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1. Introduction

Consider, for example, a classical mechanical system with Lagrangial
*t2(1.1) L(x, x) = 2 U(x).

The wave function of the quantum mechanical system corresponding to this
classical one changes with time t according to the Schrodinger equation

(1.2) t. 8+ =_jt 2 _ UV, #(O+, x) = <(x).

Feynman [3] expressed this wave function #(t, x) in the following integral
form, which we shall here call the Feynman integral

(1.3) #(t, x) N I exp {; ft[ 2 U(x,)] dT} v(x+) dx,
where rF is the space of paths X = (x,, 0 < T _ t) with xo = x, H, dx, is a
uniform measure on R(0.t], and N is a normalization factor. It should be noted
that the integral f0 [x1/2 - U(x,)] dT is the classical action integral along the

path X. (This idea goes back to Dirac [1].) It is easy to see that (1.3) solves
(1.2) unless we require mathematical rigor. It is our purpose to define the gener-

alized measure I, dx,/N, that is, the integral fr F(X)HITdxT/N, rigorously and
to prove that (1.3) solves (1.2) in case U(x) -0 (case of no force) or U(x)--a
(case of constant force). See theorem 5.2 and theorem 5.3 below. We hope thiE
fact will be proved for a general U(x) with some appropriate regularity condi-
tions.
Our definition is also applicable to the Wiener integral; namely, using it, we

shall prove that the solution of the heat equation
GuU 1 C02U(1.4) -= 1 -u Uu, u(O+, x) = f(x),

is given by
(1.5) u(t, x) N I exp {f [ X+ U( )] dT}f(xt) H dx,
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for any bounded continuous function U(x). See theorem 4.3. This should be
called the Feynman version of Kac's theorem that

(1.5') u(t, x) = Ir exp [I-f U(x,) dr] f(xt) W.(dX)
solves (1.4). In this paper the paths, that is, the points in r,, are denoted with
capital letters X, Y, * and their values at time T are denoted with the corre-
sponding small letters with the suffix r such as xT, yY, *--. Now that Kac's
theorem is well known to probabilists, no one bothers with its Feynman version.
However, it is interesting that Kac had the Feynman version (1.5) in mind and
formulated it as (1.5') to make it rigorous [5].

Gelfand and Yaglom [4] proposed a method of defining the Feynman integral.
They replaced A with A - ioa in (1.3) to reduce the Feynman integral to the
Wiener integral and defined the Feynman integral as a limit of the Wiener inte-
gral by letting af I 0. Our method is different from theirs in the point that we
define HT, dx,IN directly and treat both the Feynman integral and the Wiener
integral on the same level.

2. The mathematical meaning of II, dx,/N

What Feynman had in mind for 1i, dx, must be a uniform measure oIi R(0'n.
Rigorously speaking, this measure does not exist. Therefore, we should define it
as an ideal limit of a sequence of measures on R(0,t1. In order to be able to com-
pute the integral (1.3) or (1.5), the approximating measures should be concen-
trated on the set L. of all X = (x,, 0 < r < t) E R(0,tJ satisfying

(L. 1) x, is absolutely continuous in r,

(L.2) x,--_dx,/dr EE L2(0, t],
(L.3) lim,jox, = x.

We shall now construct a sequence of probability measures {Pnx} on L, whose
ideal limit is the uniform distribution on RAOt'. Let p(r, oa), with o-, r E (0, t], be
strictly positive definite and continuous; for example, p(r, a) = exp (- IT - al).
Let t,.(w), w E Q2(B, P), be a Gaussian process with

(2.1) E(Q,) = 0, E(Q,t) = p(r, a).
It is well known that such a Gaussian process exists. Since the continuity of
p(T, a) implies the continuity of t,. in the mean, there exists a measurable version
[2] of T,. Denote that version with the same symbol t,.
Noting that

(2.2) E (f0 2 dr) = f0 p(r, r) dr < +0,
we can see that

(2.3) P±0 < = 1.
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Put

(2.4) x = x + n 0f ed, 0 < t.

Then x(n, for 0 < X _ t, is also a Gaussian process with

(2.5) E[x1] = x,

E{fx(n) - X][(n) - x]} = n2 J07 f' p((O 62)doA dO2.
Denote by P'Z) the probability distribution of the sample function X(n) of the
process x., with 0 < r _ t. Then PI' is concentrated on L, and any finite
dimensional marginal distribution of P'n), say over coordinates Ti, T2, * *T, is
Gaussian with thc density

(2.6) n2)m/2 exp [ i bi(xi-x) (xj -x)

where the matrix (bij) is the inverse of the matrix (vij) with

(2.7) vij = f0ri J(7 p(Oi, 02) dOl dO2, i,j = 1, 2, *, m

and b is the determinant of (bij). The existence of (bij), that is, the nonvanishing
of the determinant of (vij) results from the assumption that p(T, a) is strictly
positive definite.

Since the Gaussian distribution (2.6) tends to a uniform distribution on the
m-space in the sense that, for any almost periodic function f(x1, X2, X,Xm),
(2.8)
f ff(x . m) (22) Kexp [ b2 -j(xi-x)(xi - x)]dxi dXm

tends to the Bohr mean DfR(f) off as n -- oo, it is reasonable to say that P(I) for
n = 1, 2, * * * approximates the uniform distribution on R(o.t] and that ]fi dx7 is
an ideal limit of this sequence.
N must be also an ideal limit of a sequence of numbers {Nn} such that Pn)I/Nn

tends to J, dx7/N in some sense.
Keeping these heuristic considerations in mind, we shall give a mathematical

meaning to II, dx7/N, that is, to the linear functional I(F) = f F(X)fII, dxI/N.
There are many ways of defining this functional in accordance with the choice
of the sequence {Nn}. We shall express I(F) as I(F, Nn) referring to the sequence
{N.}.
DEFINITION.

(2.9) I(F, N.) = lim F(X)P)n (dX).

The domain 3)(Nn) of this functional I(F, Nn) is the set of all F for which the
limit in (2.9) exists and is finite.
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Fixing {Nn}!, we shall write 53(Nn.) as D and I(F, N,) as

(2.1C) N f F(X) I dx,.

We shall mention three interesting cases.
(i) Uniform integral. N,n= 1, with n = 1, 2, -. If F(X) is of the form

f(x11, xT., ***, XTI) with an almost periodic function f(xi, X2, , Xm), then F E
and

(2.11) k f lF(X) I| dx. =

where M(f) is the Bohr mean of f.
(ii) Wiener integral. NAn = I / 9(1 ± n2X,)"21it = 1, 2, *, where X, will be

defined in the next section. We shall discuss the Wiener integral in section 4.
(iii) Feynman integral. N,, = 1/II(l + n2X,/hi)112, with n = 1, 2, w*, with

the same X, as in (ii). This will be discussed in section 5.

3. Orthogonalization method

In the following sections we shall be faced with the iintegrals of the type

(3.1) I = |G(X)P()(dX).

Recalling that Pn)( was defined as the probability distribution of the sample
path X(n) of the process

(3.2) XIt(w) = X + n foT te() dO

introduced in section 2, the integral I can be expressed as the mean value of
G[Xn)(co)] on S2(B, P)

(3.3) I = fI G[X(",)(.)]P(d) =E'G[X(")]-

To compute this, we shall use the usual orthogonalization method. The idea is
as follows. Let T denote the operator from L2(0, t] into itself,

(3.4) (T,1) (Tr) =f| p(Tr, a)ro(o) da.

Then T is a strictly positive-definite compact operator. Therefore 7' has positive
eigenvalues {X^,} whose eigenfunctions {J,} constitute a complete orthonormal
system in L2(0, t].
Now put

(3.5) af(co) = (o, mt) = f tr(o)fl,(r) dr;

this inner product is well defined, thanks to (2.3). Then {aj} is a Gaussian
system, since {r is a Gaussian process. Equation (2.1) implies that
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(3.6) E(avaM) = JO ft p(,cT )l(r>,(a) dr da.

Therefore av, with v = 1, 2, *., are independent and each a, is Gaussian with
mean 0 and variance 41. Since we have

(3.7) E= E(a) = EE(fa2d) =E f02 d tp(r,T) dr,

the continuity of p(r, a) implies
(3.8) , X. < +X;

this fact will be useful in the following sections.
Noting that

(3-9) T)=E v)()

and that

(3.10) x(8n)(w) = x + n JT te(c) d@-

we can express I in the form
(3.11) I = E{H(al, a2, * *)

with some H. Using the independence and the normality of {a,}, we can compute
(3.11) more easily than the original form (3.1).

4. Wiener integral
We shall now discuss the integral (2.10) for

(4.1) Nn = H (1+ n2Xt)llJ n = 1, 2 *-.X

where X, with v = 1, 2, *- are the eigenvalues introduced in section 3.
We can verify easily the convergence of the infinite sums and infinite products

appearing in this section by appealing to (3.8).
LEMMA 4.1.

(4.2) Q(n" (dX) - N-exp (- J 2Td) Pn()(dX)
is a probability distribution on L-.

PROOF. Using the orthogonalization method, we get

(4.3) In = exp( dT) Pn()(dX)

= E[exp (n2ArdT)]

= E [exp (o2 a)].
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Noting that the a,, for v = 1, 2, ***, are independent, we have

(4.4) I', = E [exp(-2a2)]

=| (2w )112 exp -22 )da
_tI ~1
v (1 + n2X,)/12

which proves our lemma.
LEMMA 4.2. For any g E L2(0, t], we have

(4.5) | exp [i t g±Tg(r) dr) IQn" (dX) = exp EJL8 L J0 I L ~~~~~,2(n2X,. + 1)'

where g, = (g, 77,) J|' g(T),7,(r) dT, for v = 1, 2,
PROOF. By the same idea as in lemma 1, we have

(4.6) In fL exp [i f| X.tg(,) dT] Q') (dX)

1tF. r'~~~~~~t= N-J exp [i g±7(r) dT - j dT] Pn (dX)

NE [exp in gx\a, -n2 a2.)
= N-HE[exP (ingva - n2a

1TT 1 (~ a2 n2a2\
Nn ,'J (2TrX1)12 exp 2A + ing,,a 2 da

= 1 IJ(1 + n2X,)1/2 exp [2(n2AX + 1)],
which proves (4.5) by virtue of (4.1).
As an immediate result from lemma 4.2, we obtain the following lemma,

noting that _,g2 = f| g(T)2 dT and that O' g(T) dB(T) is Gaussian distributed

with mean 0 and variance f0' g(T)2 dT for the Brownian motion B(r).
LEMMA 4.3. For any g C L2(0, t],

(4.7) exp [i f ±,.(g) d, - t 2 dT] EC ,
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and

(4.8) Nf exp [i ±,.g(r) dT Jf dr] 11 dxr

= fL exp [i J0 g(T) dxT] W,(dX),

where Wr is the probability measure for the Brownian motion process starting
at x, namely the Wiener measure.
THEOREM 4.1.

(4.9) Nexpr(-2'd) Hdx = Wz(dX);N J2
rigorously speaking, we have, for any continuous bounded tame function F(X),

(4.10) F(X) exp ( _ dT)ed

(4.11) k f F(X) exp (- 2' dr)dlx, = f F(X)Wz(dX)

A tame function is a function defined on an infinite dimensional space which
depends only on a finite number of coordinates.

PROOF. F(X) can be expressed as

(4.12) F(X) = f(x,,,XTI x,), 0 < Ti < .<Tm< t,
with a continuous bounded function f of m real variables. To obtain theorem 4. 1,
it is enough to prove that

(4.13) lim | f(XT, x72, **, x*T,.)Qn (dX) = frf(X7I1 Xn * * * x7.)W,(dX).n - o L. frS
Let Q0( and W,t, denote the marginal distributions of Qn") and Wz over the co-
ordinates ri, T2, * *, Tn respectively. Then

(4.14) In = f ... f exp [i(zial + * * * + zmam)]Q(x)(dai ... dam)

= IL exp [i(zlx1 + * * - + zmXTux)]Q( )(dX)

= exp [i(Zi + * * * + zm)x] JL exp [i f g(T)±t dT] Qn()(dX),
where g(T) = ._1zjSpj(r) and jsr(T) is the indicator function of the set (0, rj).
Using lemma 4.3, we get

(4.15) I,, Jr. exp [i(z1 + + z.)x + if g(r) dXT]W.(dX)

= fr exp [i(zlxT, + * + zmxr..)]W.(dX)
=f ... f exp [i(zical + * + zmnam)] z(daj da2 ... dan)

Therefore n) - Wz in the weak sense as n -* oo, which implies (4.13).
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THEOREM 4.2. If f(x): RI - C is continuous and bounded, then

(4.16) exp ( -I dT)(x,) EE °

and

(4.17) u(t, x) - f exp (-f 2 dT) f(xt) I dx,

solves

(4.18) dt 2aX2u u(O+, x) =f(x).at 2 a2

PROOF. Using the previous theorem, we have

(4.19) u(t, x) = ff(x,)Wx(dX) = f (y) y2xp[- dy

and this solves (4.18).
THEOREM 4.3. (Feynman's version of Kac's theoremn.) If f(x) and U(x) are

continuous and bounded, then

(4.20) exp {-f [2 + U(xr) ] d}f(xt) EE

and

(4.21) u(t, x) = fexp {-f [2 + U(xr)] dr}f(xt) dx,r
solves

(4.22) ~~au _1 a2u(4.22) at 2 - U(X)u, u(O+, X) =f(x)
PROOF. It is enough, by virtue of Kac's theorem, to prove that

(4.23) lim expf {-f [ 2 + U(x,)] dr}f(xt)Pn(dX)

f exp [-f U(x,) dT] f(xt)WlV(dX).

Denoting the integrals in (4.23) by In and I respectively, we obtain

(4.24) In = fIL exp [- fo U(x,) dr] f(xt)Qn)(dX)
= Inm + Rnm,

where

(4.25) Inm = (_ ft . ..tf U(xr,) ... U(x,,r)Qn()(dX) d,1 ... dTr,

(4.26) IRnml <- ( ~m+1 U It'+'l lfl 1!' exp (I Ul !j) ,(m+1)K
where II.o means the uniform norm. Therefore In_n tends to In uniformly in
n as m -o. Using theorem 4.1, we have
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(4.27) Inm I..m
E (...i

...

ftX.j.Lv! I* * * J|U(xt,) ... U(x,,)f(xt)W.(dX) djr ... dT,

and it is easy to see that Ioom - I as n -* oo. Taking the uniform convergence
of limm b Inm = In into account, we have
(4.28) lim In = lim lim Im = linlimm = lim Ioom = I,

n_-* n--* m-*x m- n-* m-

which completes our proof.

5. Feynman integral

In this section we shall discuss (2.10) for

(5.1) Nn II(l + 8 lNn= n= 1, 2,

As in section 4, we can easily verify the convergence of the infinite sums and
infinite products, by appealing to (3.8).
LEMMA 5.1. If Re(b) > 0 and c is real, then

(5.2) f exp (-ba2 + ic) da = (1)1/2 exp (_)

PROOF. This is true if b > 0. By analytic continuation, we can verify (5.2)
for Re(b) > 0.
LEMMA 5.2. If g(r) E L2(0, t], then

(5.3) N exp [f d2r + i x,.g(r) dT] P'()(dX)
[ n2X'Aig'

where

(5.4) g, = (g9 7) = f0 9g(r)7.1(r) dr.

PROOF. We shall use the orthogonalization method introduced in section 3.

(5.5) In = f exp [ df 2 Jr + i J .g(T) dT] Pn( (dX)

= N E {exp [ 2- (a! + ingaa,')]j
=

1 HE [exp (i a2 + ingia,)]

N ] (2ir'X,)12 eXp (_ + if2a2 + in.,a.) da.
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Using lemma 5.1 to evaluate this integral, we have

(5.6) 1n = exp [- 2(n2X + i)]

Noting that fo= f g(r)2 dr, we obtain, as an immediate result from lemma
5.2,
THEOREM 5.1. If g(r) E LV(0, t], then

(5.7) exp [, f x dr + i | xg(r) dr] (ED

and

(5.8) 1 exp [h f dr + i g,(r) dr] dx. = exp [-ii g2r) dr]

THEOREM 5.2. If the Fourier transform of ep(x) is a continuous function with
compact support, then

(5.9) exp tX d,) (x,)

and

(5.10) t(t, x) = 4 f exp ( 2rdT) (xt)Hdx

solves

(5.11) -=22 1,6(0, x) =(p(X).i at 2 aX2

PROOF. It is enough to prove that

(5.12) In = f exp (, j dr) so(x,)Pnl)(dX)

tends to

(5.13) f 1 xp [-(x_ y)2l () dy.(21rhit)"12 ex L 2hit J*"

Denoting the Fourier transform of sp(x) by s(£) or (Tp)(x) as

(5.14) o(l) = (s)) =|_ exp (27ri&x)ep(x) dx,

we have

(5.15) , f exp Q f r dr) exp (-2ri;xx)0(x) dx Pn"(dX)

= 1- J s(&) exp (-2iritx) dx i exp ( dT0d

- 27rix ±X dT) Pn ) (dX).
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Putting g(t) = -27r:U, in lemma 5.2 to compute this integral over Lz, we have

(5.16) ) exp [2i - 2(n2 + hi)]dx.

Recalling the assumption that Cp(x) has a compact support, and noting that

(5.17) f92 = f992(r) dr = 4r22t,
we have

(5.18) lim I.n = | (sx) exp (-27i.x - 27r2hitx) dx.

Since the Fourier transform of

(5.19) N(x, hit) (2ht)2 p(2hit)

in the Schwartz distribution seinse [6] is exp (-27r2hiitx2), we obtain

(5.20) lim I. = '{(fY)ff[N*, hit)]}
n-o

= p(x) * N(x, hit),
namely
(5.21) (t, x) = N(x, hit) * (x),
which completes our proof.
THEOREM 5.3. If the Fourier transform of (p(x) has compact support, then

we have

(5.22) exp [ f (X X) d] p(x,) C O

and

(5.23) Nx) exp [i (t x,) dT] qo(xt)TJ dx,

solves

(5.24) * =
22

2 , 4p(0+, x) = (X)-

PROOF. Defining 0(£) as in (5.14), we obtain

(5.25) In = N-f exp [
t

f (2 -x-) di] p(x,)P()(dX)

=N-|f (() d£ J exp (i f 2Tdr - XJ dr - 27ri;xt) P()(dX)

= f| 0(1) exp [-2ri (x + 2 x] d- f exp f. dr

+ i gg(r)±, dT] Pn (dX),
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wNhere g(T) = -(t -T)/h - 2rt. Using lemma 5.2 to evaluate this integral over
L. and recalling that ^ has compact support to take the limit as n o, we
have
(5.26) 0'(t, x)

.ts() exp [2i (£ + 2tA) x
-

^2 l t 7$T_2,rx) dor] dx
= f (o t-2 )exp [2ritx - i - 2Xr) dT]d.

= f < (2-2A)exp{2rix - -2-[(27£ + t) (-2 £)3} d.

Thus we get

(5.27) z6(t, £) _ W[4,(t, * )]

I - exp -7[( .2r + (-27r)
Simple computation shows that *(t, £) satisfies

(5.28) t
4 =

M (-27nri)2-' 1 so0(°+, £)i at 2 27ri al

This implies (5.13).
I would like to thank Professor G. Baxter for his valuable suggestions and

assistance in writing the final version of this paper.
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