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1. Introduction and summary

In recent years a number of papers have appeared in which random variables
with values in spaces more general than the space of real or complex numbers
were dealt with. These papers differ mainly in their approach to the generaliza-
tion of notions known from classical probability theory. Thus measurability,
integrability, convergence, and so on, are treated differently in different papers.
Many of these papers studied some problems connected with the theory of

random operator equations. It should be mentioned that Czechoslovak proba-
bilists have systematically attacked this part of probabilistic functional analysis
since the year 1955, when Spa6ek [22] published his paper on random equations.
Dealing with contraction mappings, 9pa6ek proved the measurability of the
random fixed point in the case of the space of real numbers and, under some
further restrictive assumptions, the measurability of the fixed point for arbi-
trary complete metric spaces. All 9pa6ek's restrictive assumptions were removed
in [12], provided the complete metric space is question is separable. The proof
of this result is based on the limit theorem for arbitrary metric spaces (see [13])
and on the substitution theorem for separable metric spaces (see [13]).
Under essentially the same restrictive assumptions, spacek studied in [23]

the measurability of invertible random transformations, being partially moti-
vated by the necessary and sufficient condition for almost sure regularity of
"function-space type" measurable transformations as developed in [21].
Further papers closely connected with random operator equations are con-

centrated mainly in the Transactions of the First and Second Prague Confer-
ences. Of these [9], [13], [16], and [20] deal with general properties of generalized
random variables; [7], [8], [10], [11], [14], and [17] deal with stochastic approxi-
mation methods and experience theory; and [15] deals with inverse and adjoint
transformations. Some other papers published in the Transactions, though not
directly related to random operator equations, have played an important part
in the process of forming the ideas of experience theory and their connection
with general stochastic approximation methods.
So much for the contributions of the Czechoslovak school of probabilistic

functional analysis. Probabilists of other countries have, of course, contributed
to a great extent to the development of this area of probability theory, and a
number of references can be found in [9].
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In the present paper some recent work concerning random operator equations
is treated from a unified viewpoint; also some new results are stated. In sections
2 and 3 indispensable notions are introduced and three auxiliary theorems are
recalled. Section 4 is devoted to the generalization of the well-known principle
of contraction mappings. Linear bounded random transformations, which are
not necessarily contraction mappings, are dealt with in section 5. Some results
from experience theory are stated in section 6. General theorems on random
integral equations are given in section 7, whereas section 8 is devoted to the
discussion of some problems raised by Bharucha-Reid in [3].

2. Prerequisites

First of all we shall introduce some basic concepts indispensable for our
further considerations. Throughout the whole paper, unless there is a statement
to the contrary, we shall employ the following notation:

(Q, S, /u) denotes a probability space with a complete probability measure u;
that is, Q is a nonempty set, e a a-algebra of subsets of the space Q, and ,u such
a probability measure that A(Eo) = 0 implies E C e for every E C Eo.
X and Z are arbitrary separable Banach spaces and X and 3 the a-algebras

of all Borel subsets of the spaces X and Z, respectively.
E(X) denotes the algebra of endomorphisms on X; that is, the space of all

linear bounded operators defined on the space X and taking values from the
space X. Similarly, Y(X) is the ca-algebra of all Borel subsets of the space E(X),
provided the norm topology in E(X) is assumed.
We now give some definitions.
DEFINITION 1. A mapping V of the space Q into the space Z is called a general-

ized random variable if {w: V(w) E B} E S for all B CE 8. Two generalized ran-
dom variables V and W are assumed to be equivalent if V(w) = W(w) with proba-
bility one.

DEFINITION 2. A mapping 7' of the Cartesian product space Q X X into the
space Z is called a random transformation if T(., x) is for every x E X a generalized
random variable.
DEFINITION 3. A mapping P of the Cartesian product space Q X D X X into

the space Z, where D is a direction, is called a generalized stochastic process if
P(., t, x) is a generalized random variable for every t E D and x C X.

All the notions of functional analysis, such as the inverse operator, the adjoint
operator, and so on, are carried over in probabilistic functional analysis in an
"almost sure" way; that is, for example, the mapping S is said to be the inverse
of the random transformation T if I{w: T[w, S(w, x)] = x for every x E X} = 1.

Finally, we recall three theorems on generalized random variables (see [13]).
THEOREM 1. If V1, V2, ' -* is a sequence of generalized random variables with

values in the space Z converging almost surely to the mapping V of the space Q into
the space Z, then V i8 a generalized random variable with values in the space Z.
THEOREM 2. A mapping V of the space Q into the space Z is a generalized ran-
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dom variable if and only if for every linear bounded functional f E A C Z*, where
A is total on the whole space Z, the compoind mapping f(V) is a real-valued random
variable.
THEOREM 3. Let V be a generalized random variable with values in the space X;

and T an almost surely continuous random transformation of the Cartesian product
space Q X X into the space Z. Then the mapping W of the space Q into the space
Z defined for every CE by W(w) = T[w, V(c)l is a generalized random variable
with values in the space Z.
REMARK 1. It should be noted that in general the spaces X and Z need not

be separable Banach spaces; also, the cr-algebras IE and 23 need not be the
a-algebras of Borel subsets. Thus, in definitions I through 3, Z can be an arbi-
trary nonempty set and 23 an arbitrary oa-algebra of subsets of Z. Similarly, in
definitions 2 and 3, X can be an arbitrary nonempty set without any particular
cr-algebra X specified.
REMARK 2. Theorem 1 holds even in the case Z is a (not necessarily separable

and complete) metric space.
REMARK 3. Theorem 2 remains valid if the space Z is replaced by a separable

normed linear space.
REMARK 4. Theorem 3 holds whenever X is a separable metric space and Z

an arbitrary (not necessarily separable) metric space. Also, the Cartesian meas-
urability of the random transformation T furnishes the measurability of W.

3. Some fundamental notions

Let X and Z be two separable Banach spaces, T a mapping of the space X
into the space Z, and z a fixed element from Z. If 2; denotes the set of those ele-
ments x E X for which the equality T(x) = z holds, that is if 2 = {x: T(x) = z},
then any x E z will be called a solution of the operator equation

(I) T(t) = z.

If the set : is empty, we say that the operator equation (1) does not possess a
solution; if it is nonempty we say that (1) is solvable. In case z consists of ex-
actly one point we say that (1) has a unique solution.
Now, in addition, let (Q, 5, A) be a probability space with a complete proba-

bility measure .t and let X and 3 be the ac-algebras of all Borel subsets of the
space X and Z, respectively. If T is a random transformation of the Cartesian
product space Q X X into the space Z, then

(2) T(., ) = z

is said to be a random operator equation.
However, (2) does not express the most general form of a random operator

equation. That is, the right side of (2) need not be a fixed element from the
space Z, but can be replaced by a generalized random variable with values in
the space Z. Moreover, it should be remarked that the solution of a random
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operator e(juationi does in general depend on the choice of w E Q. Consequently,
the most general form of a random operator e(quation may be more precisely
written as

(3) 7'-, t(-)] = zH)
where, as mentioned above, 7' is a random transformation of the Cartesian
product space Q X X into the space Z and z is a generalized random variable
with values in the space Z.

Similarly, as in the deterministic case, with only the exception of neglecting
a set of probability measure zero, the wide sense solutions of (3) are defined.
That is, every mapping IV of the space Q into the space X which satisfies the
equality T[w, W(w)] = z(w) for every w from a set QO of probability measure
one is said to be a wide sense solution of the equation (3). However, following
the spirit of our previous papers, it is quite natural to require the condition of
measurability to be fulfilled so that we may speak about random solutions. Thus
if the wide sense solution is also measurable it vill be called the random solution,
and we can state

DEFINITION 4. Every generalized random variable x with values in the space X
satisfying the condition T[w, x(w)] = z(w) with probability one will be called the
random solution of the random operator equation (3).

Evidently there may exist wide sense solutions that are not random solutions.
Moreover, if the random operator equation (3) has more than one solution for
every X from a set of positive probability measure then there may be, depending
on the a--algebra ( of course, many wide sense solutions that are not measurable.
As a simple illustration of this fact let us give
EXAMPLE 1. Let X = R be the space of all real numbers, E a nonmeasurable

subset of the space Q, and T a random transformation of the Cartesian product
space Q X X into the space X, defined for every co E Q and x E X by
T(w, x) = 2- 1. Then the mapping W of the space Q into the space X, defined
by W(cv) = 1 for X E E and by W(co) = -1 otherwise, is a wide sense solutioni,
but not a random solution, of the random operator equiation

(4) T[ *, E(*)] = 0.

Roughly speaking, we are therefore interested mainly in the case when for
every w E Q there exists a unique solution of the deterministic operator equa-
tion T(w, t) = z(w). More precisely, we shall investigate most frequently the
case when there exists a unique wide sense solution, provided we identify two
wide sense solutions differing only on a set of probability measure zero. Never-
theless, even under this restriction, the unique wide sense solution need not be
measurable, as is shown by
EXAMPLE 2. Let Q = R be the space of all real numbers, Z the a--algebra of

all at most denumerable sets of real numbers and their complements, and u a
complete probability measure defined by ,(E) = 0 if E is at most denumerable
and by u(E) = I otherwise. Further, let X = R be also the space of all real
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numbers with the a-algebra X .= of all Borel subsets of the space X, and T a
random transformation of the Cartesian product space Q X X into the space X
defined by T(cw, x) = 0 for w = .x and by T(w, x) = 1 otherwise. Then the
unique wide sense solution W of the random operator equation (4), given for
every X C Q by W(w) = w, is not a random solution because for example the
set {w: W(cw) _ 0} does not belong to e.
Many other questions concerning the relationship between wide sense solu-

tions and random solutions of the same random operator equation arise, and the
greater part of them have been as yet unsolved. Unfortunately, we too are un-
able to present some useful theory of random operator equations unless some
further assumptions are imposed. In the present paper we shall discuss mainly
three particular cases, namely if (a) the separable Banach space X equals the
separable Banach space Z; or (b) the random transformation T is almost surely
linear and bounded; or (c) both (a) and (b) occur.
REMARK 5. All the considerations of section 3 can be generalized to the case

when (X, X) and (Z, 3) are arbitrary measurable spaces.

4. Principle of contraction mappings

Considering the case X = Z it is easy to verify that the operator equation (1)
is equivalent to the operator equation t + g(t) [T(t) - z] = {, where g is a non-
vanishing real-valued function defined on the space X. Therefore, denoting by
S the operator defined for every x E X by S(x) = x + g(x)[T(x) - z], every
solution xo of the operator equation (1) is at the same time a fixed point of the
operator S; that is, a point with the property S(xo) = xo; and vice versa.

Consequently, it is not a surprising fact that in the theory of random operator
e(quations the main role is played by probabilistic versions of the well-known
principle of contraction mappings and its many modifications and generaliza-
tions. Under appropriate assumptions this principle may furnish the existence,
uiiiqueness, and measurability of the random solution of a random operator
equation. Therefore, from this point on we shall use the "fixed-point" terminol-
ogy rather than the "solution" terminology, though the latter may seem to many
probabilists more lucid.
The following theorem is a useful starting point for other theorems of this

kind.
THEOREM 4. Let T be an almost surely continuous random transformation of

the Cartesian product space Q X X into the space X satisfying the condition

(5) A(u un nznxiQx {w: lTn(W, X) - Tn(W, Y)j1 _(1 lix-Yl1) =1

where for every c(E Q, x E X, and n = 1, 2, we set T'(w, x) = T(w, x) and
Tn+l(w, x) = T[w, Tn(W, x)]. Then there exists a generalized random variable 0
with values in the space X satisfying the relation

(6) u{w: T[w, +(w)];= 4(co)} = 1.
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Moreover, if there exists another generalized random variable 4' with the property
T[w, 4'(w)] = /(4w) with probability one, then A(w) = o(w) with probability one.
PROOF. Let us denote by E the set of those w from the set occurring in round

brackets of (5) for which the mapping T(w, *) is continuous. Evidently, accord-
ing to the assumption, p(E) = 1. Now let us define the mapping k of the space
Q into the space X so that for every w E E the point +(w) equals the unique
fixed point of the mapping T(w, *) and for every w Ez - E we set +(w) = 0,
where 0 is the null element of the Banach space X. Thus relation (6) holds. In
order to prove the measurability of the mapping 4t we make use of theorems 1
and 3. The remaining statement follows immediately from the uniqueness of the
fixed point of the mapping T(co, *) for every w E E.
The theorem just proved forms a generalization of the author's previous re-

sult, the stronger assumptions of which enable one to formulate condition (5)
in a more lucid and seemingly less restrictive way.
THEOREM 5. Let T be an almost surely continuous random transformation of

the Cartesian product space Q X X into the space X and c a real-valued random
variable so that

(7) M{CA.: c(X) < l} = 1,

and

(8) M{w: LIT(w, x)- T(w, y)lI < c(w)jlx - y1} = 1

for every two elements x and y from X. Then there exists a generalized random
variable 4 with values in the space X for which (6) holds.

PROOF. Let us denote by El the set occurring in (7), by Ex,, the set occurring
in (8), and by E2 the set of those w E Q for which T(w, *) is continuous in x.
Since the Banach space X is separable, we can replace the intersections in the
expression nxlx nfyex [E 2ln E1 n E2] by intersections over a countable
dense subset of the space X. Thus condition (5) is fulfilled with n = 1, which
proves our theorem.
Roughly speaking, heretofore we were interested in the existelnce, unli(queniess,

and measurability of the solution of the random operator equation (3) for a
given generalized random variable z with values in the space X. However, very
often one has to consider the same questions for an arbitrary generalized random
variable z with values in the space X. This is equivalent to the question of the
existence and measurability of the inverse of a random transformation T.
The following result is an immediate consequence of theorem 5.
THEOREM 6. Let c be a real-valued random variable and T an almost surely con-

tinuous random transformation of the Cartesian product space Q X X into the space
X satisfying the condition (8). Then for every real number X F 0 such that c(w) < 1XI
with probability one there exists a random transformation S that is the inverse of
the random transformation (T - XI), I denoting the identity operator.

PROOF. Evidently, since X FM 0, the random transformation (T - XI) is in-
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vertible whenever the random transformation [(1/X)1'- I] is invertible, and
vice versa. However, for every z E X the random transformation T. defined
for every w Ez and x E X by T,(w, x) = (1/X)T(w, x) - z is almost surely a
contraction mapping. Therefore by theorem 5 there exists a unique random fixed
point x2 satisfying the relation x(c(w) = (1/X)T[w, x,(,w)] - z with probability
one. Since the last statement is equivalent to the invertibility of the random
transformation [(1/IX)T - I], theorem 6 is proved.

It is well known that any linear bounded operator A satisfies the Lipschitz
condition with constant IJAII, which is at the same time the smallest constant
with such a property. Therefore, making use of this fact and some of the classical
results about linear bounded operators, we can state
THEOREM 7. Let T be an almost surely linear bounded random transformation

of the Cartesian product space Q X X into the space X. Then for every real number
X # 0 such that IA(U n'= {wf: I Tn(co, * ) I I < IXIn} ) = 1 there exists a linear bounded
random transformation S that is the inverse of the random transformation (T - XI).
Thus we have M(qnEX {w:S(o, x) = (-1/X) n_ X-nTn(co, X)}) = 1, where the
sum is meant uniformly.
Random operator equations in general, and random integral equations of

Fredholm type in particular, have been considered by Bharucha-Reid in [1]
through [5]. Although most parts of these papers are carried out in separable
Orlicz spaces, some theorems are stated for separable Banach spaces. In this
section we mention theorems 2.1 through 2.3 from [3] only, a stronger version
of which can be proved using theorem 7. We can, namely, state
THEOREM 8. Let T be a random transformation of the Cartesian product space

Q X X into the space X which is for every X E Q linear and bounded. Then for
every real number X F 0 the set ()(X) = {fo: II T(w, ) II < IXI} belongs to the a-algebra
@, the random transformation (T - XI) is invertible for every w C Q(X), the re-
solvent operator RX,T exists for every X E Q(X), and for these co we have R,\,T(W, -) =
-E= 1 X-,T -1(, *). Finally, for every cE Q(X) the solution s(w) of the operator
equation T(w, t) -) = z(w) is for every generalized random variable z with values
in the space X given by s(w) = RX,T[W, Z(w)], where the resolvent operator RX,T, and
consequently also the solution s, is measurable with respect to the a-algebra ((X) n e.

PROOF. Theorem 8 follows immediately from our preceding theorems and
from well-known classical results, because of the fact that for almost all w EC Q
we have lIT(w, *)II = SUpnill IT(c, Xn)II where x1, X2, * is a countable dense
set of the sphere {x: Ilxil _ 1}.
REMARK 6. Theorems 4 and 5 remain valid if X is a complete separable

metric space.

5. Linear bounded operators

Heretofore we have assumed case (a) or even (c). Now we shall state two
theorems in which the spaces X and Z may be different separable Banach spaces,
provided the random transformation T under consideration is almost surely
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linear and bounded. The proofs are omitted, because both the theorems are only
slight modifications of theorems 1 and 2 in [15].
THEOREM 9. The inverse of an almost surely linear bounded invertible random

transformation T of the Cartesian product space Q X X into the space Z is a random
transformation of the Cartesian product space Q X Z into the space X.
THEOREM 10. Let X and Z be two Banach spaces whose first adjoint spaces X*

and Z* are separable; let X, 3, X*, and 3* be the o-algebras of all Borel subsets of
the spaces X, Z, X*, and Z*, respectively. If T is an almost surely linear bounded
mapping of the Cartesian product space Q X X onto the space Z, then the following
two conditions are equivalent: (i) for almost all elements X E the mapping T(w, *)
of the space X onto the space Z is invertible; and (ii) for almost all elements w E Q
the range of the adjoint mapping T*(w, *) is the whole space X*. Further, if these
conditions are satisfied then T* is invertible and the inverse mapping (T*)-1 to the
adjoint mapping T* is almost surely equal to the adjoint mapping S* of the inverse
S to the mapping T. Moreover, if one of the mappings T, S, T*, S*, is a random
transformation then all four mappings are random transformations.

6. Experience theory

One of the most important problems in the theory of random operator equa-
tions is the question of the measurability of the solution, which has been dealt
with in the preceding theorems. In this section we shall be concerned with an-
other important question, namely, the relationship between the random solution
of the random operator equation and the solution of the corresponding deter-
ministic operator equation. More precisely, we shall discuss the case when the
random operator equation (3) is such that the Bochner integrals fn z(w) d(w) = z

and f T(w, x) dA(w) = S(x) exist for every x C X. Let us assume that the solu-
tion of the deterministic operator equation S(Q) = z is equal to y. The question
arises whether the expected value of the random solution of the random operator
equation (3) exists, and if so, whether it is equal to the deterministic solution y.

It is not difficult to construct an example showing that there are cases in
which the answer is affirmative. A most trivial one is that one when the proba-
bility measure Iu is the Dirac measure; that is, when there exists an element
coo E Q such that pu(wo) = 1. Another still trivial illustration is
EXAMPLE 3. Let T be a random transformation of the Cartesian product

space Q X X into the space X defined for every w EC and x E X by T(w, x) =
cx + V(co), where c # 0 is a real number and V is such a generalized random
variable with values in the space X that the Bochner integral fI V(w) d(w)
equals 0, where 0 is the null element of the space X. Then the expected value
of the unique random solution of the random operator equation T[-, t(-)] = 0
is equal to the solution of the operator equation S(Q) = 0 where, of course,
S(x) = cx for every x E X.
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It is also not difficult to give examples where the answer to the above stated
question is negative.
However, there are many cases in which we are interested in the solution of

the deterministic operator equation corresponding to the random operator equa-
tion, rather than in the expected value or even in the probability distribution
of the random solution of the random operator equation under consideration.
For example, the case of determining LD 50 is one of them.
For the sake of brevity and definiteness, let us call the deterministic operator

equation associated with the random operator equation by means of "expected-
value" correspondence simply the regression operator equation. Thus, an im-
portant problem of the theory of random operator equations is that of reaching
the solution of the regression operator equation, and it is to this problem that
the remainder of this section is devoted.

Since a detailed case history of this and similar problems is given by Driml
and the author in [7], we will not go into details here, but will simply state four
useful theorems only. Nevertheless, it should be noted that this branch of prob-
ability theory, often called experience theory, is very closely connected with
stochastic approximations methods as developed by Robbins and Monro, and
later by other authors.
The following theorem is due to Driml and the author and can be considered

one of the basic theorems of experience theory.
THEOREM 11. Let T be a generalized stochastic process mapping the Cartesian

product space Q X [0, X ) X X into the space X and almost surely continuous with
respect to both the arguments t _ 0 and x E X simultaneously. Let there exist an
element £ E X, a real-valued random variable c, and let the following assumptions
together with (7) be satisfied

(9) M{W: lim lit-' JO T(w, s, x) ds - = 0. = 1;

(10) u{co: JIT(w, t, x) - T(w, t, y)|| _ c(w)llx-yli} = 1

for every t _ 0 and every two elements x and y from X. Further, let x,(.) be the
solution of the random operator equation

(11) s)=,
ds= t-' f T[-, s, 8(.)] ds for t > 0.

T'hen xt is for every t > 0 a generalized random variable and we have

(12) /i {w: Xt(w) is continuous in t} = 1

and

(13) ,U{W: lim II X,()W)-I = 0} = 1.

PROOF. Let us denote by C. the space of all continuous mappings f of the
space [0, oo) into the space X such that the relation limt- Il f(t) -II = 0 or,
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as we shall write hereafter, such that f(t) -x & holds. Introducilng the distalnce
function p for every pair of elements f and g from C. by p(f, g) =
supt o lif(t) -g(t)II the space C., becomes a separable metric space whose
a-algebra of all Borel subsets is the o--algebra generated by the class of sets
{f : f(t) E B}, where t runs over [0, oc ) and B runs over X. Further, let us denote
by S the operator of the Cartesian product space Q X C. defined by

[S(w, f)] (0) = T[w, O, f(0)] and by [S(o, f)] (t) = t- fO T[W, s, f(s)] ds for every

f E C., t > 0, and every co E E, where E equals the intersectioll over all t > 0,
x E X, and y E X of the sets occurring in (7), (9), (10), and the set of those
cE for which T(w, t, x) is continuous in both t and x simultaneously. For
every w C=X - E, f E C., and t E [0, c ) let us put [S(w, f)] (t) = x. First of all
let us prove that the mapping S maps the Cartesian product space Q X C. into
the space COO. Choose arbitrarily X E E, f C C., and 6 > 0. Then there exists
a real number to such that for every t _ to we have If(t) - &II _ a/3 and simul-

taneously lit-' f0 T(W, s, x) ds - _ a8/3. Then for every t _ top(f, h)3/6,
where h denotes the functioni for which h(t) = x for every t C [0, c),

we caln write II[S(w, f)](t) - |& _ t-' f|0 IIT(w, s, f(s)) - T(w, s, I)lI ds +
I [S(w, h)] (t) - l c(w) (to/t)p(f, h) + c() (1 -to/t) (a/3) + 8/3 < 6. Since the
- E part is trivial we have proved that S maps the Cartesian product space

Q X C,, into the space C.,. Now, let us prove that S is a contraction mapping.
Thus, let us take arbitrarily f E C., g E CO,,, and w E E. (For w Ez - E we
get a singular case.) Then using (10) we have p[S(w,f), S(cw, g)] _ c(w)p(f, g).
The mapping S being a random contraction transformation of the Cartesian
product space Q X C. into the complete separable metric space C., we can apply
theorem 5, which asserts that there exists a generalized random variable + with
values in the space C. so that S[w, +(X)] = +(w) holds with probability one.
However, we have E CE S, ,u(E) = 1; hence if we define xt for every w CE and
every t E [0, oc) by xt(co) = [q(co)](t) we immediately obtain all the assertions
of theorem 11.
A generalization of the preceding theorem for almost surely linear bounded

random transformations is
THEOREM 12. Let T be a generalized stochastic process mnapping the Cartesian

product space Q X [0, oc) X X into the space X and almost surely continuous with
respect to both the arguments t CE [0, oc) and x E X simultaneously. Denote by
Tt,t2, n. the mapping of the Cartesian product space Q X X into the space X
defined for every w EC Q, x E X, and j = 1, 2, -*. by Tt,(w, x) = T(w, t,, x) and
Ttl. (, x) = T[w, tj+,, Tt1,. .,t (w, x)]. Let there exist an element x E X such
that condition (9) and the following conditions are satisfied. (i) T(W, t, axx + fly) =
arT(w, t, x) + j3T(w, t, y) holds with probability one for every t C [0, -), x C X,
y e X, a C R, and d E R separately; (ii) supt.o IIT(., t, *)II < X with
probability one; and (iii) u.(U% 1 Un=, nxElx nfEx {w: 1Tt ,x --y)II <
(1 - 1/m)Ilx -yll}) = 1. Further, let Xt( ) be the solution of the random oper-
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ator equation (11). 7'hen Xt is for every t E [0, c ) a generalized random variable,
the solution is unique in the "almost sure" sense, and (12) and (13) hold.

PROOF. The proof of theorem 12 follows essentially that of theorem 11, the
greatest difference being in making use of the property that the Bochner integral

fA [f(w)] dA(.) equals A [f f(w) d,M(c)] for every linear bounded operator A.

Theorems 11 and 12 and many other theorems of the same type can claim to
be generalizations of the fact that under certain appropriate assumptions the
"decision process" converges to the sought fixed point of the regression trans-
formation with probability one. However, in practical situations the statistician
is unlikely to know whether all the necessary conditions are fulfilled. In particu-
lar the contraction property would in many cases be very difficult to verify.
Nevertheless, some justification of the statistician's decision about the fixed
point of the regression transformation is contained in
THEOREM 13. Let T be a generalized stochastic process mapping the Cartesian

product space Q X [0, x ) X X into the space X and let x be a fixed element of the
space X. Let xt(.) be the solution of the random operator equation (11) and let the
following relations together with (13) hold. (i) II T[c[, t, Xt(c)] - T(w, t, &) O-0

with probability one; (ii) fO II T[w, s, x,(c)]]II ds < oo with probability one for every

t C [0, 00). Then (9) holds.
PROOF. According to relation (12) it will be sufficient to prove that t-

f0 T(w, s,x)ds - x(w) - 0 with probability one, or that t-h fc T(co,s, )

ds - t-' f T[co, s, x,(w)] ds -* 0 with probability one. However, the last rela-

tion follows immediately from our assumptions, which proves theorem 13.
Some other theorems dealing with experience theory problems can be found

in [6], [7], [8], [10], [11], [14], and [17].
Now, in order to make theorem 13 more lucid, we shall state an immediate

corollary of it. For this purpose we introduce two definitions.
DEFINITION 5. We say that T is a weakly stationary generalized stochastic

process of the Cartesian product space Q X [0, co) X X into the space X if for
every integer n, every n-tuple of nonnegative numbers ti, * * *, tn, every n-tuple of sets
B1, * * *, Bn from the a-algebra X, every positive number s, and every x E X we have
j[nk. =i {w: T(w, tk, x) C Bk}] = 1,[nflk= {w: T(co, tk + s, x) E Bk}].

DEFINITION 6. We say that T is a weakly ergodic generalized stochastic process
of the Cartesian product space Q X [0, 00) X X into the space X if for every linear
bounded functional f from a total set A C X* and every x C X we have

t-|ff [T(co, s, x)] ds ---If f[T(c, 0, x)] d,u(c) with probability one.

Using these definitions we can state
THEOREM 14. Let T be a weakly stationary and weakly ergodic generalized sto-

chastic process of the Cartesian product space Q X [0, 00) X X into the space X so
that it is almost surely continuous in both the arguments t and x simultaneously.
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Suppose that jf IIT(w, 0, x)|I| dA(w) < x'for every x C X. Denote by xt(.) the solu-

tion of the random operator equation (11). Then (13) implies S(£) = £, where for

every x E X we put S(x) = fI T(w, 0, x) dm(c.).
Now, as the assumption of both weak stationarity and weak ergodicity as

well as the assumption of almost sure continuity are quite natural in many
practical cases, theorem 14 ensures that having constructed the decision process
Xt by solving the random operator equation (11) this process does converge, if
it converges at all, to the fixed point of the regression transformation S with
probability one, whether or not the relations (7) and (10) hold.
REMARK 7. Other theorems in this section can be reformulated using the

notions of weak stationarity and weak ergodicity.
REMARK 8. Analogues of theorems 11 through 14 for sequences of random

transformations can be easily formulated.

7. Random integral equations

In the remainder of this paper we shall deal with a special type of random
operator equations, namely, with random integral equations. Two particular
cases will be treated: the case of random integral equations in the space of
continuous functions and the case of random integral equations in Orlicz spaces.

Let us denote by C the space of all continuous functions defined on the closed
interval [0, d], 0 < d. Introducing the norm IlxlI = maxo.5sd Ix(u)I the space
C becomes a separable Banach space.

First of all we shall recall a well-known result about integral equations in the
space C.
THEOREM 15. If k(u, v) is bounded for every u E [0, d] and every v E [0, d],

and if all discontinuity points of k are located on a finite number of curves v = i(u),
for i = 1, * * *, n, where the functions 4i are continuous, then the formula y(u) =

Jd k(u, v)x(v) dv defines a compact linear operator on the space C into itself.
Thus, let us denote by K the space of all functions k defined and bounded on

the set [0, d] X [0, d] all of whose discontinuity points are located on a finite
number of curves v = 4i(u) and such that for every u E [0, d], v E [0, d], and
for every sequence of real numbers d > 51 > 62 > ... > an -*0, we have
k(u, 0) = limn-.- k(u, 5,i) and k(u, v) = limn - k(u, v - 5n), provided 61 _ v in
the latter case. Introducing the norm by kI = sup Ik(u, v) , where sup is taken
over u C [0, d] and v C [0, d], the space K becomes a separable normed linear
space.
We can now state a result concerned with the relationship between the meas-

urability of the random integral operator and the measurability of its kernel.
THEOREM 16. Let k be a mapping of the space Q into the space K and let the

mapping T of the Cartesian product space Q X C into the space C be defined for
every w C. Q and every x E C by



RANDOM OPERATOR EQUATIONS 197

(14) 7 (w, X) = 10d k(w, , v)x(v) dv.

Then the mapping T is for every w E Q a compact linear transformation of the
space C into itself. Moreover the following four statements are equivalent.

(i) T is a random transformation;
(ii) {w: k(co, u, v) < r} C c for every u C [0, d], v C [0, d], and every r C R;
(iii) {w: k(w, *, *) C B} C e for every B C M;
(iv) {w: T(, C)C B} C c5for every B C Y(C).
PROOF. The compactness follows immediately from the classical result. To

prove the equivalence of the four statements let us observe that both the set
{gu,v: u C [0, d], v C [0, d]} and the set {h.,.: u C [0, d], x C C} are total sets
of linear bounded functionals on the space K, provided we define for every
u C [0, d], v E [0, d], x C C, and k C K

(15) gu,v(k) = k(u, v)
and

(16) hu, (k) = fod k(u, v)x(v) dv.

Further, the set {fg: u C [0, d]}, where we put for every u E [0, d] and x C C

(17) gu(x) = x(u),
is a total set of linear bounded functionals on the space C. Finally, the set
{gu ,: u C [0, d], x E C} is a total set of linear bounded functionals on the space
F = {T: T(x) = f0 k(., v)x(v) dv, k C K, x C C}, provided we set for every

u E [0, d] and every x C C

(18) g-, (T) = gu[Y(x)].
Now, the space F is a normed linear space and since for every T C F we have

(19) I1ThJ = sup IIT(x)hI = sup fd k(., v)x(v) dvil
= sup max ofd k(u, v)x(v) dvl < sup max dikl xl = dilkl 1,

where sup is taken over II xI = 1 and max over u C [0, d], the separability of
the normed linear space K implies the separability of the space F. Thus, all the
spaces C, K, and F being separable normed linear spaces, the equivalence of our
four statements follows from theorem 2; from the equalities (15) through (18);
from the relation a = F nl Y(C); and from the fact that h.,,(k) = gu, (T) holds
for every u C [0, d], x C C, and every T C F and k C K joint by relation (14).
The structure of the resolvent set of a linear bounded random transformation

is described by
THEOREM 17. Let T be a linear bounded random transformation of the Cartesian

product space Q X X into the space X so that {w: T(w, *) E B} CE 25 for every
B E (X). Let us denote by p(T) the set of those pairs (c, X) C Q X R for which
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the licear random7 Irmofi.4foermiation (T - XI) has a linear bounded inverse. Then for
evecry X C 1ft We h1e1(e' "co: (w, ) E p(T)} E .

PROOF. According to the well-known theorem on resolvent sets in Banach
algebras the set B,\ = ,L: L C E(X), X C p(L)}- is for every X EE R open, and,
therefore, an elemeint of the a--algebra Y(X). Hence, theorem 17 follows from
the equality 'cw: (w, X) C p(T)' = {&: T(w, *) E Bx} which holds for every
X e B.
A sufficient ot dlitioii for the in-ertibility of the linear ranidom transformation

(7 - XI) is given iII
TIHEOIREM 18. Lct all the a.s.mitiptions of theoremti 1(6 be fulfilled. Let in addition

the real numnber X satisfy the ineiquality d Ik(w, , .)I < IX1 with probability one.
Then the linear randon transformation ('- XI) is invertible, that is,
,u-': (c,XA) E p(T')} = 1.
PROOF. The desired conclusioii follows immediately from (19) and from the-

orem 7 for n = 1.
rrhe possibility of i'eachiiig the solution of the regression integral equation

using only one realization of the stationary and ergodic kernel is furnished by
THEOREM 19. Let k be a maapping of the Cartesian product space Q X [0, -)

into the space K so that -{w: k(w, t, it, v) < r) E for every u C [0, d], v C [0, d],
and r E IR; so that k is stationary and ergodic; and so that k(w, t, , ) is continuous
in t with probability one. Further, let z be a stationary and crgodic random trans-
formation of the Cartesian produtct space Q X [0, X) into the space X and let X #4 0
be any real mnumber satis,fying

(20) ,{c:dllHk(w,0, ., -)fl < 1X1, =1

Denote by Xt(*) the unique random solution of the random oper(ator equation

(21) t °fd kh(, 0, ., v)[0o(-)](v) dv - ) = z(-, 0)

t-1 ffd k(., s, -, v)[i,(.)](v) dv ds -X)(.) -t1 f z(., s) ds for every I > 0.

Then there exists a inique solution x C C of the operator equation

(22) fd q(, v)t(v) dv- X = zo

for which (13) holds, if k(&.,0,O, ,) (c) = q(., )and f z(w, 0)dM(c) = z0.
PROOF. The existence of a unique solution follows from theorem 18 applied

to the kernel q, and (13) is a consequence of theorem 11.
The next theorem forms an analogue of theorem 18 for Volterra kernels.
THEOREM 20. Let all the assumptions of theorem 16 be fulfilled. Let in addition

the kernel k satisfy the condition IA {w: k (w, u, v) = 0} = 1 for every 0 _ u < v _ d.
Then for every real number X i) 0 the linear random transformation (T - XI) is
invertible.
PROOF. From our assumptions we get after several lines of computation the

result that for almost every X C Q and every n = 1, 2, *.. we have I Tn(co, . ) <
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IXdj"l jk(w, *, *)11 /n! which enables us to make use of theorem 7, which yields
the desired result.

Finally, we shall prove a theorem of experience type using the random solu-
tion of the random operator equation (21) for random integral equations of
Volterra type.
THEOREM 21. Let all the assumptions of theorem 19, with the exception of (20),

be fulfilled. Let in addition the kernel k satisfy the condition ,.{w: k(w, t, u, v) = 0} = 1
for every t E [0, o) and every 0 _ u < v _ d. Then there exists a unique solution
x C X of the operator equation (22) for which (13) holds.
PROOF. The existence of a unique solution follows from theorem 20 applied

to the kernel q, and (13) is furnished by theorem 12.

8. Random integral equations in Orlicz spaces

In this section some problems raised by Bharucha-Reid in [3] for random
integral equations in separable Orlicz spaces are discussed. For the sake of
brevity, the reader is referred to [19] and [24], where all the notions used here
are defined.
Roughly speaking, given an n-dimensional interval U and a continuous func-

tion q, Bharucha-Reid considered in [3] random integral equations of the form

(23) f q(u, v)x(v) dv - Xx(u) = y(u),
1'z

where I, is for every wc, E an n-dimensional interval such that I. C U. Al-
though some results in [3] are given also for more general functions q, we will
discuss mainly the case of continuous kernels.

However, it is known (see [19]) that, if U is a bounded closed subset of an
n-dimensional Euclidean space, the Orlicz space of functions with domain U is
isomorphic and isometric with the Orlicz space of functions with domain [0, d],
where d equals the Lebesgue measure of the set U, provided in both cases the
same convex function is in action. Therefore we confine ourselves to the dis-
cussion of the one-dimensional case assuming U = [0, d] and denoting the
Orlicz space under consideration by M.
When dealing with measurability questions it is advantageous to rewrite the

random initegral equation (23) by introducing a random kernel k defined by
k(w, u, v) = q(u, v) for every w E U, u C [0, d], and every v E I<; and by
k(., u, v) = 0 for every w C Q, u E [0, d], and every v E [0, d] - I,. Evidently,
if q is a continuous deterministic kernel then the corresponding random kernel
k is a mapping of the space Q into the space K, and since every separable Orlicz
space is at the same time a separable Banach space, theorem 16 gives a general
answer to the measurability problem in words of the auxiliary random kernel
k. Using this theorem we can immediately state necessary and sufficient con-
ditions for the measurability of the integral transformation
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(24) T(w, x) = fq(-, v)x(v) dv

in terms of the random set I,. Denoting by Q the set of all continuous kernels
q we have
THEOREM 22. The mapping T of the Cartesian product space Q X M into the

space M defined by (24) is for every q C Q a random transformation if and only if
{w: v EC I<,} C (E for every v E [0, d].
PROOF. Theorem 22 is a special case of theorem 16 in which condition (ii) is

specified by setting k(w, u, v) = x,.(v)q(u, v) for every w E Q, u C [0, d], and
v C [0, d], where XA denotes the indicator of the set A.

However, nothing in general can be said about Is. itself when a particular
kernel q E Q is considered. As an illustration assume the case q(u, v) = 0 for
every u C [0, d] and every v E [0, d]. The integral transformation T defined by
(24) equals in this case the null transformation and is consequently measurable
regardless of the nature of the random set I.. Nevertheless, we can state
THEOREM 23. Let q C Q. Then the mapping T of the Cartesian product space

Q X M into the space M defined by (24) is a random transformation if and only if
xI,(v)q(u, v) is a real-valued random variable for every u C [0, d] and every
vC [0, d].
PROOF. Theorem 23 follows immediately from theorem 16.
Let us now suppose that for every w C Q the random set Is. is equal to the

interval [0, (3(w)]. Then we can state
THEOREM 24. Under the assumption that I<. = [0, #((w)] for every w E Q the

mapping T of the Cartesian product space Q X M into the space M defined by (24)
is for every q E Q a random transformation if and only if : is a real-valued random
variable.

PROOF. Theorem 24 is a consequence of theorem 22.
However, for the case I.= [a(w), (()] the situation is no longer unambigu-

ous. We have
THEOREM 25. If I. = [a(w), (3(w)] for every w CE Q and a <( with proba-

bility one, then the mapping T of the Cartesian product space Q X M into the space
M defined by (24) is for every q E Q a random transformation if and only if a and
,Bare two real-valued random variables.
PROOF. Theorem 25 follows from theorem 22 and the relation {w: (3(w) _ ro}

= U {wo: a(w) < r _ P(w)} which holds for every rational number ro, provided
the union is taken over all rational numbers r _ rO.
On the other hand, if there exists a set E C e for which p(E) > 0 and

E C {w: a(w) = (3(w)} then, depending on the structure of the a-algebra e of
course, a and (3 may not be random variables. This fact can be illustrated by
ExAMPLE 4. Let (Q, e, A) be the same as in example 2 and let I,.

[a(w), ,B(w)] for every w C Q, where a(Z) = (3(w) = w - [wld] d for every
co E Q, assuming [Xwd] is defined by (wid) - 1 < [wld] _ (wld). Then xi, (v) is
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for every v C [0, d] a real-valued random variable, but -'w: 2a(w) < d} =
M: 20(w) < d} does not belong to the a-algebra S.
Hence we see that it is possible to avoid the condition required in [3] of the

measurability of the solution of the random integral equation (23) from the dis-
cussion of the measurability of the integral operator T defined by (24). More-
over, the measurability of the solution for every generalized random variable y,
the right side of equation (23), follows from our theorem 9, provided the linear
random transformation (T - XI) is invertible.
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