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1. Introduction

The theory of prediction for second order stationary stochastic processes has
taken an established place in probability theory, as a result of the complete and
elegant treatment achieved by successive authors [2], [3], [4], [6], [12], [13].
More recently the generalization to multivariate processes (consisting of several
separate but correlated processes with correlations stationary in time) has been
taken up by several authors [5], [8], [9], [10], [11], following the beginning made
by Wold in this direction. In this paper we survey this problem of multivariate
prediction, adopting our own rather eccentric point of view but drawing on the
work of others (especially of Masani and Wiener) without hesitation.

2. The prediction problem

Let y(t), with ¢ = 0, &1, &2, - - -, be a vector-valued stochastic process; that
is, a random sequence of column vectors, whose components y#(¢),7 = 1,2, -+, N
are complex random variables. We assume the process is stationary in the sense
that the inner products

1) (y'(®), y*(s)) = Ely'()F*(s)] = B*(t — s); k=1, N
depend only on the difference ¢ — s of the time arguments. The sequence of
matrices R(?), ¢ integral, whose elements are R#*(¢) is called the covariance se-
quence of the process. There is a Borel measure, called the spectral measure of the

process, whose values are positive semidefinite matrices of order N, and whose
Fourier-Stieltjes coefficients are the matrices R(¢),

@) R@) = fo 2 g=it GM ().

(Such matrix or vector equations and integrals can be easily interpreted in terms
of the components involved.) For example, if the process is orthonormal, which
means that each y7(¢) has norm one and is orthogonal to y*(s) unless j = k and
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s = t, we find that R(0) = I, the identity matrix of order N, and R(f) = 0 for
other values of ¢; and dM [exp (#6)] = (1/2x)I db.

The basic problem of prediction theory is to determine the linear combination
of {y*)|k =1, --+, N, ¢t < 0} which is nearest to y(0) in the mean square or
L2 metric. The distance to be minimized is then
@) ly7(0) — X ARy*(—n)l,

n>0

where A% are arbitrary complex numbers.

From (1) it follows that this problem is as general as the problem of predicting
37(s) from the past up to s, for any moment s.

We have described a process whose elements are random variables on a prob-

ability space with the usual inner product
4) (@, y) = Elxg].
However, the prediction question involves only the constructions of a Hilbert
space (the formation of linear combinations, inner products, and distances), and
we can dispense henceforth with all reference to the underlying probability
space. Instead we consider y7(f) as an element of an abstractly given Hilbert
space, whose inner product gives meaning to the statements just made.

Now suppose that A = A [exp (#6)] and B = B [exp (i6)] are two functions
whose values are matrices with complex components of K rows and N columns.
Let M be a measure with positive semidefinite matrices of order N as values.
Then we can define an inner product by the formula

) (4, B) = [ tr [4(*) dM (e*)B*(e¥)).

Denote by L%(M) the Hilbert space of measurable K by N matrix functions A
for which the norm ||4|| = (4, A)"2is finite, with the inner product just defined.
[Here tr A = X Aj; and (A% = Ay;. The integer N is fixed once for all and
need not appear in our notation. When dM = (1/2x)I df. so the process is ortho-
normal, we shall write L% for Lx(M).]

1f K = 1 we have row vector-valued functions and the trace is superfluous. In
this case let Y7(t) denote the row vector-valued function with exp (—%#) in the jth
position and 0 elsewhere. It is clear that {Yi(f)]j = 1, ---, N, t = 0, %1, ---}
spans L3(M). What is more interesting is that the linear transformation which
sends y7(t) into Yi(¢) is a unitary isomorphism between the closed linear span of
{yitt),j =1, -+, N,t =0, £1, ---} and L}(M). This makes it possible to
transform Hilbert space problems concerning the process % into isomorphic prob-
lems for a canonical process in a function space.

The matrix function space L%(M) is in a similar way a model for the whole
vector process y(f), since the matrix is a column vector whose components are
row vectors which in turn are isomorphic to the components of y: y(s) corre-
sponds to [exp (—7s6)]1.

The minimization problem (3) is then the same as the problem of minimizing
the square root of
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) [ [Vi0) = T ARV =w) dM [Yi(0) = T AEYH (=),

where 7 is summed over 1, 2, - -+, and k over 1, - - -, N. If we sum the integrals
in (6) on the index j, we can minimize the integral
@ [ tr[(I = 3 Ase®)dM (I — 5 Aneint)*]
n>0 n>0
50 as to solve the minimal problem for 7 = 1, 2, .- -, N simultaneously.

The transformation 7 which sends »#(¢) into y7(¢ + 1) is deseribed in the space
L3(M) by scalar multiplication with exp (—6). Its effect is to shift all times by 1,
and by (1) it is a unitary isomorphism.

The purpose of the work described in this report is to determine how the
process, in particular the spectral measure, determines the nature of the predic-
tion problem, and conversely.

3. Moving averages and outer functions

Let I, be the linear span of {y?(t)|j =1, ---, N, t < s}. This is the past up to
time s. Let &, be the orthogonal complement of I, in M1 and let M_. be the
intersection of all the M,. These are the innovation manifold at time s and the
remole past, respectively. The shift operator T clearly satisfies

Tfms = Elns-i-l
(8) ]13}: = 83+1
Mo = M_w.

The dimension r of &, does not depend on s and satisfies 0 < r < N;ris called
the rank of the process. If r = 0, the process is called purely deterministic; then
M, = M_« for all s.

The most interesting case is when M_. = {0}. Then the components of y(¢)
are the sums of their projections on &, for s = ¢. Choose once and for all r ortho-
normal elements z!(0), ---, z'(0) spanning 3, and let zi(s) = T*z%(0), so that
the process z(s) is orthonormal and {zi(s)[j = 1, - - -, 7; s < t} spans M:. There
exist N by r matrices A, such that
© yit) = ¥ Ak — ),

n 20,k

Taking into account the stationarity condition (1), we see that (9) holds for
all £ and that the A do not depend on ¢. Equation (9) may be condensed into the
convolution equation

(10) y=A=*uz.

The process y is said to be a one-sided moving average of .

Conversely, suppose that y is a one-sided moving average of an orthonormal
process (or of any process whose remote past is {0}). Then the manifold M, is
contained in the corresponding manifold N, for z. Therefore
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(11) Mow = NP C NN, = {0).
In case y = A xx a direct calculation shows that the spectral measure is
given by
dM(e?) = ;L A(e®)A*(e?) db,
(12) -
Ae®) ~ X A,
n=0
Again the converse is true: if dM = (1/2x)AA* d6 with A [exp (48)] as in (12)

the y process is a one-sided moving average of an orthonormal process. The
function 4 above satisfies

(13) : 4l

i

2l / e [A(e®) A *(c)] do
m Jo

S tr [A,4%] < =.
0

The class of all such functions is a Hilbert space which will be denoted by H>.
(The functions in H? have N rows, instead of N columns like the elements of L3.)

We have seen that if M_. = {0}, the process is a moving average of a special
orthonormal process, its innovation process. On the other hand, if y = A *x
with z orthonormal, we cannot say z is the innovation process of y. For instance
if Ay =1, A, and all the other A are 0, then the components of 2(s — 1) and
not x(s) span the innovation manifold 3, of y. Moreover, if some of the columns
of A [exp (i8)] are zero, or more generally A [exp (#6)] has some fixed null space,
the vectors in this null space do not affect y at all and thus are irrelevant. They
are even orthogonal to all the y.

Beurling [1] has studied the approximate inversion of such one-sided convo-
lutions in the scalar case (N = 1), using the isomorphic function theoretic prob-
lem. In L%, the backward shift 7-' is multiplication by exp (¢6). Linear
combinations of the past will have the form B, exp (in6)A [exp (:6)], where
n > 0, so that the prediction problem becomes the problem of minimizing

(14) I = ¥ Bue)A(e?)]

in L2, or actually in H? C L2 Using the Parseval identity we see that the mini-
mum distance is at least [tr (A¢40)]/2. The function 4 is called oufer if this is
exactly the minimum, that is if the closure of the set of functions
[I — .50 Bnexp (in6)]A [exp (:6)] in H? contains the constant A4,. The defi-
nition has meaning if 4 is any N by r matrix, even with r > N.

It is possible to prove that if A is outer, the null space of A [exp (¢6)] is
almost everywhere the null space of Ao, and that the span of the elements (14)
includes every element of H? whose null space includes that of A, almost every-
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where. We shall assume henceforth, without loss of generality, that the null
space of outer functions is {0}. Then the innovation manifold of ¥ = A * z is
identical with the innovation manifold of .

Suppose ¥y = B %z is a one-sided convolution of an orthonormal process.
Then M_. = {0} and y is a one-sided convolution of its innovation proc-
ess. Therefore we have 27 dM [exp (#)] = B [exp (6)]B* [exp (i8)] df =
A [exp (16)]A* [exp (46)] d6, that is, if B is arbitrary in H? there is an outer
A with BB* = AA*

We can also consider the uniqueness of the factorization 2w dAM = AA* d6.
¥ach such outer factorization corresponds to a choice of vectors x(0) to span
the innovation manifold 8. Two such sets can differ only by a unitary map.
Therefore if AA*¥ = BB* with both A and B outer, there is a constant unitary
matrix U with A = BU.

The formal solution of the prediction problem is within view, in the casc
where MN_. = {0}. The representation y = A * z where 4 is outer, so that the
components of xz(s) span J,, shows that the vector in IR, nearest to y. 13
> >0 Ants—n. Therefore, formally, the problem is resolved into two related
parts, that of finding the coefficients of A and that of finding x. We have already
indicated how the problem of finding A is the problem of factoring the spectral
measure: 2r dM = AA*df, A outer. This factorization we have seen to be
unique up to a right multiplication by a constant unitary matrix. In the next
section we shall outline criteria for the existence of such a factorization.

The problem of finding the z from the y is the problem of inverting the one-
sided convolution (10) by another one-sided convolution, that is finding B with
Bxy = Bx A xx = x. The definition of outer function implies that approxi-
mating finite sequences exist, but it is not completely understood, even in the
scalar case, when an element B actually exists or how to find it. Several special
cases have been discussed by Wiener and Masani.

In case M_. # {0} at least a portion of the process is deterministic. Let 9N be
the manifold spanned by all the ., so that N is the orthogonal complement of
M_« in the space spanned by the process. Let y(x) = u(s) + r(s) where
ui(s) € N and v* € M_.. One can prove that the processes u and v are pure in
the sense that u is a moving average and v is a purely deterministic process. This
decomposition is due to H. Wold. Thus every process is an “orthogonal direct
sum” of the two pure types. This type of orthogonal direct sum offers some
paradoxes. For instance, even in the scalar case the sum of a moving average
process and a deterministic process may be a moving average; this will happen
when the spectral measure of v is absolutely continuous.

4. The Szego theorem

One of the key theorems in our treatment is a generalization of a classical
result of Szego:
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(15) inf 2%_ '[2” tr {[Bo — P(e®)] dM (¢*)[Bo — P(e®*)]*}
0

2x
= exp {2%_ /(; log det M'(e®) do}.

The infimum is taken over all matrices B, with det By = 1 and all trigonometric
polynomials P [exp (#8)] = X _n>o0 B exp (¢nd). M’ is the Radon-Nikodym de-
rivative of dM with respect to Lebesgue measure. The minimizing function
By, — H [exp (10)] satisfies

(16) (Bo — H)dM (B, — H)* = C db,

where C is a constant positive semidefinite matrix, so that By — H vanishes on
the set carrying the part of dM singular with respect to Lebesgue measure.
The term in the braces on the right of (15) can be —« but not +. If it is
—o0, both sides of (15) are 0.

If we set By = I and let P vary, the positive semidefinite matrix

(17) 2% f' (I —P)dM (1 — P)*

has a minimum D and det D is the right side of (15). This is a version due to
Masani and Wiener and the relation between it and the one above is given by
the following equation which holds for any positive semidefinite matrix D:

(18) inf exp {tr (BoDB§)} = det D, (det By, = 1).

The problem of determining D from dM is unsolved; its importance lies in the
fact that A¢A$ = D if 2r dM = AA¥* d6 is an outer factorization of M.

Using the linear and norm-preserving isomorphism between the Hilbert space
spanned by the components of y(s) and L3(M), our theorem has the following
interpretation: If we replace the y process by all possible processes of the form
2z = By with det B, = 1, and compute for each of these processes the sum of
the squares of the prediction errors for each component, the minimum is the
right side of (15).

If this right side is positive, the innovation manifolds contain N linearly inde-
pendent elements, so that the process is of rank N, and conversely. In fact, if a
linear combination of the components of (0) lies in the past, this linear combi-
nation can be used as one component of Byy to make the sum of the errors in
predicting the other components arbitrarily small.

In case r = N so that the process is of full rank, the Wold decomposition is
easily described. The interval from 0 to 2« can be split into two sets U and V,
one of Lebesgue measure 1 and the other 0. Then M is absolutely continuous on
U and singular on V with respect to Lebesgue measure. The Wold decomposition
y = % + v is accomplished by multiplying the functions representing y by the
characteristic function of U and V respectively. No such simple characterization
is known if 0 < r < N.
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Again if the left side of (15) is not 0, we find from (16) that
19) M’ = (By + H)'C'\2((By + H)'C-12)* = AA*

is an outer factorization of M’ with det A¢A% 5 0. The result implies that a nec-
essary and sufficient condition that M’ = AA* with A outer and det 4,43 > 0
is that

2w
(20) %f log det M’ (e®) df > —.
™ Jo
It also follows that for any A in H?,
2x
(21) = / log det AA* d8 = log det AoA%,
0

and that if det AoAF # 0, equality is necessary and sufficient for 4 to be outer.
This is a generalization of a study by Beurling [1] of such problems in the scalar
case.

6. The singular case and analytic subspaces

In this section we assume for convenience that M is absolutely continuous,
with derivative M’ = W. The case when r < N so that the left side of (15) is 0
is called the singular case. To see what might happen, consider the case when
the measure W is diagonal

w1 0--:0

Ow:, O
(22) W= .. . y

00...wN

when each component of the process is orthogonal to every other component.
It is clear that we can factor W if we can factor each w;, withj =1, ---, N.

The converse is also true. Each of these can be factored if /;)2' log det w; df > —oo

for each j for which w; ## 0. Therefore, if 91 is the range of W, which reduces W,
and DW is the determinant of the restriction to 91 of W,

23) ﬁ) *log DW df > —co

is sufficient for a factorization to exist. This inequality is also necessary for

factorization. An analogous statement holds whenever the range of W is con-

stant, and a proof proceeds easily from consideration of the nonsingular case.
But the range of W need not be constant. For instance if

o= (. %)

and W = AA* then W has an outer factorization, by an earlier remark. Here
the range of A is the range of W, and it is not constant.
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We shall introduce a type of function from the unit circle into subspaces of
compex N-space which will characterize the possible ranges of factorable func-
tions W. A subspace-valued function 9 [exp (:6)] is analytic provided there
exists an H? function A so that the range of A [exp (i6)] is 9N [exp (40)] almost
everywhere.

The characterization of factorable functions is this: W = AA* with 4 in H?
if and only if the range 91 [exp (#6)] is an analytic subspace and

(25) f log DW d§ > —w.

Here DW denotes the determinant of the restriction of W to 9.

With each analytic subspace 9 we shall associate a special outer element U
of H2. U is a partial isometry: UU* is a projection onto the analytic subspace
9t and U*U is a projection onto the orthogonal complement of the null space
of U, which is constant since U is outer. One finds U in the following way. Take
A to be an outer N by p function with 9% as range. Then A*A is a nonsingular
p by p funetion, which is equal to B*B where B is p by p and nonsingular, using
the existence theorem in the full rank case for vector processes of dimension p.
From the equation A*4 = B*B we deduce (AB)*(AB!) = I, and we may
choose U = AB-L It follows from the uniqueness theorem for outer factorings
stated earlier that U is unique up to right multiplication by a constant unitary
matrix.

There is a curious statement of this theorem in terms of analytic vectors: if
v; [exp (40)], - - -, vx [exp (¢6)] are analytic vector-valued functions with N com-
ponents, we can find vector functions u; [exp (40)], - - -, u, [exp (26)] analytic,
orthonormal, and spanning almost everywhere the same subspace.

We can indicate an outline of a proof of the factoring theorem using this con-
struction. Take a partial isometry U corresponding to the analytic subspace 9
and replace W by U*W U, which turns out to be a p by p spectral function cor-
responding to a p by p process of full rank. Then

(26) DW = det U*WU,

where the determinant is the p by p determinant. This reduces the problem to
the case of full rank processes, which has been solved already.

Another way of looking at this analysis is to consider the general one-sided
moving average y = A * x as an iterated moving average y = U * B * z, where
B is a p by p element of full rank and U is the special kind of outer partial
isometry analyzed above. If A is not outer, we may achieve a similar factoriza-
tion A = UB, but B will no longer be outer. We may then factor B so that
B = CD where C and D are square and C*C = B*B and C is outer. It is not
clear what implication this factoring has for the prediction problem.

If 9N is an analytic subspace we take an outer isometry U with 91 as range.
Let U [exp (#6)] = _nzo0 Ua exp (¢6) and define

@7 d(a) = —log det (USUy).
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Thend 2 0 and d = 0 if and only if M is constant. The number d measures the
deviation of 9N from constancy. Suppose now 4 in H? has range 9. Then

2r
28) o f log D(4*4) 2 log D(A*4) + d,
0

and equality is necessary and sufficient in order that A be outer. This result
generalizes equality in (21) which characterizes the outer functions of full rank.
However, if A is N by p, both sides are —« unless N = p and the rank of 4 is
p almost everywhere.

It should be remarked that Masani and Wiener [10] have found a different
characterization of those 2 by 2 matrix measures which can be factored. More-
over Masani has a structure theory [8] for processes of less than full rank which
is different from the one which has been described. The whole problem does not
seem to us to be closed.

6. Invariant subspaces

Let N denote the subspace of L} spanned by 27(s), with j =1, ---, N and
s £ 0, where z is the canonical orthonormal process. A subspace I of 9 such
that T C M is called an tnvariant subspace. An element B of H? generates
an invariant subspace as follows. Take a one-sided moving average y = B xx
of the orthonormal process, and consider M,, as defined in section 3. We have
M. C Nfors = 1, and since T7'MW, = M1 C M, M, is an invariant subspace.
Lax [7], extending results of Beurling [1], has proved that, conversely, every
invariant subspace is of this form. In particular, he has proved that the functions
A [exp ()] = Y. 20 A, exp (1n6) which are partial isometries are themselves
enough to generate the invariant subspaces. This gives an alternate way to
approach the factoring of elements of H*. Since B * x generates an invariant
subspace of N, there exists an isometry A which generates the same subspace,
and 4 is a factor of B in the sense that B = AC, with ' in H? also.
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