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1. Introduction and summary

This paper is concerned with certain properties of the sequence Si, S2, * of
the sums S. = X1 + *.. + X. of independent, identically distributed, k-dimen-
sional random vectors Xi, X2, ***, where k _ 1. Attention is restricted to
vectors X. with integer-valued components. Let A1, A2, --- be a sequence of
k-dimensional measurable sets and let N denote the least n for which Sn E An.
The values So = 0, Si, S2, * * * may be thought of as the successive positions of
a moving particle which starts at the origin. The particle is absorbed when it
enters set An at time n, and N is the time at which absorption occurs. Let M
denote the number of times the particle is at the origin prior to absorption (the
number of integers n, where 0 - n < N, for which S,, = 0). For the special case
P{X,, = 1} = P{X,, = 1} = 1/2 it is found that

(1.1) E(M) = E(ISNI)
whenever E(N) < oo. Thus the expected number of times the particle is at the
origin prior to absorption equals its expected distance from the origin at the
moment of absorption, for any time-dependent absorption boundary such that
the expected time of absorption is finite. Some restriction like E(N) < Xc is
essential. Indeed, if N is the least n _ 1 such that S. = 0, equation (1.1) would
imply 1 = 0. In this case E(N) = Xo.
The primary concern of this paper is to show that a result analogous to equa-

tion (1.1) is true for one-dimensional random variables under rather general
conditions, and to obtain a similar result in two dimensions. The proof of equa-
tion (1.1) and its generalizations is based on an extension by Blackwell and
Girshick [1] of an equation of Wald, the following special case of which is used
(see theorem 2.1). If Xn is k-dimensional with E(IX,1) < cc, where, for a =
(a,, ..., ak), lal = (a? + * + a2)1/2, and E(N) < °o, then

(1.2) E(M) = E[g(SN)],

where g(s) is a solution of the equation
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(1.3) f g(s + x) dF(x) - g(s) = xo(8),
F(x) being the distribution function of Xn and xo(s) = 1 or 0 according as s = 0
or s 96 0, provided that Ig(s)I . A + Bis1 and g(O) = 0. The range of s in (1.3)
is restricted to values such that P{S. = s} > 0 for some n. Equation (1.1) is
easily deduced from this theorem.
A result analogous to (1.1) can be expected only if E(jXnj) < oo and

E(Xn) = 0; for if E(Xn) 0 0, then, in the absence of absorption, the expected
number of returns to the origin is finite and therefore E(M) is bounded, whereas
E(ISNI) may be arbitrarily large.

First let X. be one-dimensional, E(Xn) = 0, 0 < o2 = E(X ) < co, and let a
denote the greatest common divisor of the integers x for which P {Xn = x} > 0.
Then equation (1.3) has a solution go(s) such that

(1.4) go(s) - a&-21s1, IsX

(theorem 4.1). This implies that if ISNI is large with high probability, then E(M)
is approximately proportional to the expected distance of the particle from the
origin at the moment of absorption, under the conditions stated above. If, in
addition, the distribution of X. is symmetric, then go(s) _ aor21sI (theorem 4.1).
Also, without assuming that o.2 < X, E(M) 5 E(jSNI)/E(IXlI) (theorem 4.4).
Now let X. be a two-dimensional random vector with E(Xn) = 0 and non-

singular second-moment matrix M. Then equation (1.3) has a solution go(s) such
that

(1.5) go(s) - b log lsl, Is cc,

where b is a positive constant which depends only on 2: and the set of points x
for which P{X. = x} > 0 (theorem 5.1).
A formal solution of equation (1.3) is

(1.6) g(s) = E [P{Sn = O} - P{S. = S

The problem of the convergence or divergence of the sum in (1.6) is of independ-
ent interest. The sum QW(S) = El - P{Sm = s} is the expected number of
times the particle is at the point s up to time n. It is known that limn- Qn(s) = Xc
if and only if P{Sn = s infinitely often} = 1. If k = 1 and E(Xn) = 0, or if
k = 2, E(Xn) = 0, and E(lXn12) <0, then lim.-O QW(s) = cc for any possible
value s, the value s being possible if P{S, = s} > 0 for some n (Chung and
Fuchs [5]). Thus if the difference Qn(s) - Qn(t) converges as n -* c, the two
expected values remain close to each other even though each of them tends to
infinity. The following related results are known: if s and t are possible values,
then Q,n(8)/Qn(t) -l 1 whenever Qn(s) -° cc (Doeblin [6]); also, if k = 1 and
E(X.) = 0, then P{Sn = S}/P{Sn = t} -+ 1, provided that the two probabili-
ties are positive for n large enough (Chung and Erd6s [4]). The problem of the
convergence of sums like that in (1.6) has been posed by K. L. Chung [2] in the
more general setting of Markov chains with stationary transition probabilities.
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Chung obtained certain results on this problem under assumptions which ex-
clude the case of sums of independent random variables. (K. L. Chung informed
the author that the proof of theorem 5 in [2] is incorrect and that a correct
proof will be found in [3].)

In the present paper the following results are obtained. The sum E [P {Sn = s}
- P{S,, = t}] is shown to converge for any possible values s, t in the following
cases: For k = 1, if either E (Xn) < -c or the distribution of Xn is symmetric
(theorem 4.5); and for k = 2 always (theorem 5.3). ITnder the assumptions
made to derive equations (1.4) and (1.5), the sum in (1.6) is a solution of equa-
tion (1.3) and the former equations give the asymptotic values of the corre-
sponding sums. Some of these results have also been obtained by F. Spitzer in
[9] and [10], who kindly made his manuscripts available to the author before
publication; for details see remark 2 at the end of sectioii 4 and the remarks
after the proofs of theorems 5.1 anid 5.3.
The case of k > 3 dimensionis will iiot, )e (ojlsidered in this paper. ANWe olnly

remark that in this case E P{S,, = s, is kniowii to coniverge for any s [5]; the
sum in (1.6) is easily seen to be a solution of eq(uationi (1.3), anid to be bounded
as a function of s.
Note that the left side of (1.3) is a versioni of the Laplace operator acting on

g. It is therefore not surprising that the solutions (1.4) and (1.5) behave asymp-
totically like the solutions of the classical Poisson equation corresponding to
(1.3). See also Spitzer [10].

2. Application of a theorem of Blackwell and Girshick

Let {X4} and N be defined as in the beginning of section 1, except that the
components of X. need not be integers. For each positive integer j let 4; be a
real measurable function of X1, *, Xj such that

(2.1) E(0j) = 0

and, with the usual niotatioii for a conditional expectationi,
(2.2) E(OjIX1, * *, Xi) = 4;, i < j.

Suppose that there exists a functioi f(xr) > 0 such that

(2.3) E[f(X1)] <cx; ljI _ E f(Xi) if j _ N.
i=l

Blackwell and Girshick [1] have shown that if the above conditions are satisfied
and E(N) < X, then E(4N) exists and equals 0.
We shall need the following corollary of this theorem.
THEOREM 2.1. Let g(s) be a real measurable function of s E RJk such that, for

some constants a and b,
(2.4) Ig(s)l _ a + blsl.
Suppose that E(|X1|) < x, E(N) < X, and that the function
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(2.5) h (s) = f g(s + x) dF(x) - g(s)

is bouindcd. Thent E[g(SN)] exists awl
-N-1-

(2.6) E[g(SA)] - g(O) = E 5% h(Sn).

PROOF. Let

(2.7) cj = g(Sj) - g(O) - )2 h(Si)

or equivalently,

(2.8) f [g(Si) - f g(Si- + x) dF(x)].

It is easy to verify that 0j satisfies conditions (2.1) and (2.2). Also, if c is an
upper bound for Ih(s)1, we have by (2.4)

(2.9) kjf< a + bISiI+ a + cj < L (blXil + 2a + c).

Hence condition (2.3) is also satisfied. Thus E(4ON) = 0. Since E [I Fi'= ol h(Si) ] _
cE(N) < 00, therefore E[g(SN)] exists and equation (2.6) follows.
REMARK. Equation (2.6) holds under less restrictive conditions on g and h

if more stringent assumptions on the distribution of N are imposed. For related
results see also Doob [7], chapter 7, section 2.
Theorem 2.1 will be applied to the case where Xn has integer-valued compo-

nents and h(s) = xo(s), where xo(s) = 1 or 0 according as s = 0 or s #6 0. In
this case the right side of equation (2.6) is E(M), with M as defined in the intro-
duction. Thus it will be necessary to show that equation (2.5) with h(s) = xo(s)
has a solution g(s) which satisfies (2.4). The range of s in equation (2.5) may be
taken as the set of the possible values s.

If go(s) is a solution of (2.5) with h(s) = xo(s), and XT(S) is the characteristic
function of a set T which consists of finitely many points with integer-valued
coordinates, then 9T(S) = ,ZET 90(S- t) is a solution of (2.5) with h(s) = XT(S),
and then the right side of (2.6) is the expected number of times the particle is
in the set T prior to absorption.

3. Some lemmas for multidimensional distributions
In this section some lemmas are derived which are needed in the sequel. Here

F(x) will denote a k-dimensional distribution function with k > 1, and

f(u) = f exp (ix'u) dF(x) its characteristic function, where x and u denote
column vectors with k components and x'u is the matrix product, x' denoting
the transpose of x. A distribution function F is nondegenerate if no k - 1 di-
mensional hyperplane has F probability one. We write Rf(u) and If(u) for the
real and the imaginary part of f(u).
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LEMMA 3.1. If F is any nondegenerate k-dimensional distribuztiotn futnction,
then there exist positive constants c and a such that

(3.1) 1 - R(U) ; cjIjt!, Jul < 6.

PROOF. SinCe F is nonidegenerate, we can choose 8 > 0 so small that the

distribution function Ga defined by JA dGa = JA dF/If1<I dF, with

A C {Jxj < &-'}, is nondegenerate. Then fr <a-, Ix'ul2 dF is a positive definite

quadratic form and hence is _ cilul2 for some cl > 0. Now if Jul <8,

(3.2) 1 -Rf(u) = 1(1-cos x'u) dF 2 f (2 jx'ul -12x4ul4)dF
!x'ul <1

> f jx'ulj2dF > f11 ix'ul2dF
!xfluj <1 IxI <a-'

-242c4u2.

LEMMA 3.2. If F i.s a nondegenerate k-ditmiensional distribution function, there
exist positive constants c and a such that

(3.3) jf(u)j -< 1 - cjuj2, Jul < 6,

and for all positive integers n

(3.4) lI([f(U)]n)l _ jlf(u)Jn(l -ClU2)n-1, Jul < 6,
PROOF. Since jf(u) = f(u)f(-u) is a real characteristic function, (3.3) fol-

lows easily from lemma 3.1. Also,
(3.5) I{[f(U)]n} = (2i)-1{[f(U)]n- [f(-U)]n}

= If(u) [f(U)n-1 +f(U)n-2f(-u) + ..-+ f(-U)n-].
Hence jI{[f(u)]"}j _ILf(u)I n jf(u)In-'. With (3.3) this yields (3.4).
LEMMA 3.3. If the k-dimensional random vector X with integral components has

a nondegenerate k-dimensional distribution, there exists a nonsingular k X k matrix
C such that the random vector Y = CX has integral components and its character-
istic function f(t) is equal to 1 if and only if the components of the vector t are integral
multiples of 27r.

PROOF. Let fi(u) = E(exp iX'u) be the characteristic function of X. By
assumption the values of X belong to the set 91 of vectors with integral compo-
nents. Let W be the set of vectors w for which fi(w) = 1. Then w E W if and
only if x'w is an integral multiple of 2ir whenever P{X = x} > 0. Since the
distribution of X is nondegenerate, there exist k linearly independent vectors
xl, ,xk in 9t such that P{X =Xj} > O for j = 1, * ,k. Hence if w E W,
the numbers xlw, ... , x,w are integral multiples of 2X. It follows that the com-

ponents of w are rational multiples of 7r, and that any bounded subset of 'W con-
tains only a finite number of points. Also, if w E W, then fi(u + w) = fi(u). By
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a knowni property of conitinuous periodic functions, this implies that W consists
of the points 27rC'n, with n C 91, wlhere C is a fixed iionsingular k X k matrix.
The elements of C are rational.

Let d denote a common denominiator of the elements of C. Then the coinpo-
iients of the random vector Z = dCX are initegers. The characteristic function
f2(v) of Z satisfies the equation f2(d-1C'-'u) = fi(u)i. Hence f2(v) = 1 if and only
if v = d-'C'-'27rC'n = 27rd-n, n C 9L. In particular, f2(v) 1 at the k points
vi = (2ird-1, 0, ***, 0), Vk, = (0, **, 0, 2ird-'). If P{Z = z > 0, then z'vj is
an integral multiple of 21r, for j = 1, k,1, anld hence the components of Z
are multiples of d. Therefore the random vector Y = d-1Z = CX has integral
components, and its characteristic function.f(t) = f2(d-lt) eqjuals 1 if and only
if t = 2rn, with n E X., as was to be proved.

4. One-dimensional random variables

In this section Xi, X2, *.. will be independent, integer-valued random vari-
ables with common distribution function F(x) and characteristic function f(u).
We shall assume that the greatest common divisor of the saltuses of F is 1; the
general case is easily reduced to this special case. Then f(u) = I if and only if
u is a multiple of 2ir. Since f(u) is continuous, this implies that for any a > 0
there is a c > 0 such that 1 - f(u)I > c if a < IuI < r.
THEOREM 4.1. Let F(x) be a distribution on the integers such that the greatest

common divisor of its saltuses is 1 and

(4.1) f x dF(x) = O, 0 <f x2 dF(x) =o2 <oc.

Then the limit

(4.2) go(s) = lim (2r)-l f (1-ei- )[-ef(u)]1 du
Y°+ -Y <[ul <.r

exists (and clearly is real) for all real s; go(s) satisfies the equation

(4.3) f g(s + x) dF(x) - g(s) = xo(s), s = 0, 41, 42,2' ;

and

(4.4) go(s) = a2Is + o(|s|), IsI -X 0.

If, in addition, F is symmetric, that is,

(4.5) f dF(x) = f dFe(x), -so < y < x,
X<M X>y

then

(4.6) go(s) > u2IsI, S = 0, 41, i2,
where the sign of equality holds if - 1, 0 and 1 are the only saltuses of F.
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For the proof we require the followinig known lemma (see l1s1t L7j), Nvhich is
easy to verify.
LEMMA 4.2. If x dF = O and x2 dF <0, then

(4.7) f1 U-31ff(u)l du <00*
PROOF OF THEOREM 4.1. We have, for 0 < -y < r,

(4.8) f (1 - eisu)[1-.f(u)]-' du
-Y <!t4 <T

= 2 f {(1 -cos Sit) [1 - ('lt)] + (sin 8u)If(u) 1 - *f(u) 1-2 dlu.

Since 1- If(u) = (I/2) u2 + o(u2) and 1 - f(u) = (l/2)o2u2 + o(u2) as
u -O 0, it follows from lemma 4.2 that the limit of the integral, as -Y -O 0, exists,
and

(4.9) go(s) = -1 f {(1 - cossu)[1 - Rf(u)] + (sin su)If(u)}l I - f(u) 1-2 du.
If we replace s by s + x in (4.9), the integrand is absolutely integrable with
respect to du dF(x). Hence the order of integration may be interchanged and
after simplifying we obtain

(4.10) f go(s + x) dF(x) - go(s) = (2r)-1 fir .isi dut.

The right side equals xo(s) for any integer s. Thus go(s) satisfies equation (4.3).
To prove the asymptotic equation (4.4), we write go(s) = A(s) + B(s) corre-

sponding to the two terms in (4.8). The term A (s) can be writteni

(4.11) A (s) = (2r)-1 f (I - cos su) [1 - f(u)]'- d1i.

For an arbitrary e > 0, with e < 1, we can choose 6 > 0 so that 1 - f(u) =
(1 + Oe)2-lau2 for Jul < 6 where 101 _ 1. Since the integrand is bounded for
6 ' t < 7r,

(4.12) At(s) = (2ir)-1(l + 0iE)-120-2 f U_2(l - coS Sat) (/U + 0(1),
Jul, <6

where IO, _ 1. We have

(4.13) 7r1 f U-2(1 - eos S?l) di, = 7-1 f Ul2(1 - cos s81) dIt + 0(1)
!,ul <5

= !SI + 0(1).
Hence A (s) = (I + 1e)-10-21S + 0(1) and therefore
(4.14) A(s) = U-21S| + o(ISI).
Now consider B(s). Given e > 0, we can, by lemma 4.2, choose 6 > 0 so that
a u-'IIf(u)I du < E, and also 1 - f(u)I > cu2 for Iu < 6, where c = 4-102, say.
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Then

(4.15) 7rIB(s)| f (sin su)If(u)II -f(u)I- 2dul ±+ If
_ c-2 f0fu-4su If(u)I du + 0(1)

. C5c-[E + 0(1).
Hence B(s) = o(IsI). With (4.14) this implies (4.4).
Now assume that F is symmetric. Then

(4.16) go(S) = 7r-l |0 (1 - cos si)[1- f(u)]' du,
where

(4.17) 1 -f(u) = f (1- cos xu) dF(x).

If x is an integer,

(4.18) 1- cosxu = 2 sin22 = (1- cos U) [sin (u/2) 1

- (1 - cos U)I1 + e-iu + e-2iu + . . . + e(1Z)iU12 < (1 -cos U)2,

with equality for x =-1, 0, 1. Therefore

(4.19) 0 < 1 -f(u) ' (1-cosu)a2.
Hence

(4.20) go(s) 2 X-1o20 (1- cos su)(1 - cos u)-1 du = ey21sI
for integral values s, with equality holding if -1, 0, 1 are the only saltuses of F.
The proof of theorem 4.1 is complete.

If the conditions of theorem 4.1 are satisfied and E(N) < , then the condi-
tions of theorem 2.1 with h(s) = xo(s) and g(s) = go(s) are satisfied. Condition
(2.4) follows from go(s) _-2 sI and the fact that go(s) is bounded in any finite
interval. We have _n'0 xo(Sn) = ll where M is defined in the introduction.
Hence we can state
THEOREM 4.3. If the conditions of theorem 4.1 are satisfied and E(N) < oo,

then
(4.21) E(M) = E[go(SN)],
where go(s) = a-2Is[ + 0(1S). If F is symmetric, go(s) > o.21s1, with equality hold-
ing if -1, 0, 1 are the only saltuses of F.
The next theorem gives an upper bound for E(M). Here F need not be a dis-

tribution on the integers, and the second moment need not be finite.
THEOREM 4.4. If F is any one-dimensional distribution function such that

(4.22) f13=f|x| dF <oo, f xdF = 0,
and if E(N) < oo, then
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(4.23) E(M) :9 #1 1E(ISNI).
The sign of equality holds if F is constant except for saltuses at -1, 0, 1.

PROOF. Let h(s) = J Is + xl dF(x) - Isl. We have h(s) 9 ,1 = h(O) and

h(s) _ If (s + x) dF(x)I - 1s! = 0. Hence h(s) > IllXo(s). By theorem 2.1

(4.24) E(ISNI) = E [%E h(S.)] 2t1E [E xo(S.)] = f31E(M),

which implies (4.13). If f1 1 <1 dF = 1, then h(s) = /3iXo(s) for all integers s. The

condition for equality follows.
Theorems 4.3 and 4.4 imply that if the conditions of the former are satisfied

and F is symmetric, then

(4.25) -2E(ISNI) _ E(M) < #31 E(ISNI),
where both equality signs hold if -1, 0, 1 are the only saltuses of F.
THEOREM 4.5. If F is a distribution on the integers and either

(4.26) f dF(x) = f dF(x), -co < y <c,
z <v x >v

or

(4.27) f X2 dF(x) <0o,

then the sum

(4.28) F, (P{S. = s} - PI{Sn = t})
n=O

converges for any two possible values s and t (not always absolutely). If the greatest
common divisor of the saltuses ofF is 1, the sum (4.28) is equal to go(- t) - go(- s),
where go(s) is defined in theorem 4.1.

PROOF. Iff IxjdF < o and f x dF 5 0, then n-O P{Sn = s} <00 for all

s. Hence in the case (4.27) we shall make the additional assumption

(4.29) fx dF(x) = 0.

We also may and shall assume that | O dF(x) F- 1 and that the greatest com-

mon divisor of the saltuses of F is 1. To prove the convergence of (4.28) it is
sufficient to show that

(4.30) E (P{Sn = 0> - 1 {S. = s})
n=O

converges for any integer s.
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We have
(4.31) 27r(P{Sn =O} - P{Sn &J = (1 - e i-u)[f(u)]n du

= J. + K, f
- ~~~J" = f Kn fand 6 is chosen as in lemma 3.2. lul <5 5<is <ir

First consider Jn. We write J. = An + Bn, where

An = f (1 -cos su) R([f(U))]n) du,
(4.32) lul <5

Bn = - f (sin su) I([f(U)]n) du.
Jul <5

By lemma 3.2, JR([f(u)]n)l < Jf(u)In < (1 -cu2) for [ul < 6. Hence if lul < 6

(4.33) E 1(1 - cossu)R([f(u)] ) F< E s2u2(1 -2cu2)= C'82n=O n=O

By (3.4), if lul < 6,

(4.34) (sin su) I([f(u)]n)I C_sujfIf(u)jn(1 - c2)n-1
7n=0 n=O

= c-2sl lul-3 If(u)!.
This upper bound is integrable by lemma 4.2. Thus the sums of the absolute
values of the integrands in An and Bn are bounded by integrable functions. It
follows that E Jn is absolutely convergent and

(4.35) E Jn = | [(1 - cos su) R{[f(u)]n} - (sin su) I{[f(u)]n}] du
n=O n=O

!ul <6

= lim f (I - e-iu)[I - f(u)]- du.
-y <jul <8

Now consider Kn. We have
n-1

(4.36) F, Km e-(1-eisu)[1 -f(u)]'{1 - [f(u)] } du.
m=° I

S<lul <-

Since supa<lul<, Ii -f(u)1- = co is finite,

(4.37) f (1 e-iiu)[1 - f(u)]- dul _ 4wrco.
8< lul<

Also,

(4.38) | f (I - C-i-)[1 - f(u)]-1[f(u)]n duI _ 2co f If(u)II du.
a <Jul <r

Since if(u) < 1, with equality only at a finite number of points in [-7r, 7r], the
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integral on the right tends to 0 as n -- oo. Thus EKm converges. Hence the
sum (4.30) converges also.
The last part of the theorem follows from (4.35) and the preceding paragraph.
REMARK 1. If If(u)l F 1 for 0 < Jul < 7r (which means that the differences

between the saltuses of F have the greatest common denominator 1), then the
sum (4.30) converges absolutely. Indeed, in this case E_ KmJ < -. But in gen-
eral the convergence is not absolute. For example, if F is a distribution on the
odd integers, then Sn is odd or even according as n is odd or even. Hence if s is
odd and t is even,

(4.39) E IP{Sn = s} - P{Sn = t}l = E (P{Sn = s} + P{Sn = tl),n=O n=O

which is infinite if f x dF 0.

REMARK 2. An inspection of the proof of theorem 4.5 shows that the sum

(4.40) F2 (P{S1 = °} 2 P{ = sI 2 P{Sn -s})

(2r)-1 f (1 - cos su) R{[f(u)] } dun=O Js

converges whenever 0, s, -s are possible values, with no other restrictions.
Assumption (4.27) is used only to prove the convergence of the sum involving
I{[f(u)]n}, that is, the sum Fn=o (P{Sn = S} - P{Sn = -S}). The conver-
gence of the sum (4.40) has also been proved by F. Spitzer [9], where an interest-
ing probability interpretation of the reciprocal of this sum is given. Spitzer also
obtains the asymptotic value of the sum (4.40) when E(X1) = 0 and
0 < E(X') < o, corresponding to (4.4), as well as under certain assumptions
when E(XI) =

5. Two-dimensional random vectors

The three theorems of this section are two-dimensional analogues of theorems
4.1, 4.3, and 4.5. Due to lemma 3.3, the assumption (5.2) of the following theo-
rem is not restrictive; in particular, without (5.2) equation (5.5) remains true
with det 2 replaced by det (CXC').
THEOREM 5.1. Let F(x) = F(xi, x2) be the distribution function and f(u) =

f(ul, u2) the characteristic function of a two-dimensional random vector with integer-
valued components such that

(5.1) f xdF = 0, filx2dF < det (2) > 0,

where = Iif Xyx dFlj, and

(5.2) f(u) $ 1, luIl _ x, IU-. _.r, (us, u2) # (0, 0).
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Then. the integral

(5.3) go(s) = (2ir)2 f(1 - ei'u)[l - f(u)]-1 du,
D

D = {ullui1 < r, 1u21 < r},
exists (and is real) for all s with real components; go(s) satisfies the equation

(5.4) f g(s + x) dF(x) - g(s) = xo(s),

where s ranges over the vectors with integral components; and

(5.5) go(s) = 7i-l (det 2)-1/2 log Is + o (log jsj) Is! -* oo.
PROOF. It follows from (5.1) that 1 - f(u) = u'2u + o(u'2u) and that

u'2u 2 clull, where c > 0. Hence there are positive constants Si and cl such that
11- f(u)1-1 < cilul-2 if u'Zu < 5'. Also, by (5.2), 11- f(u)1-1 is bounded in the
subset of D where u'2u 2 02. Hence there is a constant c2 such that
11- f(u)1-' < c21uI-2 if u E D. Since 1 - ei'ul _ Is'uJ _ Is! Jul, we have

(5.6) (1 - ei'u)[l - f(u)]-ll _ c2lsl Jul-', u C D,

and JD ul-' du < oo. Thus the integral in (5.3) exists. It is easy to verify that

go(s) satisfies equation (5.4), noting that JD eit'u du = xo(s) when s has integral
components.

It remains to prove equation (5.5). For a preassigned e > 0 with e < 2-', we
can choose S > 0 so that

(5.7) 1 - f(u) = (1 + 0e)2-'u'2u if u'2u < 2,

where 1OI . 1, and so that u'2u < 62 implies u C D. Then go(s) = g*(s) + 0(1)
as s -- o, where

(5.8) 9*(s) = (27)-2 f (1 -eisu)[1-f(u)]' du.
u'2u <6'

Let r be a square matrix such that 2 = rPr. In (5.8) we first make the substitu-
tion v = ru and put t = r'-s. Then u'2u = Iv12, s'u = t'v, and r2 = s''-1s = It 2.
We next make an orthonormal substitution w = Cv such that w, = t'v/r, and
define f,(w) = f(r-lC'w). Then

(5.9) g*(s) = (27r)-2 (det 2)i2 |! (1 - eirwi)[I- fi(w)]-' dw
lw <a

and, by (5.7), 1 -fi(w) = (1 + Oe)2-1IWI2 if 1w! <5. Since E < 2-, we have
[1 -f,(w)]-} = 2(1 + 20,e)1w1-2, where lOll < 1. Hence, with 1021 < 1,
(5.10) 2-1(27r)l (det 2;)1/2g*(8)

- f (1 - eirwl)Iwl-2 dw + 202Ef II - ei"w" lwl-2 dw.
lwl < Iw <a
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We .calculate

(5.11) /(1 - ei-1))lwl2 dw

= f af (1 - cos rwl)(w0 + w'2)-l dw, dw2 + 0(l)

= 4 f (1- cos rwi) dw, w-1 fwl-] (1 + X2)-1 dx + 0(1)

=4 f (1- cos rwl)wlT[-7r + O(wi) dw, + 0(1)

= 27rfS (1 - cos x)x-1 dx + 0(1)

= 27r log (5r) + 0(1)
and
(5.12) f 11 - ei-"l 1WI-2 dw = f 11 - ei-I lU-2ddu

wI <6 lul <rS

_ 2 f jul-2 du + 0(1) = Xr log (Sr) + 0(1).
1 <Iis <rS

Hence go(s) = g*(s) + 0(1) = ir-' (det 2 )-1l2 log r + o (log r). Since Z-1 is posi-
tive definite, there exist positive constants cl and c2 such that cls81 < r < C2l81.
Hence log r -'log jsj as r (or Isi) -. oo. This implies (5.5).
REMARK. According to lemma 2.4 of Spitzer [10], the term o(log Isl) in (5.5)

can be replaced by const + o(1) if certain additional assumptions are made.
From theorems 2.1 and 5.1 we obtain
THEOREM 5.2. If the conditions of theorem 5.1 are satisfied and E(N) < ,

then E(M) = E[go(SN)], where go(s) is defined by (5.3) and

(5.13) go(s) '-' I (det 2)-112 log si1, isi - .

THEOREM 5.3. If Xn is a two-dimensional random vector with integer-valued
components whose distribution function F(x) is nondegenerate, then the sum

(5.14) E (P{Sn = 8} - P{Sn = t})
n=O

converges (not always absolutely) for any two possible values s, t. If
(5.15) f(u) 76 1, Ilull < xr, U21 <_ r, (Ul, Q2 F& (O, O),
then the sum (5.14) is equal to go(-t) - go(-s), where go(s) is defined by (5.3).
PROOF. By lemma 3.3 we may assume that condition (5.15) is satisfied. It

is sufficient to show that I n-0 (P{Sn = 0} - P{Sn = -s}) converges for any
s with integer-valued components and equals go(s). We have

(5.16) (27r)2(P{S. = 0} - P{S = -s}) = |(1 - ei-'-)[f(u)]n du
D

= Jn + K,n
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where

(5.17) J, = f K. = f, D = {ulujl < 7r, j= 1,2=
Do Di

Do = {u|jul < 6}, D1 = D - Do.

Here a is chosen as in lemma 3.2, so that Jf(u)j < 1 - clul2 if u C Do. Hence
for u C Do

(5.18) ~~~~~~~~~~~~~~~~ ~(1 - ei,8'u)[f(U)1]n.j su¶1-cu2n. IIllu20:(5.18) E l-eU)()] _EISIuI(l - CU12). _ Is! JUIC-11 ul-2.
n=O n=O

This upper bound is integrable over D0. Hence E Jn converges absolutely and

(5.19) Jn = f(I - io'u))[t - f(u)]-1 du.

As in the proof of theorem 4.5 it is seen that

(5.20) Kn = (1 - ei'u) [1 - f(u)] -1 du,
n=O DDo

where the convergence in general is not absolute. Equations (5.16), (5.19), and
(5.20) imply the required conclusion.
REMARK. For the symmetric case f(u) = f( -u), theorem 5.3 essentially co-

incides with lemma 2.1 of Spitzer [10].
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