves to

the set of positive integers so that each Sp will begin with its first positive ele-
ment. Let S"', for q > 0 be the sequence Sp having first element q with p = pq > q
and such that E (1/PQ) < e for an arbitrarily small positive e. This implies
E P(S"') < e. However, the union of the sets S"' contains every q, hence all the
positive integers, and therefore must have measure unity.

This example shows that countable additivity can fail for a union of sequences
S,. In the previous example the set {a} was the complement of such a union.

However, it is possible to find infinite families of sets of the S, type leading
to a Borel field for which the requirement of countable additivity is satisfied.
This will be the case, for instance, if one considers only those S, which contain
the element zero.

3. Vitali's construction of nonmeasurable sets

3.1. We shall consider here subsets E of the circle of unit length. With each
point x is associated the family of its circular abscissas so that the linear image
of x is the set of points {x + k} where k is an integer taking values from -00
to +0o0. The linear image 8 of a set E is invariant under the shift T1 which changes
x into x + 1. In order to define E and & uniquely it is sufficient to give the part
of 8 which belongs to an arbitrary semiopen interval of length unity. We shall
call a shift the operation T, which changes x into x + 1 even though, on the circle,
this operation is a rotation. We shall deal with E instead of 8. However, it is
easy to translate all our statements so that they apply to the line by considering
that x is defined only mod 1.

Let w be an irrational number. Let CO be the set of points {hw}, where h is an
integer ranging from -co to +X0. Let Cl be the set obtained from CO by a shift
of length 1. Let C and C' be two of the sets obtained in this fashion. The two
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sets C and C' are either disjoint or identical. In other words the sets Cl are
equivalence classes.

In each equivalence class let us select (by a Zermelian choice) one point x0,
called the central point of the class and let ro be the set of points so selected. If
h denotes a real integer varying from -oo to +oo, the shifts Th. form a group.
The set of transforms of xo by the elements of this group is the class C from
which x0 was selected, each x E C being obtained once and only once. It follows
that the sets rP = Thr0 are all disjoint and that their union is the entire circle.
The sets C are countable everywhere dense sets, while the sets rh are un-

countable. One cannot assert that the sets rh will be dense; in fact one can as-
sume that all the central points x0 are chosen in an interval of arbitrarily small
length, and the set ro will then be a subset of this interval. On the other hand
it is possible to make ro everywhere dense, and all the sets rh will then have the
same property, since they are obtained from ro by shifts. However, under no
circumstances can the sets rh be measurable with regard to invariant Lebesgue
measure, for, if they were measurable, they would all possess the same measure.
Their measure, however, could be neither zero nor positive since the circle which
is their union has a nonnull finite measure.

3.2. Let p > 1 be an integer. Let KA be the union of the sets rh with k h
(mod p). The circle is then the union of p classes Kh pairwise disjoint and per-
muted cyclically by the shift operation T.. These classes will play the same role
as the arithmetic progressions considered in section 2. There is no objection to
our attributing to them a measure.

These classes are everywhere dense, since each of the intersections C n Khis
countable and everywhere dense. In fact C n Kh is the set of points admitting
an expression x0 + (h + np)w, where x0 is the central point of the class C and
where the integer n varies from -oo to +00. Since each one of the C n Kh is
uniformly distributed over the circle, the class Kh which is their union will possess
the same property. This observation will be made precise below.

Let i be an interval of length 1. Then for all e > 0 there exists a X E (0, e)
having the form X = (h + np)w + n' for suitable integer n and n'. Since the
classes Kh are invariant under the operation Tnp+n' one can write Tx,Ko =
Th.Ko = Kh. Let i' be the interval Txi. Then Tx(i n Ko) = i' n Kh. Moreover,
i n Kh and i' n Kh can be obtained by adding to their intersectioninin n Kh
two sets which are each contained in intervals of length X < e, so that these sets
are almost identical. For an extension of the Lebesgue measure, their measures
differ by at most X < E. If in addition we wish the extended measure to be in-
variant under T., then the measures of i n Ko and i' n Kh are equal. Conse-
quently the measure of i n Ko and i n Kh differ by at most X < e, and so they
are equal, their common value being necessarily 1/p.

These remarks lead to an extension of the Lebesgue measure. Let B be the
family of Lebesgue measurable sets. Since each E E B is, up to a set of arbitrarily
small measure, a finite union of intervals, every E n Kh has measure ,u(E)/p.
These sets generate a Borel field B* whose elements have the form
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(l) & = u [EhnKh], Eh =-B;h = 1, 2, *-p.
h

For every such & one can define, without any risk of contradiction, an exten-
sion ,s*(8) of ,.(E) by the formula

1 p
(2) IA*(8) = - E (Eh).p 1

3.3. The preceding considerations can easily be generalized, replacing C0 by
the set of points h1wi + *-- + h.w., where n is fixed, the w, are linearly inde-
pendent and where each h, varies from - to +00. With each subscript v is
associated an integer p, > 1, then the number of distinct classes K is
p = PlP2 ... Pn. However, the extension to the case where n is infinite presents
some difficulties which can easily be overcome by a different approach, as will
now be shown.

4. A new extension of ,u
4.1. THEOREM (G. Hamel). There exist uncountable sets of numbers w, having

the following property: every real number x can be represented in a unique manner
as a finite sum of terms aw'v, where the coefficients a, are rational numbers.

Let us recall the proof, which uses transfinite induction. The w, must, of
course, be linearly independent. That is, there does not exist among the Co, any
linear homogeneous relation with integer coefficients. Consequently the same is
true of rational coefficients and finite number of terms. This amounts to saying
that a given number x has only at most one representation of the described
form.

Suppose that a certain linearly independent set S' of numbers W, has been
constructed. If there be numbers x which are not representable in the required
form, we can select one and adjoin it to the set S'. If all the x have been previ-
ously ordered in a transfinite sequence one can take the first number of the
sequence which is not a finite sum L_ a,,w,. The process is then continued, indefi-
nitely and transfinitely, of adding new w, to the set S. When this becomes
impossible the desired goal is attained.
The set S obtained in this fashion will be called a complete Hamel basis and

every S' C S will be an incomplete basis. If R' is the set of x of the form E a,w,
where the x, belong to S', we shall say that S' is the base of R'.
Once the Hamel basis {w,} has been selected, there will be no need for us to

use transfinite induction again. Since this set has necessarily the power of the
continuum, v can be assumed to be a continuous parameter. The a, are well
defined functions of x and they will be called the rational components of x. These
components are always almost all equal to zero, only a finite number N(x) of
them being nonzero rational numbers. Suppose the set {w} is divided in a com-
pletely arbitrary way into two complementary subsets S' and S". The condi-
tions imposed on the components a, of the x, E S' are entirely independent of
the conditions concerning the coefficients of the w, E S".
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Let us consider these two classes of numbers, those x', formed with the terms
of the first set and those x", formed with the terms of the second set. Every real
number can be represented in one and only one way as a sum x' + x". In other
words the set R of real numbers is the direct sum of the sets R' and R" having for
bases S' and S" respectively.
We shall assume that w0 is equal to unity. Under these circumstances, if x is

the abscissa of a point on the circle of length unity, the fractional part of ao and
all the other a, are well-determined functions of x.

4.2. We are now going to define two kinds of equivalence classes, denoted
by letters C and r respectively. These classes will not be the same as in section
3 but they will behave in a similar way, in the sense that the points x will again
be ordered in a two-way classification with a countable infinity of rows corre-
sponding to the classes r and an uncountable infinity of columns, corresponding
to the classes C.

For every rational r let rP be the set of x for which a, = r. The classes C, on
the other hand, are obtained by fixing all the rational components of x except
a, and letting a, vary.

In each class of type C, the point x0 selected as central point will be defined
by the condition a, = 0. Thus the theorem proved in (4.1) with the help of
Zermelo's axiom of choice renders unnecessary a new use of this axiom. Further-
more, the choice made in the present fashion is rather special, since the set of
central points x0 is everywhere dense, although it would obviously have been
possible to choose all these points in an interval of arbitrarily small length.

Obviously
(3) T,rO" = rr,
so that, for each value of v, all the classes r' are superposable by shift. The circle
is the union of a countable infinity of disjoint superposable classes rF. As was
the case for the rh of section 3, these classes will not be measurable. However,
in a certain sense, each one of them is onily a negligible part of the circle. This is
true in particular for r°.

This statement is valid for every value of P. On the other hand for each x all
the a, except a finite number are equal to zero. Hence, each x belongs to almost
all the r°,.
The combination of these two statements constitute a paradox reminiscent of

Hausdorff's paradox, but much less surprising than the latter. Indeed, it is
closely akin to the following, too simple to be surprising. Let N and N' be two
positive integers "selected at random" independently of each other according to
the prescriptions of section 2. If the value n of N is known, there is zero proba-
bility that N' . N, or, in other words it is almost sure that N' > N. However,
if N' is chosen first, exactly the opposite conclusion is reached. Similarly in the
problem under consideration, if x is known, its nonzero rational components are
known, and for a v chosen at random it is almost sure that a, = 0. If on the
contrary v is given and x is chosen at random, it is almost sure that a, F- 0. This
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paradox, like the preceding one, is only an example of two well-known facts.
First, in infinite sets the meaning of the expressions "in general" or "almost
always" depends in an essential manner on the ordering of the elements. Second,
one easily obtains paradoxical statements by using probabilistic language in con-
nection with measures which are not countably additive.

4.3. To define the classes K playing the same role as those considered in
section 3, we shall first introduce the sets

(4) U,= U r,
s <r <8+1

where s represents an arbitrary integer and where v is assumed to be different
from zero, so that x,v is irrational. The set U$ is a Vitali set to which the results
of section 3 can be applied. The transforms of U', by the shift operations Tk,,
for integers k in - to +oo, are pairwise disjoint and cover the circle. (For
v = 0 these transforms are all identical; each one of them covers the circle.)
For an integer pv > 1 let h be defined mod p, and let

(5) Kh = U {Us; s-h (mod p,)}.
In this fashion the F. are classified into pv disjoint classes whose union is the

circle and which are obtainable from each other by the shift Ti,,,. It is natural to
assign to each of them the measure A*(K') = l/p,. The notation * is used to
indicate that this measure is not the Lebesgue measure.

This procedure can be applied further. Let 5Cn be the intersection of n sets of
the Kr!' type for n distinct values of v $ 0. Let p be the product of the p, and
let h and w be the vectors whose components are the h, and the Wc, respectively.
Letting i be an interval of length 1 as in section 3, it is natural to define
MU*[i fl wCh] = 1/p. We shall show that this can be done without contradiction,
and, further, that it is the only possibility if the measure u* is required to be
invariant under the T<., shifts.
Each K." is invariant under all T., for p $ v as well as under Tp,,. In addition

K, = Th,*K°v. If X° is the set obtained when all h, are taken equal to zero in the
definition of 3Cn = none can write

(6) Wn =Th.,WC°,

where hc denotes the sum L h,w, taken over all the indices P which occur in the
definition of n3C.
The other indices being denoted by p, the shifts T,,, and T., do not alter any-

thing. Consequently the same is true for all the shifts belonging to the group
generated by the Tp,, and T.,. It follows that, for every arbitrarily small E, it
is possible to find a number X E (0, f) such that Wn = Tx3C°, where Tx is one
of the elements of the group G generated by the T., and the T0..
The consequences are the same as in section 3.2. The interval i' = Txi differs

very little from i. For any extension ,u* of the Lebesgue measure which is left
invariant by the operations of the group G, the measure of i' n 5Cn = Tx(i n 3
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is equal to the measure of i n 3C° and differs by at most X < e from the measure
of i n 3Cn. Hence

(7) i|*(i' n wh) -U*(i n 3c)I < e,
and, consequently,

(8) *(i n3ch) = *(ijn x") = p-
p

The p sets .Ch = Tha,C, and the Lebesgue sets then define a Borel field B*
whose elements have the general form

(9) = U (Eh n 3n),
h

where the Eh are Lebesgue measurable. Furthermore,

(10) 1*(8)= _ A(Eh)P h

4.4. Suppose now that the integer n and the subscripts v which occur in the
definition of the n are left variable, while, for every fixed v, the co, and p, are
fixed. A natural idea would be to seek an extension of u* to a Borel field which
would contain all the Kh,, hence all the nC. We shall show that such an extension
is impossible. The function IA* cannot be well defined and countably additive for the
sets 8 of such a family.
To prove this it is sufficient to consider a countable infinity of values of v.

Identify the u*-probability that a point X chosen at random on the circle belongs
to K° with /L*(K°) = 1/p,. The complementary probability is 1 -1/p, 2 1/2.
It follows from (8) that, for every finite n, the n events of the form X E K°, are
independent. Then the countable additivity of u* would imply, according to
Borel's lemma, that the number of nonzero components a, is almost surely infi-
nite. However, the number of such components is always finite.

It is therefore necessary to restrict ourselves to the study of finite unions 3C'
of sets of the 3C, type. This, however, does not prevent the consideration of
infinite sequences of sets W,' corresponding to disjoint measurable sets En. For
each of these sequences the union

(11) = U En n Xn'
n

will be given the measure

(12) M*(8) = E E)>f(1t(12)~~~~~~~~~~~~~~~~
Let 5 be the set of all 8 having the representation (11). It is easily verified that

if 81 and 82 belong to 5 the same is true of 81 U 82 and 81 n 82. In addition the
measure defined by (12) is countably additive.

4.5. Returning to the effect of shifts on the 8 C 5 and on u*, the group G
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defined by the T.,, leaves a and ,u* invariant. To study the effect of other shifts
it is sufficient to investigate the effect on each a, of the shifts T,,,, with c rational,
c E (0, 1). The T., with p F6 v do not alter a,. The operation Tc,, changes a, to
a, + c and consequently, on the axis of components a, changes [h, h + 1) to
[h + c, h + 1 + c) and transforms the class K'P into a set which overlaps Kh
and K.'+'. This set does not belong to the family 5.

This does not prevent our regarding 1A* as invariant under T,,, and conse-
quently under all shifts. The measure will then be defined for every 8 obtained
by shift from the elements of 5. Let 5' be the family of such sets. The extension
of ;* to 5' does not give rise to any contradiction. One can, in particular, assign
to each set of values of a, having the form {a + kp,}, where k is an integer
ranging from -oo to +00, any probability one pleases with the sole restriction
that this probability should not change if a is replaced by a + 1. On the axis of
the component a, an interval of length 1 has then always a probability l/p, of
covering one of the a + kp,. Consequently the addition to a of an arbitrary
rational number does not alter this probability.
On the other hand the relations80E iF' and 82 E i' do not imply 81 nF 82 E '.

For instance, the intersection of [h + c, h + 1 + c) and [h + 1, h + 2) is the
interval [h + 1, h + 1 + c) defining a set 8 which does not belong to 3F'. One
cannot always assign to this set a probability equal to its length since the
probability distribution is discrete. It is therefore possible to consider a distri-
bution on the rational numbers of the interval [0, p,) only if one gives up the
requirement of homogeneity on the axis of components a, and the requirement
of invariance under the shifts T,,,, for rational nonintegral c. In any case such a
distribution would be absolutely arbitrary, whereas so far we have introduced
only very rational assumptions. It must not be forgotten that the choice of the
values x,v and p, were already arbitrary choices.

Bearing this in mind, and considering each a, as defined mod p, nothing pre-
vents us from renouncing invariance under the shifts T,, and distributing the
probability in a completely arbitrary manner on the rationals of the interval
[0, p,). It should be noted that under such circumstances p, and co, enter only
through their product.
The same operation can be performed for each subscript v. Then every possi-

ble system of numbers a, defined mod p, or rather, of numbers a,,w, defined mod
p,w,, corresponding to a finite set of values of v has a well-defined probability a.
Further, for each E C B the ju**-measure of the set of values of x for which such
conditions are satisfied is equal to alI(E).
One can even generalize further by relaxing the condition that the a, be sto-

chastically independent and independent of the intervals i from which x is
chosen. Thus the Lebesgue measure can be extended very far and in very many
ways. However, the most interesting extensions seem to be the measure which is
invariant under the elements of G and the measure defined in V' and invariant
under all these shifts.
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5. Hamel functions
5.1. Consider two systems of numbers {w,} and {w'} satisfying the condi-

tions given in the statement of the theorem of section 4. Between two such
systems there must exist relations of the type
(13) CO"= E cvop,, xv = LCvsp')

p p

where the coefficients cv,p and c'p are rational and every such sum has only a
finite number of nonzero terms. A natural problem presents itself in the com-
parison of the two representations
(14) x = E a,w = L a,'o4
of the same number x. Formally,
(15) aV= E cp,,a'.

p

Since there can be, for each vi, an uncountable infinity of nonzero coefficients
cp ,, this formula does not make sense in general. However, the a," are different
from zero only for a finite set of values of v, so that, for the systems of values to
which the formula will be used, no difficulty will be encountered. The same ap-
plies to the inverse formula
(16) a.= Ecp,ap.

p

One remarkable case occurs when the coefficients cV,p are zero whenever p # v.
Then, for each v, one can write a,w, = aVc4 and, consequently, xv = c'W" where
c,, is rational.

5.2. A second problem arises when, for the same rational coefficients ap, one
writes
(17) x = a,x>, y= E a,w .

Under the conditions given above these formulas define a one-to-one correspond-
ence between x and y = f(x). However, in the sequel we shall not use the as-
sumption that the wx form a complete Hamel basis. In this case y remains a
well-defined function of x but the correspondence is not one-to-one.

This function f will be called a Hamel function in the sequel. It possesses
the very simple and characteristic property already noted by Hamel, that
f(u + v) = f(u) + f(v). More generally, if X and A are rational numbers, then
f(Xu + Mv) = Xf(u) + 4f(v). However, except for the very special case where
w = cw, with c independent of v, the function f is very irregular. When the
condition c' = cw, is satisfied for all v except v = 1 but when w, -co,
(cl- C)W1 ; 0 one can write
(18) f(x) = cx + al(ci - c),w.
Even in this case, since a, is not /A*-measurable, the function f is not *.*-meas-
urable. A 14*-measurable function is obviously a measurable function of s and
of a finite number of coefficients h,. It seems interesting to seek new extensions
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of the Lebesgue measure, indepeindently of those giveni by (12), for wvhich f
would be measurable.

5.3. We shall assume that f(l) = I and that f(x) is not of the form cx. This
condition can be ensured, in particular, by taking wo = c = 1, as was already
assumed in section 4 for coo. The fractional part of ao and of all the other a, then
depends only on the fractional part of n. The fractional parts of x and f(x) are
then in a one-to-one correspondence. That is, if x E [0, 1), the function
g(x) = f(x) (mod 1) is a one-to-one map of the interval [0, 1) into itself.
The image by g of an interval i of length 1 and the inverse image i* of an

interval j of length 1' are both everywhere dense in [0, 1). In a sense to be eluci-
dated, they can each be regarded as uniformly distributed in this interval. More
precisely, consider two intervals j1 and i2 both interior to [0, 1) and each having
length 1'. Whatever the number f > 0 one can find a X E (0, e) such that f(X)
differs by less than E from any previously given number. Since f(x + X) =
f(x) + f(X), the X can be chosen in such a manner that in the (x, y) plane the
transformation x -4 x + X, y -- y + f(X), which leaves the graphs of y = f(x)
and y = g(x) invariant, will bring the rectangle i X j2 onto a rectangle i' X jl
differing very little from i X jl, corresponding sides being at distances less than
e. For any extension of the Lebesgue measure the difference between the meas-
ures of i' X jA and i X ji tends to zero as e -O 0. If in addition the measure is
required to be invariant under the transformation x -- x + X, then the sets
defined by x E i, g(x) E i2, and x E i', g(x) E jl must have the same measure.
Therefore, the subsets of i defined respectively by g(x) E- j' and by g(x) E j2
have the same measure equal to 1i'. In other words

(19) A*(i n i*) = m(i x j),
where m denotes the Lebesgue measure in the plane. Of course the measure ,u*
so defined does not coincide with the one described in sections 4.3 to 4.5.

Consider now a measurable plane set E inside the square Q = [0, 1) X [0, 1).
The set E is constructed from rectangles i X j by means of disjoint unions, by
subtraction and by the addition of a subset of a null set obtained by the first
two operations. The same operations performed on the linear sets i n i* lead
to a set E. Since each set i X i* has a M*-measure equal to the measure m(i X J)
of the corresponding rectangle, one is led to define A*(8) by the formula

(20) M*(&) = m(E).
Such is the formula which appears to give the most interesting extension of

the Lebesgue measure. (It must be remembered that this extension depends on
the choice of the xv and the c4. No particular extension has a pre-eminent claim
to be chosen; indeed there are an infinity of possible extensions, none of which
is more natural than the others, and we have no reason to believe that they may
be compatible.) However, it should be noticed that formula (20) can be valid
only if m(E) depends on 8 alone, or, equivalently, if the formula cannot ascribe
a positive measure to an empty set. Therefore, whether or not f is a Hamel
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function it is necessary that there be no set of positive measure included in the
complement in Q of the graph 9 of g(x). Without introducing this complementary
set, let us say that 9 has maximum outer measure to indicate that for every set
E the outer measure of E n 9 is equal to its maximum possible value, namely
m(E).
When this condition is satisfied it becomes obvious that the measure ,u* is

well defined and countably additive in a Borel field. If in addition f(x) is a
Hamel function, this measure is invariant under shifts.

6. Properties of the graphs of Hamel functions

6.1. It remains then to find out whether the graph 9 [that is, the set of
points (x, y) E Q such that y = g(x)] can have maximum outer measure. A
very simple argument shows that if f is a Hamel function either this graph has
maximum outer measure, or it has measure zero. The argument is the same as the
one leading to formula (18). Taking x and y to be defined modulo unity, the
graph 9 is invariant under all the shifts of an everywhere dense set. One con-
cludes from this that the outer measure of 9 n (i X j) is invariant under all
shifts, and hence of the form kll' for some constant k. Let S be a measurable set
such that 9 C S and such that m(s) be equal to the outer measure mn(S) of 9.
As is well known, a measurable set has almost everywhere a well-defined density
equal to unity in the set and to zero outside it. In the present case the density
of S is equal to k. Hence k = 0 or k = 1 and finally mi(S) = 0 or mn1(S) = 1.
The same result is also valid for the graph 3F of the function f itself. From now

on we shall be concerned mostly with F; however, it is to be noted that formula
(20) acquires a meaning only through the function g(x). Furthermore, it is easily
seen that ff and 9 have simultaneously measure zero or maximum outer measure.

6.2. Let us show first that F can have measure zero. According to a remark
of H. Cartan, such is the case in the preceding situation, when y - cx reduces
to a single term (cwv- cw)aV, admitting only a countable infinity of distinct
values. The same conclusion still holds whenever all the differences xv- cw, are
algebraic numbers. Indeed, y - cx is then the sum of a finite number of terms
of the type (cw' - cw,)aV, hence algebraic. Much more generally, suppose that
there exists a (zero or nonzero) constant c such that the numbers (ct -c )a,
constitute the Hamel base of a set of measure zero. Then, the graph 5J is entirely
contained in a family of straight lines y - cx = c' intersecting the y-axis in a
null set. Thus ff has measure zero.
We shall see that the other possibility, k = 1, occurs under conditions of a

considerably less restrictive character. While at present it is not known, in the
most general case, whether k = 0 or 1, the case k = 1 seems to be the most
general. It is natural to ask whether the sufficient condition we have just indi-
cated is not also necessary for k to be zero. This problem is as yet unsolved.

6.3. That k can be equal to unity is a consequence of the following theorem
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due to H. Cartan and G. Choquet and communicated to me by H. Cartan in a
letter of December 22, 1959.
THEOREM. The additive group of real numbers is the direct sum of a countable

family of subgroups R. which all have maximum outer measure.
To prove this let {PJ} be a transfinite ordering of the perfect subsets of R.

By perfect subset we mean here a subset which is identical with its set of accu-
mulation points. Since the family of perfect sets has the cardinality of the con-
tinuum, this ordering can be performed using only the ordinals v which precede
the first ordinal whose cardinality is the continuum. In each P, we shall choose
a countable infinity of numbers w,n. Let us agree that (p, p) precedes (v, n) if
either p precedes v or if p = v and p < n. Select each wo,n in such a way that
w, does not belong to the additive group Rv,n whose Hamel base is constructed
by the previously chosen wp,,. Such a selection is possible. Indeed, the cardi-
nality of the set of wp2, is strictly less than that of the continuum and so is the
cardinality of R,,n. Therefore, there is in the set P, whose cardinality is the
continuum, at least one point which does not belong to R,,n.
Once the selection has been accomplished, the set of w,.,n is the Hamel basis of

the set R' C R which is the union of the R,,n. If R' is a proper subset of R, a
complete Hamel basis can be constituted by adjunction of new numbers '4.
Define S. as the union of the set of cw,, whose second subscript is n and of a
subset of thew'.. These latter may be distributed among the Sn in an arbitrary
fashion. Rn is the group of real numbers having base S,,. Since the union S of
the disjoint sets S,, is a Hamel basis of R the group R is the direct sum of the
Rn,.
On the other hand every closed uncountable subset of the line includes one

of the perfect sets P,. Thus this set contains all the co,,n whose first subscript is
v and therefore intersects all the S,, and a fortiori all the Rn. Each Rn having a
nonempty intersection with every uncountable closed subset of R has maximum
outer measure, since otherwise it could be covered by a family of open intervals
whose complement would be an uncountable closed set. This completes the
proof of the theorem.

6.4. Let us return now to the graph 5. It follows from the preceding theorem
that two sets R' and R" can be found, each having maximum outer measure,
and such that R is the direct sum of R' and R". One can for instance put S' = S,
and S" = U {S,, n = 2, 3, * *} and then take for R' and R" the sets having
respectively S' and S" for bases. Then, as was shown in section 4 every real x
possesses one and only one representation of the form x = x' + x" with x' E R'
and x" E R". Let us now assume that '4 = c'w,. if co,AE S' and ', = c"wo, with
c" $ c' if w, C S". Then y = f(x) = c'x' + c"x". Consider the intersection of
ff by the straight line D defined by y - c'x = (c" - c')x", with x" C R" fixed.
Since x' and x" vary independently, the projection of this intersection on the
x-axis is the set x = x' + x" with x" fixed and x' E R'. Since R' has maximum
outer measure, so also does this projection. If ff had measure zero such a situ-
ation would occur only for values x" forming a set of measure zero. However,
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since the property holds for every x" E R" the graph 1F cannot have measure
zero. It follows from this that k > 0, hence k = 1, so that the graph 0f has
maximum outer measure.

6.5. The preceding argument, due to H. Cartan, does not rely at all on the
fact that every x can be written x = x' + x". We can therefore use the repre-
sentation x = E x., where xn E R., obtainable from the theorem of section 6.3
and apply the preceding result for instance with x' = xi and x" = x2. The set of
points x = xl + x2, y = c'xl -c"x2 has maximum outer measure. However, this
set is only a proper subset of the graph of f(x), namely the subset obtained by
equating to zero all the xn for n > 2. A fortiori, the graph of f has maximum
outer measure.

This extension of H. Cartan's result shows that, in order to ensure that k be
equal to unity, it is sufficient to impose on the ratios co'/c,v restrictions which
involve only a negligible part of the set of indices v. Indeed, there exists an
infinity of disjoint sets S., any two of which can play the role of S, and S2. For
the indices v which do not belong to the chosen sets one can take for the c'
arbitrary values, without requiring that they form a complete Hamel basis, or
even that they be linearly independent.

Sufficient conditions for k to be equal to unity seem therefore to be relatively
lax. This explains the conjecture made in section 6.2 although, for the values
Xi + X2 of :r, the condition f(x) = c'xI + c"x2 is very restrictive.
The same remark would also apply to functions f(x) other than Hamel func-

tions. If f(x) = c'xl + C"X2 for x = xl + x2 the graph of f has maximum outer
measure and formula (16) defines a completely additive set function.

7. Probability theory

An application of these results to probability theory is immediate but leads
to rather paradoxical results. In all the preceding arguments one can replace the
Lebesgue measure by the joint distribution of two random variables X and Y.
Provided the joint distribution be absolutely continuous nothing is changed. If
X and Y are linked by the relation Y = f(x) one can define a u*-probability
by the formula

(21) P*{g} = P{E}

corresponding to formula (20). One can in particular assume that the laws of X
and Y are independent provided they be absolutely continuous. Thus the deter-
ministic relation Y = f(x) does not preclude the stochastic independence ofX and Y.

Clearly this remark cannot extend to discontinuous distributions. If there
exists a value t such that P{X = a= > 0 then Y = f(x) implies
P{Y = f(t)} 2 a with equality if f(x) = f(t) implies x = t. In the completely
discontinuous (discrete) case the law of X determines that of Y.
We have not studied the case where the law of X is merely continuous. It
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would be interesting to know what distributions for Y can be associated with
such laws.
The author wishes to thank Professors L. Le Cam and J. G. Mauldon, who

translated this paper from French.
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