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1. Gauss functions

Let (9, &, P) be a probability space, that is, @ = {0} is a set of elements w,
and & = {E} is a sigma field of subsets E of @, and P(E) is a countably additive
measure defined on & with P(2) = 1. We denote by L*(Q) the real Lt-space over

(Q, &, P), that is, the real linear space of all real-valued &-measurable functions
f(w) defined on Q@ such that

M i1l = [ 1f@)] P(dw) < .

Two functions from L?(Q) which coincide almost everywhere on Q are identified
in L*(Q). For any two functions f(w) and g(w) from L*(2), their inner product
(f, g) is defined by

@) (,0) = [ f(@)gw) P(dw).

A function z(w) from L2(Q) is called a Gauss function if either (i) z(w) = 0
almost everywhere on @, or (ii) there exists a positive number ¢ > 0 such that

®) Plo|a < x(w) <8 = %[“exp(_

for any real numbers « and 8 with a < 8. In the second case (ii), the function
z(w) is said to have a Gaussian distribution with mean 0 and variance ¢ > 0.

2. Gauss systems

Let § = {x1(w), -+, za(w)} be a finite set of functions from L*(Q2). Then § is
called a Gauss system if the linear combination X 2.1 cxti(w) is a Gauss function
for any real numbers ¢, ---, ¢,. Further § is said to have an n-dimensional
Gausstan distribution with mean 0 if there exists a real positive definite matrix

= (ax,i] k,1 =1, -+, n) such that

(C)) Plojar < xx(ew) < Br, k=1, ---,n}
%3:{3 " f i / "exp| 5 (4w, ) | du,
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for any real numbers o and B with ax < 8 and k =1, --- , n, where u =
(w, -+, us) and du = duy - - - du,,
(5) (Au, u) = ; 121 Qp, UKW,

and det A is the determinant of the matrix A. It is easy to see that § =
{1(w), - -+ , zo(w)} has an n-dimensional Gaussian distribution if and only if
the following two conditions are satisfied: (i) § is a Gauss system; (ii) § is linearly
independent, that is, > -1 ¢xzr(w) = O almost everywhere on  only if ¢, =

- = ¢, = 0. We quote one result concerning Gauss systems: A Gauss system

8§ = {xi(w), - -+, xa(w)} is independent, that is,
(6) P{w|ak < ka(w) < ﬁk, k= 1, e, n} = H P{wlak < Il?k(w) < 6k}
k=1
for any real numbers a; and B with ax < Beand k = 1, - -+, n, if and only if § is

orthogonal, that is, (xx, z;) = 0 for any integers k and [ with 1 £k <! < n.

3. Gauss linear spaces

Let us denote by G the set of all Gauss functions in L*(@2). It is clear that G
is a nowhere dense closed subset of L2(2). It is also easy to see that G consists only
of one function z(w) = 0 if and only if the probability space (2, §, P) has an
atomic element, that is, if and only if there exists a set E in & with P(E) > 0
such that P(F) = 0 or P(E — F) = 0 for any subset F of £ in & On the other
hand, if (Q, &, P) has no atomic element, then G is a reasonably large subset of
I12(Q), and, in fact, contains an infinite dimensional linear subspace of L*(Q),
while g itself is not a linear subspace of L*(Q).

A linear subspace X of L2(Q) is called a Gauss linear subspace of L*(Q) if it is con-
tained in G. It is obvious from definition that a finite set § = {z1(w), - - - , Za(w)}
of functions from L?(Q) is a Gauss system if and only if it is contained in a Gauss
linear subspace of L%(Q). There are two cases in which Gauss linear subspaces
of L*(Q) play important réles in the theory of stochastic processes.

ExampLE 1 (Stationary Gaussian process). Let § = {z.(w)|n = 0, £1, £2,
-++} be a two-sided infinite sequence of functions from L*(Q) with the following
two properties: (i) Y%~ _»csi(w) is a Gauss function for any real numbers
cewithk = —n, --- ,nandn = 1,2, - - - ; (ii) the inner product (zx, z:) depends
only on the difference k& — . Here § is called a stationary Gaussian process.

Let & be the closed linear subspace of L*(2) spanned by §. Obviously & is
a Gauss linear subspace of L*(Q), and it is easy to see that there exists a unitary
transformation V of & onto itself such that Vz, = z,aforn =0, &1, £2, --- .

Conversely, let X be a closed Gauss linear subspace of L*(Q), and let V be a
unitary transformation of & onto itself. Assume further that V is monogenic on
o, that is, that there exists an element zo in & such that the two-sided infinite
sequence § = {z. = Vrxgln = 0, £1, £2, ---} spans X. It is then clear that §
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is a stationary Gaussian process. Thus, a stationary Gaussian process is nothing
but a Gauss linear subspace of Lz(ﬂ) with a monogenic unitary transformation
defined on it.

ExaMPLE 2 (Generahzed Browman motion). Let (S, ®, m) be a measure space,
that is, S = {s} is a set of elements s, while 8 = {B} is a sigma field of subsets
B of S, and m(B) is a countably additive measure defined on 8 with 0 < m(S) =
. We do not assume that m(S) < «, but it is assumed that there exists a
sequence {B,ln = 1,2, ---} of sets from ® such that m(B,) < » for n =
1,2, --- and Uz-1 B, = 8. We denote by ®, the subfamily of ® consisting of
all sets B from & with m(B) < ». Let z(B, w) be a real-valued function defined
on B X @ with the following two properties: (i) for each set B from ®,, we
have that zz(w) = 2(B, w) is a Gauss function of » with variance ¢ = m(B);
(ii) if the sets By, - - -, B, from ®, are disjoint, then the functions zp,(w), - - -,
zp.(w) are independent. The function z(B, ) is called a generalized Brownian
motion.

Let & be the closed linear subspace of L2() spanned by the functions 25(w) =
z(B, w) for B € ®. Then X is obviously a Gauss linear subspace of L*(2). Let
further L2(S) be the real L’-space over the measure space (S, ®, m), that is,
L2(S) is the real linear space of all real-valued ®-measurable functions £(s)
defined on S such that

@) 18l = [ 1@ m(ds) < o

3
Again, two functions from L2(S) which coincide almost everywhere on S are
identified in L2(S). For any two functions £(s) and n(s) from L2(S), their inner
produect (£, n) is defined by

® &) = [ €sn(s) m(ds).
8

It is then easy to see that there exists a unitary transformation W which maps
L2(S) onto & such that Wtz = x5 for any set B from ®,, where £z(s) is the charac-
teristic function of a set B and zz(w) = z(B, w). In fact, if we put

© w (él ckSm) = kZZJI ChTBs

for any sets By, - - - , B, from ®, (disjoint) and for any real numbers ¢y, « -+ , ¢a,
then W is a linear and isometric mapping of the set L3(S) of all simple functions
from L2(S) onto a dense linear subspace of &, and the required unitary trans-
formation W of L2(S) onto & is obtained as the continuous extension of W from
L3(S) to L2(S). We observe that if § = {£, - -+, £} is an orthogonal system
in L2(S), then the image W(g) = {W&, - -+, W} of § by W is an independent
system in X.

Conversely, if we start from a unitary transformation W of L*(S) onto a Gauss
linear subspace X of L*(®), and if we put z(B, w) = zs(w), where 5 = Wt and
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£5(s) is the characteristic function of a set B from ®,, then (B, w) is a generalized
Brownian motion. Thus a generalized Brownian motion is nothing but a unitary
transformation of L%(S) onto a Gauss linear subspace of L2(Q), or equivalently,
an isometric embedding of L?(8) into L*(Q2) as a Gauss linear subspace of L*(Q).

4. Fundamental Gauss linear spaces

Let X be a Gauss linear subspace of L2(Q). We denote by ®(X) the set of all
functions f(w) of the form

(10) flw) = P{m(w), - -+, zp(w)}
P
=2 Qn,--om, kHl [ziw) 1™,
where p is a positive integer, zi(w), * * + , Zp(w) are functions from 9, and
(11) Puy, -+, Up) = L Gy, oo UT' - Uy
is a polynomial of p variables ui, - - - , u, with real coefficients ay,,...n,. It is easy

to see that ®(X) is a linear subspace of L*(2) and is a ring with respect to the
multiplication (fg)(w) = f(w)g(w). Here ®R(X) is called the ring of functions
generated by X.

Let us denote by &y() the family of all subsets £ of @ of the form £ =
{w|a < z(w) < B}, where z(w) is a function from X, and « and B8 are two real
numbers with o < 8. Let further §(X) be the field of subsets of @ generated by
80(%). Then &(X) is called the field of sets generated by X.

TBEOREM 1. Let X be a Gauss linear subspace of L*(Q). Then the ring ®(X)
of functions generated by X s dense in L*(Q) if and only if the field &(X) of sets
generated by X is dense in &.

This last condition means that, for any set E from & and for any positive
number ¢ > 0, there exists a set E’ from §(X) such that P(EUE' — ENE’) < e.
A Gauss linear subspace X of L*(Q) is said to be fundamental if the conditions
of theorem 1 are satisfied.

5. Multiplicative unitary transformations

A unitary transformation ¥ which maps L*() onto itself is said to be multi-
plicative if (V(f9))(w) = (Vf)(w)(Vg)(w) almost everywhere on @ for any two
bounded functions f(w) and g(w) from L*Q). A one-to-one mapping ¢ of € onto
itself is called a measure preserving transformation defined on the probability
space (2, §, P) if E € & implies ¢(E) € &, ¢ (E) € § and P{E} = P{p(E)} =
P{,'(E)}. It was proved by J. von Neumann [7] that, if (Q, &, P) is the Lebesgue
probability space, that is, if @ = {0|0 < © < 1} = the closed unit interval of
real numbers, § = the sigma field of all Lebesgue measurable subsets E of £,
and P(E) = the ordinary Lebesgue measure of E, then, for any multiplicative
unitary transformation ¥ of L*(Q) onto itself, there exists a measure preserving
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transformation ¢ defined on (@, §, P) such that (Vf)(w) = f(¢~'(w)) almost
everywhere on € for any function f(w) from L(2).

TeEOREM 2. Let & be a fundamental Gauss linear subspace of L*(Q), and let V
be a unitary -transformation of X onto itself. Then there exists a multiplicative
unitary transformation V of L¥(Q) onto stself such that Vz = Vi for any function
z(w) from XK. If, in particular, the underlying probability space (Q, &, P) s the
Lebesgue probability space, then there exists a measure preserving transformation
oy defined on (Q, &, P) such that (Vr)(w) = z(ey (w)) almost everywhere on Q for
any function z(w) from X, and (Vf)(w) = flo~(w)) almost everywhere on Q@ for
any function f(w) from L*(Q).

It is easy to see that ¥ is defined on ®(X) by the formula,

(12) () = PUVE)(@), - , (Van) (@)}
= % e, 1 (V) @],

if a function f(w) from ®(X) has the form (10). Thus defined V is obviously a
linear and multiplicative mapping of ®() onto itself, but it requires a nontrivial
argument based on the properties of Gauss functions to show that ¥V is an
isometry on ®(%X). _

The measure preserving transformation ¢y is uniquely determined (up to a set
of measure zero) by the unitary transformation V. It is clear that the mapping
V — ¢y is a homomorphism of the group of all unitary transformations of X onto
itself into the group of all measure preserving transformations defined on
(@, &, P). Tt is also clear that the mapping V — V is a homomorphism of the
group of all unitary transformations of % onto itself into the group of all unitary
transformations of L) onto itself.

Thus the problem of the spectral analysis of a unitary transformation V of a
fundamental Gauss linear subspace & of L*(?) onto itself is reduced to the prob-
lem of the measure preserving transformation ¢y defined on (Q, §, P) or to that
of the multiplicative unitary transformation V of L*(Q) onto itself.

6. Homogeneous chaos

We now consider the polynomial chaos and the homogeneous chaos introduced
by N. Wiener [10]. Let X be a Gauss linear subspace of L*(Q). Let us denote
by @.(X) the set of all functions f(w) of the form (10) in which P(w, - - -, up) is
a polynomial of uy, - - - , u, of degree at most n, that is, P(uy, - - - , %,) has the
form (11) in which @x,,....n, = 0if 7y + - -+ + np, > n. It is clear that @.(X) is a
linear subspace of L*(), that ®.(X) C ®na(X) for n = 0,1,2, ---, and that
Ur=1 ®n(X) = R(X). Then @.(X) is called the nth polynomial chaos over X. It is
easy to see that ®(X) is the one-dimensional subspace of L*(2) consisting of all
constant functions, and that ®;(X) = ®(X) @ X, where ® denotes the direct
sum of two mutually orthogonal linear subspaces of L*(2).
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Let us put @o(X) = @y(X) and 9:(X) = L. Alsolet ©.(X) = @u(X) © @ y(X) =
the orthocomplement of ®,_1(X) in @,(X), that is, ,(X) is the set of all elements
of ®,(X) which are orthogonal to all elements of ®,—1(X) forn = 2,3, --- . Then
@a(X) is called the nth homogeneous chaos over X.

Let H,(u) be the nth Hermite polynomial of u defined by

1 dar
= n s ue & w2
(13) H,(u) = (—1) a1 &g e ,

n=0,1,2, ---.1Itis then easy to show that §,(%) consists exactly of all func-
tions f(w) of the form

P
(14) flw) = am'm'"’kI—IlH"k[mk(w)]’
where p is a positive integer, {x1(w), - - -, p(w)} is an orthonormal system from
«, when n,, - -+, n, are nonnegative integers, and an,...n, = 0 if s + -+ +

n, # n. We observe that all terms on the right side of (14) are mutually orthogo-
nal and hence

(15) IF1P = Zlam, -l o5y

© !

Let V be a unitary transformation which maps & onto itself. We put

(16) Vel =% am....,n,inIle[(Vm @],

if a function f(w) from @,(X) has the form (14). Thus V, is actually the restric-
tion of ¥ [defined by (12)] to ©.(), and is a unitary transformation which maps
9.(X) onto itself. It is interesting to observe that (16) is uniquely determined
(up to a set of measure zero) by f(w) and V, although the expression (14) for a
given function f(w) from Q,() is not unique.

Thus our problem is reduced to the problem of the spectral analysis of the
unitary transformation V , of ©.(%) onto itself which is defined by formula (16).

7. Symmetric tensor products

We next consider the tensor product of a Hilbert space. We follow the con-
struction given by F. J. Murray and J. von Neumann [6]. Let 3¢ = {z,y, ---}
be a complete or incomplete Hilbert space with the inner product (z, ¥) and the

norm ||z|| = [(z, z)]V2. Let 3™ be the real linear space of all elements of the form
P

17 ™ =Y a=zi® - @),

where zf, - -+ , 2% are elements of 3C, and a; is a real number, k =1, --- , p;

that is, 3¢™ is a real linear space algebraically spanned by elements z™ of the
formz™ =2, ® .-+ ® x,, where z, - -+ , , are elements of 3¢. We put
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D q . L i
(18) (x™, y(")) = Z 2 aiby H (234, 1),
k=1l=1 §m1
if z® from 3C™ has the form (17) and y™ from JC™ has the form
q
(19) ¥ =2 bt ® -+ @y,
where 4}, - -+ , yh are elements of 3¢, and b; is a real number, [ =1, --- , q.
Clearly (z™, y™) is a positive semidefinite bilinear form defined on 3™, and
[le®]| = [(x®, z™)]V2 is a seminorm on 3¢™. Let 3¢5” be the set of all elements

z™ of 3¢™ such that ||z™]| = 0. Then 3¢{" is a linear subspace of 3¢™. The nth
tensor product 3,(3) of 3¢ is defined as the factor space 3¢ /3¢, that is, a real
linear space obtained from 3¢™ by identifying the elements 2™ and y™ of 3¢
such that x™® — y® & 3¢{®. In order to avoid complicated notations, we use the
same notation ™ for the elements of 3,(3¢). The inner product and the norm on
3,(3C) are defined in the obvious way from the bilinear form (z®), y™) and the
seminorm [jz®|| on 3¢™. These are again denoted by (z™, y™) and ||z™|]|
respectively. 3,(3C) is an incomplete Hilbert space with respect to the inner
product (z™, y™) and the norm |[z™]| if 3¢ is infinite dimensional and n > 1.

Let = be a permutation of the set (1, ---,n) of positive integers. We put

P
(20) R.a® = kzl a(zrty ® -+ @ Tiw),

if an element z( from 3C™ has the form (17). Then R, is a linear transformation
of 3™ onto itself which satisfies (R.z™, R,y™) = (™, y™) for any two ele-
ments 2™ and y™ from 3¢™. From this follows that R, maps 3¢” onto itself.
Thus R, may be considered as a unitary transformation of 3,(3C) onto itself.
The nth symmetric tensor product $,(3C) of 3C is defined as the linear supspace of
3.(3C) consisting of all elements of 3,.(3C) which are invariant under R, for any
permutation = of (1, -- -, n). If we put

1
(21) M, = 5 T R,

where Y denotes the sum for all n! permutations = of (1, .-, n), then M, is
a projection of 3,(3C) onto $.(5C).
Let V be a unitary transformation of 3¢ onto itself. We put

(22) Vogm = k}”:l w(VE® - ® Vab),

if an element 2™ from 3¢™ has the form (17). Then V™ is a linear transformation
of 3™ onto itself which satisfies (Vg T®y®) = (x@ y™) for any two
elements ™ and y® from 3¢™, From this follows that V™ maps 3¢§® onto itself.
Thus V™ may be considered as a unitary transformation of 3,(3C) onto itself.
It is also easy to see that R, V™ = V®R,_ for any permutation = of (1, --- , n).
From this follows that V™ may be considered as a unitary transformation of
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$+(3C) onto itself. V™ thus defined on $,(3¢) is called the unitary transformation
tnduced on $.(3C) by V. '

8. Isomorphisms of homogeneous chaos and symmetric tensor
products

Let & be a Gauss linear subspace of L%(Q), and let V be a unitary transforma-
tion of & onto itself. Let V(,) be the unitary transformation of the nth homogene-
ous chaos Q.(X) over X onto itself which was defined in section 6 by (16). On
the other hand, consider & as a complete or incomplete Hilbert space 3¢, and
let V™ be the unitary transformation of the nth symmetric tensor product
84(X) of X onto itself which was defined in section 7. It is then possible to show
that these two unitary transformations V., and V® are spectrally isomorphic,

or more precisely. ;
THEOREM 3. Let X be a Gauss linear subspace of L*(Q). Put
n1 times np times
———t— —_——
(23) W.f = ]L[n{\/n! Zam,‘“'n’xl ® Q1 - Qa, @ -+ xp}
ml! .- np!

if a function f(w) from Qu.(X) has the form (14). Then W, is a unitary transformation
of ©.(X) onto §.(X) and satisfies

(24) W'WVew, = Vi, n=2012-.--

for any unitary transformation V of X onto itself.

Thus our problem is reduced to the problem of the spectral analysis of the
unitary transformations ¥V® induced on the symmetric tensor products §.(5C)
by V. It is easy to obtain the spectral resolution for V® in terms of the spectral
resolution for V. In this way we can show, among other things, that V™ (and
hence V), for n = 1,2, --- | have a continuous spectrum (or absolutely con-
tinuous spectrum) if and only if V' has a continuous spectrum (or absolutely
continuous spectrum). This fact, when applied to the case of example 1 of section
3, gives the known results of K. It6 [1] and G. Maruyama [5] concerning station-
ary Gaussian processes. Also, if we apply it to the case of example 2 of section 3,
then we obtain the results concerning the flow of Brownian motions as announced
in [4]. This isomorphism of ©,() and $.(X) also explains the relations between
the theory of multiple Wiener integrals due to K. It [2], [3] and the theory of
symmetric tensor algebras due to I. E. Segal [8], [9]. The details of arguments
leading to the proofs of the theorems stated in this paper, as well as the discussion
of further properties of homogeneous chaos and symmetric tensor products, .
will be given in a separate paper.
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