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1. Gauss functions

Let (Q, 8, P) be a probability space, that is, Q = {X} is a set of elements c,
and 8 = {E} is a sigma field of subsets E of %, and P(E) is a countably additive
measure defined on 8 with P(Q) = 1. We denote by L2(Q) the real L2-space over
(Q, 8, P), that is, the real linear space of all real-valued 8-measurable functions
f(Q) defined on Q such that

(1) Ilfl1 f lf(w)12P(dw) < m.

Two functions from L2(Q) which coincide almost everywhere on Q are identified
in L2(Q). For any two functions f(w) and g(co) from L2(Q), their inner product
(f, g) is defined by

(2) (f, g) =f f(co)g(w) P(dco).
n

A function x(w) from L2(Q) is called a Gauss function if either (i) x(w) = 0
almost everywhere on Ql, or (ii) there exists a positive number ur > 0 such that

(3) P{cola < x(co) </A} = ef|xp (-W) du

for any real numbers a and 13 with a < 3. In the second case (ii), the function
x(cw) is said to have a Gaussian distribution with mean 0 and variance a > 0.

2. Gauss systems

Let S = {xl(w), * , x,((w)} be a finite set of functions from L2(Q). Then g is
called a Gauss system if the linear combination 'k 1 CkXA(w) is a Gauss function
for any real numbers cl, *--, cn. Further g is said to have an n-dimensional
Gaussian distribution with mean 0 if there exists a real positive definite matrix
A = (ak,zlk, I = 1, - * *, n) such that

(4) P{CO!ak < Xk(CW) <1k, k = 1, .. . , n}

= (det A1/2 ... exp (Au, u)] du,
(27r)9 -2

239



240 FOURTH BERKELEY SYMPOSIUM: KAKUTANI

for any real numbers ak and 1k. with ak <1k and k = 1, * , n, where t =
(ul, * , un) and du = du, ... dun,

n n
(5) (Au, u) = E L ak, lukul,

k=1 1=1

and det A is the determinant of the matrix A. It is easy to see that g =
{xl(w), - * *, xn(w)} has an n-dimensional Gaussian distribution if and only if
the following two conditions are satisfied: (i) S is a Gauss system; (ii) 'S is linearly
independent, that is, -i Ckxk(w) = 0 almost everywhere on Q only if cl =

*= c = 0. We quote one result concerning Gauss systems: A Gauss system
{xj(w), * , x*(w)} is independent, that is,

n
(6) P{,wlak < Xk(CO) < Ok, k = 1, * , n} = H P{wlk < Xk(W) < fk}

k=1

for any real numbers ak and k with ak < k and k = 1, , n, if and only if 8 is
orthogonal, that is, (Xk, XI) = 0 for any integers k and I with 1 _ k <1 < n.

3. Gauss linear spaces

Let us denote by 9 the set of all Gauss functionls in L2(Q). It is clear that 9
is a nowhere dense closed subset of L2(Q). It is also easy to see that 9 consists only
of one function x(w) = 0 if and only if the probability space (Q, 8, P) has an
atomic element, that is, if and only if there exists a set E in 8 with P(E) > 0
such that P(F) = 0 or P(E - F) = 0 for any subset F of E in 8. On the other
hand, if (Q, 8, P) has no atomic element, then 9 is a reasonably large subset of
L2(Q), and, in fact, contains an infinite dimensional linear subspace of L2(Q),
while 9 itself is not a linear subspace of L2(Q).
A linear subspace $ of L2(Q) is called a Gauss linear subspace of L2(Q) if it is con-

tained in 9. It is obvious from definition that a finite set 8 = {xi(X), * * *, x,(w)}
of functions from L2(Q2) is a Gauss system if and only if it is contained in a Gauss
linear subspace of L2(Q)). There are two cases in which Gauss linear subspaces
of L2(Qj) play important roles in the theory of stochastic processes.
EXAMPLE 1 (Stationary Gaussian process). Let 8 = {Xn(w)jn = 0, 41, 42,

* } be a two-sided infinite sequence of functions from L2(Q) with the following
two properties: (i) _k_ -.CkXk(W) is a Gauss function for any real numbers
Ck with k = -n, * * *, n and n = 1, 2, * * *; (ii) the inner product (Xk, XI) depends
only on the difference k - 1. Here 8 is called a stationary Gaussian process.

Let SC be the closed linear subspace of L2(Q) spanned by &. Obviously SC is
a Gauss linear subspace of L2(Q), and it is easy to see that there exists a unitary
transformation V of $t onto itself such that Vxn = Xn+l for n = 0, i1, i2, * - - .

Conversely, let $ be a closed Gauss linear subspace of L2(Q), and let V be a
unitary transformation of DC onto itself. Assume further that V is monogenic on
DC, that is, that there exists an element xo in $Z such that the two-sided infinite
sequence 8 = {x. = V-xoln = 0, i1, -2, * * *} spans $. It is then clear that S
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is a stationary Gaussian process. Thus, a stationary Gaussian process is nothing
but a Gauss linear subspace of L2(Q) with a monogenic unitary transformation
defined on it.
EXAMPLE 2 (Generalized Brownian motion). Let (S, 63, m) be a measure space,

that is, S = {s} is a set of elements s, while 6 = {B} is a sigma field of subsets
B of S, and m(B) is a countably additive measure defined on 63 with 0 < m(S) <

mo. We do not assume that m(S) <0, but it is assumed that there exists a
sequence {B.[n = 1, 2, ** .} of sets from 63 such that m(Bn) < X for n =
1, 2, * * - and Un'-l B. = S. We denote by 63o the subfamily of (B consisting of
all sets B from 63 with m(B) < oo. Let x(B, w) be a real-valued function defined
on (Bo X Q with the following two properties: (i) for each set B from (Bo, we
have that XB(w) = x(B, w) is a Gauss function of w with variance oa = m(B);
(ii) if the sets B1, * * *, B. from (Bo are disjoint, then the functions XB,(W), *. ,

xB,(w) are independent. The function x(B, w) is called a generalized Brownian
motion.

Let 9C be the closed linear subspace of L2(Q) spanned by the functions xB(w) =
x(B, w) for B E 63o. Then DC is obviously a Gauss linear subspace of L2(Q). Let
further L2(S) be the real L2-space over the measure space (S, 6, m), that is,
L2(S) is the real linear space of all real-valued 63-measurable functions t(s)
defined on S such that

(7) 1 1 i2 = f k(S)12 m(ds) < o

S

Again, two functions from L2(S) which coincide almost everywhere on S are
identified in L2(S). For any two functions t(s) and q(s) from L2(S), their inner
product (Q, q) is defined by

(8) (t, 71) = f t(s)>(s) m(ds).

It is then easy to see that there exists a unitary transformation W which maps
L2(S) onto $ such that WTB = XB for any set B from (Bo, where SB(s) is the charac-
teristic function of a set B and XB(w) = x(B, w). In fact, if we put

(9) W(E CkB) E CkXB,
k=l k=1

for any sets B1, * , B. from 63% (disjoint) and for any real numbers cl, c",
then W is a linear and isometric mapping of the set Lo(S) of all simple functions
from L2(S) onto a dense linear subspace of DC, and the required unitary trans-
formation W of V(S) onto $ is obtained as the continuous extension of W from
Lo(S) to L2(S). We observe that if is= {0, * , (n} iS an orthogonal system
in L2(S), then the image W(g) {W{1, , WW,} of g by W is an independent
system in Dc.

Conversely, if we start from a unitary transformation W of L2(S) onto a Gauss
linear subspace $C of L2(Q), and if we put x(B, w) = xB(cW), where XB = WtB and
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RB(S) is the characteristic function of a set B from Mo, then x(B, w) is a generalized
Brownian motion. Thus a generalized Brownian motion is nothing but a unitary
transformation of L2(S) onto a Gauss linear subspace of L2(Q), or equivalently,
an isometric embedding of L2(S) into L2(Q2) as a Gauss linear subspace of L2(Q).

4. Fundamental Gauss linear spaces

Let DC be a Gauss linear subspace of L2(Q). We denote by (R(9E) the set of all
functions f(w) of the form

(10) f(W) = P{x1(co), * ,W}

= ,I .n-...... II [Xk(w)]ni,
k-1

where p is a positive integer, xi(w), *, x,(w) are functions from X, and

(11) ~~~P(Ul, ***Xup) =Eam, - --,npU' * Up

is a polynomial of p variables ul, * *, up with real coefficients an,, .,n,. It is easy
to see that 6(R ) is a linear subspace of L2(Q) and is a ring with respect to the
multiplication (fg) (w) = f(w)g(w). Here 6i($X) is called the ring of functions
generated by 9$.

Let us denote by 8o($) the family of all subsets E of Q of the form E =
{ICta < x(w) < 3}, where x(w) is a function from $E, and a and I3 are two real
numbers with a <1. Let further g(9c) be the field of subsets of Q generated by
80(X). Then E($) is called the field of sets generated by $.
THEOREM 1. Let DC be a Gauss linear subspace of L2(Q). Then the ring &(DC)

of functions generated by $E is dense in L2(Q) if and only if the field 8(SC) of sets
generated by EC is dense in 8.

This last condition means that, for any set E from 8 and for any positive
number e > 0, there exists a set E' from E($) such that P(E U E' - E El') < e.
A Gauss linear subspace $C of L2(Q) is said to be fundamental if the conditions
of theorem 1 are satisfied.

5. Multiplicative unitary transformations

A unitary transformation V which maps L2(Q) onto itself is said to be multi-
plicative if (V(fg))(w) = (Vf)(w)(f)g)(w) almost everywhere on Q for any two
bounded functions f(w) and g(w) from L2(Q). A one-to-one mapping so of Q onto
itself is called a measure preserving transformation defined on the probability
space (Q, 8, P) if E E 8 implieso(E) E 8, 0-'(E) C 8 and P{E} = P{j(E)} =
P {1,o'(E)}. It was proved by J. von Neumann [7] that, if (Q, 8, P) is the Lebesgue
probability space, that is, if i1 = {wIO . wX 1} = the closed unit interval of
real numbers, 8 = the sigma field of all Lebesgue measurable subsets E of (2,
and P(E) = the ordinary Lebesgue measure of E, then, for any multiplicative
unitary transformation V of L2(Q) onto itself, there exists a measure preserving
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transformation p defined on (Q, 8, P) such that (Vf) (w) = f(O- (w)) almost
everywhere on Q for any function f(w) from L2(Q).
THEOREM 2. Let $ be a fundamental Gauss linear subspace of L2(Q), and let V

be a unitary transformation of $ onto itself. Then there exists a multiplicative
unitary transformation V of L2(Q) onto itself such that fx = Vx for any function
x(w) from 9C. If, in particular, the underlying probability space (Q, 8, P) is the
Lebesgue probability space, then there exists a measure preserving transformation
sov defined on (Q, 8, P) such that (Vx) (w) = x(qvs 1(w)) almost everywhere on Q for
any function x(w) from XC, and (Vf)(w) = f(o-o(w)) almost everywhere on Q for
any function f(w) from L2(Q).

It is easy to see that V is defined on i($E) by the formula,

(12) (Vf)(w) = P{(Vxi)(W), * , (Vx,)(W)}
p

= E an, .,n, II [(VXk)(w)]nf,
k=1

if a function f(w) from i($C) has the form (10). Thus defined V is obviously a
linear and multiplicative mapping of &1(Xt) onto itself, but it requires a nontrivial
argument based on the properties of Gauss functions to show that V is an
isometry on i($).
The measure preserving transformation 'pv is uniquely determined (up to a set

of measure zero) by the unitary transformation V. It is clear that the mapping
V -- sov is a homomorphism of the group of all unitary transformations of $i onto
itself into the group of all measure preserving transformations defined on
(Q, 8, P). It is also clear that the mapping V -- V is a homomorphism of the
group of all unitary transformations of S onto itself into the group of all unitary
transformations of L2(Q) onto itself.
Thus the problem of the spectral analysis of a unitary transformation V of a

fundamental Gauss linear subspace $C of L2(Q) onto itself is reduced to the prob-
lem of the measure preserving transformation svv defined on (Q, 8, P) or to that
of the multiplicative unitary transformation V of L2(Q) onto itself.

6. Homogeneous chaos

We now consider the polynomial chaos and the homogeneous chaos introduced
by N. Wiener [10]. Let $E be a Gauss linear subspace of L2(Q). Let us denote
by Pn(9C) the set of all functions f(w) of the form (10) in which P(ul, * * *, up) is
a polynomial of ul, * * *, u, of degree at most n, that is, P(u1, * * *, up) has the
form (11) in which an, ...,n, = 0 if ni + * - * + np > n. It is clear that (Pin($) is a
linear subspace of L2(Q), that (Pn() C 6G+1(9t) for n = 0,1, 2, * - *, and that
Un--, (Pn($) = GL(X). Then (Pn($) is called the nth polynomial chaos over 9$. It is
easy to see that Plo($) is the one-dimensional subspace of L2(Q) consisting of all
constant functions, and that WP1(9) = 6Po(Ot) E $C, where ® denotes the direct
sum of two mutually orthogonal linear subspaces of L2(Q).
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Let us put Qo(9) = W0o(C) and QI(St) = 9S. Also let Qn(9C) = (Pn(9C) E® W-i(0t) =
the orthocomplement of W.-,(SC) in (P() that is, Qn(9C) is the set of all elements
of Pn1(Xt) which are orthogonal to all elements of (Pn-l($Z) for n = 2, 3, *-. Then
Qn(9C) is called the nth homogeneous chaos over 9C.

Let Hn(u) be the nth Hermite polynomial of u defined by

(13) H.(u) = (-1)n 1 eu2/2 dn e-82/2n! dUn

n = 0, 1, 2, *-. It is then easy to show that Qn(9C) consists exactly of all func-
tions f(w) of the form

p

(14) f(a)= a,, ..,. I Hflk[Xk(W)],
k=1

where p is a positive integer, {xi(w), . ,(cw)} is an orthonormal system from
9C, when n1, * * *, n, are nonnegative integers, and am, ,, ,, = 0 if ni + * * * +
np $ n. We observe that all terms on the right side of (14) are mutually orthogo-
nal and hence

(15) 1f112 = E lafl...,n,22 1

Let V be a unitary transformation which maps $E onto itself. We put

p

(16) (V(n)f)(w) = E a,l, p HJ Hk[(Vxk)(-)],
k=1

if a function f(w) from Qn(C) has the form (14). Thus V(n) is actually the restric-
tion of v [defined by (12)] to lQn(90 and is a unitary transformation which maps
Q,n() onto itself. It is interesting to observe that (16) is uniquely determined
(up to a set of measure zero) by f(w) and V, although the expression (14) for a
given function f(w) from Qn(0) is not unique.
Thus our problem is reduced to the problem of the spectral analysis of the

unitary transformation V(n) of Qn(Xt) onto itself which is defined by formula (16).

7. Symmetric tensor products

We next consider the tensor product of a Hilbert space. We follow the con-
struction given by F. J. Murray and J. von Neumann [6]. Let 3C = {x, y,y * }
be a complete or incomplete Hilbert space with the inner product (x, y) and the
norm lIxlI = [(x, x)]112. Let 3C(") be the real linear space of all elements of the form

p

(17) x Ek ak(XI ®$ n..X )
kc=1

where xl, , k are elements of 3C, and ak is a real number, k = 1,* , p;
that is, 3c(n) is a real linear space algebraically spanned by elements x(n) of the
form x(n) = xi 0 ...** x., where xi, * * *, x,1 are elements of 3C. We put
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P q n
(18) (X( ),yX( )) = kEI) akbi II (Xf) yb,

k-1 i-i i-1

if x(n) from KC(W) has the form (17) and y(n) from ae(n) has the form

(19) y(n) = E bi(y ® ...*- y'),

where y*,I yn are elements of 3C, and b, is a real number, I = 1, * , q.
Clearly (x(n), y(n)) is a positive semidefinite bilinear form defined on 3c(n), and
jx(n)lI = [(xCn), x(n))]"2 is a seminorm on KW. Let 3a) be the set of all elements

x(n) of 500 such that Ilx(f)II = 0. Then 5C^n) is a linear subspace of 50n). The nth
tensor product 3n(3C) of JC is defined as the factor space 3C(u)/X3C)n, that is, a real
linear space obtained from KWs by identifying the elements x(n) and y(n) of 3c(n)
such that x(n) - y(.) E 3M(n). In order to avoid complicated notations, we use the
same notation x(n) for the elements of 3n(3C). The inner product and the norm on
3n(aC) are defined in the obvious way from the bilinear form (x(n), y(n)) and the
seminorm JX(n) on 3C(n). These are again denoted by (x(n), y(n)) and x(n) II
respectively. 5,|(JC) is an incomplete Hilbert space with respect to the inner
product (x(n), y(n)) and the norm Ix(n) I if 3C is infinite dimensional and n > 1.

Let 7r be a permutation of the set (1, , n) of positive integers. NVe put
p

(20) R = E ak(x7 (1) 0 . ir(f)),
k=1

if an element x(n) from 50%) has the form (17). Then R, is a linear transformation
of 3C(n) onto itself which satisfies (R,x(n), Rry(n)) = (x(n), y(n)) for any two ele-
ments x(n) and y(n) from 3c(n). From this follows that Rr maps 3a) onto itself.
Thus RT may be considered as a unitary transformation of 3n(3C) onto itself.
The nth symmetric tensor product Sn(3C) of SC is defined as the linear supspace of
/3n(3C) consisting of all elements of %3n(3C) which are invariant under R, for any
permutation 7r of (1, , n). If we put

(21) Mn = n! E R,x

where E denotes the sum for all n! permutations 7r of (1, * , n), then Mn is
a projection of 3n(3C) onto gn(3C).

Let V be a unitary transformation of 3C onto itself. We put
p

(22) V(8)Z(8 = EV ak(Vxk C * 0 Vxk),
k=1

if an element xn) from 3c(n) has the form (17). Then V(n) is a linear transformation
of 3c(n) onto itself which satisfies (V(n)x(n1), V(n)y(n)) = (X(n), y(n)) for any two
elements xn) and y(n) from 3C(n). From this follows that V(n) maps 3CoJ) onto itself.
Thus V(n) may be considered as a unitary transformation of %,WT) onto itself.
It is also easy to see that R1V(n) = V(n)R, for any permutation 7r of (1, , n).
From this follows that V(n) may be considered as a unitary transformation of
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g,n(XC) onto itself. VW) thus defined on Sn(5C) is called the unitary transformation
induced on (XC) by V.

8. Isomorphisms of homogeneous chaos and symmetric tensor
products

Let S be a Gauss linear subspace of L2(Q), and let V be a unitary transforma-
tion of $ onto itself. Let V(.) be the unitary transformation of the nth homogene-
ous chaos Q,,($E) over $ onto itself which was defined in section 6 by (16). On
the other hand, consider $ as a complete or incomplete Hilbert space SC, and
let VWn) be the unitary transformation of the nth symmetric tensor product

n(St) of SC onto itself which was defined in section 7. It is then possible to show
that these two unitary transformations V-(W) and VW are spectrally isomorphic,
or more precisely.
THEOREM 3. Let $ be a Gauss linear subspace of L2(Q). Put

ni times n, times

(23) Wnf = Mn {-Vn! Eani,-,n,XI' XI n ... n! P P

if afunctionf(w) from Q,n($) has theform (14). Then Wn is a unitary transformation
of Qn($) onto S;n(X) and satisfies
(24) W17n lV(n)Wn = V(), n = 0, 1, 2,

for any unitary transformation V of DC onto itself.
Thus our problem is reduced to the problem of the spectral analysis of the

unitary transformations VW induced on the symmetric tensor products g&(qr)
by V. It is easy to obtain the spectral resolution for VW" in terms of the spectral
resolution for V. In this way we can show, among other things, that Vn) (and
hence V(n)), for n = 1, 2, ... , have a continuous spectrum (or absolutely con-
tinuous spectrum) if and only if V has a continuous spectrum (or absolutely
continuous spectrum). This fact, when applied to the case of example 1 of section
3, gives the known results of K. It6 [1] and G. Maruyama [5] concerning station-
ary Gaussian processes. Also, if we apply it to the case of example 2 of section 3,
then we obtain the results concerning the flow of Brownian motions as announced
in [4]. This isomorphism of Q,n() and gS(X) also explains the relations between
the theory of multiple Wiener integrals due to K. It6 [2], [3] and the theory of
symmetric tensor algebras due to I. E. Segal [8], [9]. The details of arguments
leading to the proofs of the theorems stated in this paper, as well as the discussion
of further properties of homogeneous chaos and symmetric tensor products,
will be given in a separate paper.
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