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1. Introduction

The last few years have witnessed an increasing interest in the probability
theory of general algebraic and topological structures, especially for topological
groups and linear vector spaces. This paper attempts to survey this new field
and to present some of the main results together, so as to obtain as complete
an exposition as possible of the present state of development. As will be painfully
obvious in the following pages no unified theory exists yet, and we can answer
only partially the problems that arise. Still, when the existing results are viewed
together, it is hoped that the overall picture will be suggestive.
To avoid excessive length and the obscuring of general ideas by details, no

proofs are given. To compensate for this much attention is given to the descrip-
tion of the analytical tools that are suitable for proving the sort of results that
are described in the following.
The generality of the subject might give the impression that these are abstract

and rather vague problems. Actually the situation is just the opposite: this is a
piece of very concrete mathematics and many of the problems can be phrased
in simple and direct form, although they may be far from simple to solve. The
fundamental character of the questions makes this extension of classical proba-
bility theory a fascinating study for the probabilist and analyst in search of
nontrivial generalizations of classical probability theory.

2. Semigroups

Consider a Hausdorff space S with a binary operation xy on x, y E s, such
that S is a topological semigroup. From the subsets of S we form the a-algebra
&(S) of Borel sets and the set (P(S) of regular probability measure defined on
6(S).
For two measures P1, P2 C @(S) we define their convolution

(2.1) P1 * P2(E) = f dP, X dP2 (x, y),
zxj Es

where E C 63(S) and the product measure PI X P2 oll S X S is introduced in
171



172 FOURTH BERKELEY SYMPOSIUM: GRENANDER

the usual way. With the convolution operation cP(S) becomes a semigroup. By
pn* we mean the nth iterate P * P * ... * P.
We will sometimes have a useful analytical tool in the linear operator

(2.2) Tf(x) = ff(x x') dP (x').

Defined in an appropriate functional space, this operator is a natural instrument
in the study of limit theorems since the iterates Tn correspond simply to the
convolutions pn*.
Some of the problems to be studied are:
(a) When do limit laws exist, that is, when does II = limni, P,* exist, with

the limit defined by a suitable topology? What are the limit laws?
(b) If p = p2*, P is called an idempotent. Describe all idempotents.
(c) If for every n = 1, 2, *.. there is a Q. E @(S) such that P = Qn*, then

P is called an infinitely divisible distribution over S. How can they be character-
ized?

(d) To study these and other questions it is sometimes useful to apply various
kinds of Fourier analysis and we then have to construct the relevant analytical
instrument, playing a role similar to that of characteristic functions in Rk.

(e) For each t > 0 let {e be a stochastic variable taking values in a semigroup
S with a unit element and such that its distributions Pt satisfy

(1) Pt+t' = Pt * Pt,
(2) Pt(U) ->0 as t -+0 for any neighborhood U of the unit element. Then

it is called a homogeneous process and an important problem is the description
of the associated semigroup Pt, its infinitesimal generator, and so on.
The above definition of our main object 6P(S) is, at least at present, sufficiently

general to include the cases studied. On the other hand its generality prevents
us from getting any substantial results; to be able to do this we will have to
introduce more structure on S and this will be done in several steps in what
follows.

2.1. Compact semigroups. The first specialization that we will make is that
S is compact; this leads to definite results but the restrictive hypothesis of
course narrows down the field of application.
We then know that the set of regular probability distributions over S is also

compact, so that 6@(S) is a compact topological semigroup. Clearly the support
of pn* will be in s(P)n = s(P)s(P) * * * s(P) so that we can just as well restrict
ourselves to the semigroup

(2.3) U 8(p)n
1

and this will be assumed to have been done.
In passing let us mention the important relation

(2.4) s(P1 * P2) = S(Pl)S(P2)X
which tells us how to get the support of the convolution of probability measures.
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We shall say that a sequence Pn E S(S) converges to l) E 6!(S) if

(2.5) ff(s) dP. (s) -|ff(s) dP (s)
s s

for every f E C(S).
If a sequence Pn is convergent its limit must be an idempotent. Since @1(S) is

compact one knows that it has at least one idempotent; we shall see below how
idempotents can be constructed starting from arbitrary probability distribu-
tions.
The operator T now maps C(S) into C(S). Introduce the operator and the

probability measure
- nt 1

(2.6) FL TV, 7n5- Epv*n -1 n, = 1

There is a basic result due to Rosenblatt [20].
THEOREM 1. The averaged sequence of probabitlity measures Tn converges to a

limit measure P such that

(2.7) P*P = P*P = P* P = R.
This sort of result is known in the study of Markov processes on compact

spaces; the proof can be based on Yosida's mean ergodic theorem and the obser-
vation that all sequences of pn are compact.

If a limit law exists it is not difficult to see that its support must be an ideal.
We have from [20] the
THEOREM 2. If a limit law exists its support must be contained in the kernel K

of the semigroup; K is the minimal ideal of S and can be written as

(2.8) K = n SiS

where i runs through all the idempotents of S.
For the limit distribution P it can actually be shown that its support is

exactly K.
Of course we can get compactness even when it is not assumed a priori by the

usual one point compactification: we add the point at infinity w, with the ap-
propriate neighborhoods and with the multiplication rule ws = sw = w for all
s E S. In this way the above results can be extended in an easy but not very
profound manner.
Assume further that S is commutative. Then the kernel K is a commutative

group and we can apply the results to be discussed in section 3.2. The support
of any idempotent must be contained in K, and if it is just K the idempotent is
simply the (normalized) Haar measure on K.

2.2. Finite commutative semigroups. The next logical step in specialization is
to assume that S is a finite and commutative semigroup. Following Hewitt and
Zuckerman [9] we shall study this case by Fourier analysis. We assume there
exists an integer m > l such that sm+1 = s for all s E S.



174 FOURTH BERKELEY SYMPOSIUM: GRENANDER

A comnplex-valued function x(s) 4 0 is called a semicharacter if x(s)x(t) = x(st)
for all s, t E S. The set of all semicharacters is denoted by S.

Since s-1-' = s wve have x±1+l(s) - x(s) so that x(s) is 0 or a root, of ulnity;
Ix(s)i _ 1.
Any probability distribution P E @(S) can be completely characterized by

the point masses P(s) and we shall define its Fourier transform

(2.9) 13(x) = Z P(x)x(x), x C S.
XES

We have from [9]
THEOREM 3. (a) If'(x)I 1,
(b) if P = P1 * P2 then P(x) = P1(X)P2(x) for every x E S,
(c) P(x) determines P' u7niquely and there is an inversion formula,

(2.10) P(s) = ,P(x)x(s)
XEb'

(d) if PI,, ' then Pn(X) -- P(X) and conversely. Further if S is also a group
and Q is the probability measure Q(s) = 1/n, wvhere n is the order of the group, then

f if x = ,

O0 otherwMse.

There is also a version [9] of the theorems of Herglotz and Bochner relating
the Fourier transforms of probability distributions to nonnegative definite
functions on S,
THEOREM 4. A complex-valued function P(x) on S can be written P(x) = P(x),

P E d'(S) if and only if
(2.12) P'(e) = 1,

(2.13) E p(XODC(x)C( ) _ 0
X4'ES

for any complex-valued function C(x) on S.
The idempotents can now be characterized completely by
THEOREM 5. A probability measure P E (P(S) is an idempotent if and only if

s(P) is a subgroup of S and P is uniformly distributed over this subgroup: P(s) =
P(t) for s, t E s(P).
These authors also give necessary and sufficient conditions on a distribution

P over a finite commutative group (with an integer m as defined above) in order
that pn* should converge. Since these conditions are fairly complicated the
reader is referred to [9] for the complete statement.

3. Groups

When S has also group structure we will denote it by G and for the moment
we assume only that G is a locally compact topological group. This will not be
enough to enable us to draw the sort of conclusions we want; in fact here seems
to be, at present, the most serious gap in the theory that we examine.
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However, we are not entirely ignorant even in this general situatioil. There
is, for example, the well-known result on the existence of a left (and similarly
right) invariant measure ,u,

(a) ,u is a regular Borel measure,
(b) ,u(O) > 0 for any open set 0,
(c) A(xE) = A(E) for every Borel set E and every x E G. This measure,

which is uniquely determined except for a multiplicative constant, is called the
Haar measure. The right invariant measure will be denoted by v. A good refer-
ence is [8].
The Haar measure can be normalized to a probability measure, ,(G) = 1,

oiily if it is finite. This happens if and only if G is compact.
It is clear that the set (Y(G) of regular and normalized Borel measures on G

forms a semigroup but it should be noted that it is not a group unless G consists
of the single element e. Actually an element PJE (P(G) has an inverse if and
oiily if P is concentrated on a single element.
A measure Au is said to be symmetric if M(E) = M(E'-) for every Borel set E.
It is called absolutely continuous if it is absolutely continuous with respect to

Haar measure.
By a unitary representation U,, = {3C, U(g)} of the group G one understands a

Hilbert space 5C and a strongly conltinuous function U(g) taking as values unitary
transformations of 5C onto itself and such that U(g1)U(g2) = U(g9g2) for all
91, 92 E G. Then, for any x C 5C, the function $p(g) = [x, U(g)x] is nonnegative
definite, that is

(3.1) E '(g7-1g)'zg > 0
."j = 1

for any n and arbitrary complex numbers zi, Z2 z* . Conversely every contin-
uous nonnegative definite function so(g) can be represented in the form [x, U(g)x]
with a suitable choice of the representation and of the element x.
The natural definition of the Fourier transform of P EE (G) would then be

(3.2) P'(U,H) = JU(g) dP (G)
G

and P(I) = I (where I is the identity operation in JC) and

(3.3) Pl * P2(UH) = Pl(UH)P2(UH).

So far this tool has been used extensively in probability theory only for commu-
tative or compact groups.
The operator T can now be defined on the Hilbert space L2(G, As) of complex-

valued functions on G quadratically integrable with respect to ,u-measure. As-
suming P to be symmetric the spectrum of T is situated in the real interval
(-1, 1). Conditions can be given for IXI = 1 to belong to the spectrum; see [7]
and, for the case of a denumerable group, [14].

3.1. Compact groups. With this assumption it is possible to get more complete
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anid (letailed results. The idempotents of @2(G) can now be characterized corm-
pletely [28]: they are the normalized Haar measures on compact subgroups of
G (or rather the extension of such measures to G). Note that on a compact group
the right and left invariant measures are essentially equal.
To obtain limit theorems we study the Fourier transforms P. But now we

need only consider the set of irreducible and nonequivalent finite dimensional
representations enumerated Uo, U1, U2, *- * , where Uo is the identity represen-
tation Uo(g) _ 1, see [18], [27]. Using the famous theorem of Peter and Weyl
one can show that A (U) is equal to 1 for U = U0 and to 0 otherwise. The mapping
I' P is a continuous homomorphism of P(G) into the set of all complex-valued
n X n matrices, where n is the dimension of the representation U; the uniqueness
and continuity theorem for ordinary characteristic functions in Rk is extended
to the present case, enabling us to get the desired results, due essentially to Ito
and Kawada, who obtained this pioneering result as early as 1940; the modified
form given below is due to K. Stromberg [23].
A special case, the circle group, had been investigated earlier by L6vy [16];

see also [13].
THEOREM 6. Let K be the smnallest closed subgroup containing s(P), where

P E @(G). The limit of pn* exists if and only if s(P) is not contained in any coset
of any proper closed normal subgroup of K. If the limit exists it is the normalized
Haar measure on K.
The following version, see [24], is also useful.
THEOREM 7. The limit of pn* exists if and only if K is the smnallest closed sub-

group containing Un= {s(P) [s(p)-l] }.
COROLLARY. If e E s(P) then the limit of pn* exists.
If there is convergence it is monotone.
Introduce the deviation d., between pn* and a measure y such that u * P = u,

by means of the definition
(3.4) dn = d (pn*, /) = sup lPn*(E) - ,.L(E)I.

E

Then we have
THEOREM 8. dn+1 < dn.
3.1.1. Compact, commutative groups. A probability distribution P is called a

Poisson distribution over G if

(3.5) P(E) = P(xk E E) for all E C 63(G),

where xo E G and k is an ordinary Poisson variable.
More generally if P can be written as

(3.6) P -E e-Q(G)

where Q is a regular finite measure defined on 63(G), then P is said to be a com-
pound Poisson distribution.
The following result has been obtained by Urbanik [25].
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THEOREM 9. P is a compound Poisson distribution if and only if there is a se-
qyence. Pa,, P,(G) with

(3.7) p

(3.8) lim Pn(e) = 1.
n-

Urbanik also gives a similar condition for P to be a Poisson distribution.
3.1.2. Finite groups. The idempotents are immediately obtained from

Wendel's theorem (see 3.1); P E P(G) is an idempotent if and only if there is a
subgroup H, say of order h, and P(g) = h-1 if g E H and = 0 otherwise (see
also [3]).
The class of infinitely divisible distributions on a finite group have been de-

scribed exhaustively by Boge [3] through the following representation
THEOREM 10. Let H be an arbitrary subgroup and IH the corresponding idem-

potent measure. Form the set KH of H-invariant real-valued measures m over G and
such that

(3.9) m(g) > 0, if g EH
(3.10) E m(g) = 0.

gG
7'hen

(3.11) P 1II + -vm, m E KH

is the general representation of an infinitely divisible distribution over G.
The representation is unique only in the very special case that all elements

of G are of order 2.
Boge also points out that the set of infinitely divisible distributions is closed

under convolutions if and only if G is commutative.
3.2. Commutative and locally compact groups. The Fourier transform P(Qy) of

a distribution on G is now defined as

(3.12) P(Y) = I (g y) dP (g),

where -y is an arbitrary character, that is, a complex-valued, continuous function
on G taking values (g, y) such that (g, -y) = 1 and (gl + g2, eY) = (91, Y) (g2, -y),
where we now write the group operation as addition. The y form a set F, the
dual group of G, if addition of characters is defined by (g, yi + y2) = (g, Y1) (g, Y2).
For further information, see [27]. There is an extension of Bochner's theorem oln
characteristic functions,
THEOREM 11. The class of all functions P(-y), when P runs through P(G), i.s

identical with the class of continuous, nonnegative definite functions normed to be
equal to unity for y = 0.

If P is an idempotent, then P(-y) = 1 or 0; in other words one has to study
those sets of F whose indicator functions are Fourier transforms of probability
distributions.
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The idempotents P E P(G) are described by the following
THEOREM 12. Any idempotent measure P on a commutative and locally compact

group is concentrated on a compact subgroup. P is then the normalized Haar measure
on this subgroup.

This result also tells us something about what sort of limit we can expect for
this type of groups.

3.3. Lie groups. For a group that is neither commutative nor compact (but
is locally compact) very little seems to be known about such things as limit
laws. The reason for this is obviously that the sort of Fourier transform defined
at the beginning of section 3, if it is at all the appropriate analytical tool, is not
so easily mastered as for compact or commutative groups.

However, for Lie groups Hunt [10] has given a characterization, complete in
a certain sense, of the associated homogeneous processes; this generalizes the
well-known representation due to Khinchin, L6vy, and others of the processes
with independent increments on the real line.
To sketch the main result in Hunt's paper, let G be a Lie group of dimension

d and with a homogeneous process gt with the probability measures Pt and the
corresponding operator Tt (see section 1). To study the infinitesimal generator
M of the semigroup Tt, defined for t > 0, we consider the Banach space Z of
functions f(g) which are bounded and left uniformly continuous on G; the usual
definition of norm is used. If Y is an element of the left invariant Lie algebra
we define

(3.13) Yf(g) = lim I [f(g exp tY) -f(g)]
t ; O

for those f (E Z for which the limit exists. Introduce the Banach space V2 as the
set of those f for which Y.Y2 f makes sense for any choice of Y1, Y2 in the Lie
algebra and with the definition of the norm

(3.14) 1if112 = IIfil + E IlXifIl + E IIXiXxfII,
i i,i

where Xi, X2, ** , Xd is a fixed basis of the algebra. Then M is defined on C2
and can be written as

(3.15) Mf(g) = E aiXif(g) + E aijXiX2f(g)
i i,j

+ f [f(gh) - f(g) - E Xif(g)xi(h)] dG (h).

Here aij is a symmetric and nonnegative definite matrix, the integral is extended
over the set G - e, the xi(g) are functions in Z2 such that xi(e) = 0 and

Xixj(e) = bij, and dG is a measure over G - e such that f 4(g) dG (g) <c,
where +(g) is a nonnegative function in Z2 behaving like E x2(g) when g is near
e. The converse statement is also true.

This representation can be decomposed as M = Ml + M2, where M1 consists
of the two sums and M2 is the integral. If the sample space of the process is
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suitably chosen, almost all the sample functions are continuous if M2 vanishes;
conversely such a sample space can be found only if M2 = 0-

IfM = Ml the process is called a Brownian motion on the Lie group in analogy
with the definition for G = Rk. It can also be obtained as the solution of a sto-
chastic differential equation of a form similar to Ml (see [12]).

4. Linear spaces

The reader will have noticed that the sort of limit results studied above are
not quite of the same type as those belonging to classical probability theory.
We have discussed no natural extension of the law of large numbers or of the
central limit theorem, we have no stable laws and, more generally, we lack a
generalization of the linear theory of stochastic variables that plays such a
fundamental role in the classical theory. To remedy this we must obviously
introduce a linear structure in our group. This can be done in various ways, but
so far the Banach and Hilbert spaces seem to be the only ones investigated
thoroughly as domains of probability distributions, and we will confine our
discussion to these two important linear structures.
Such probabilistic structures were first studied systematically by E. Mourier

in an important paper [17]. In a more general direction, Fr6chet has studied
probabilities in metric spaces and his work should be consulted by the interested
reader.

4.1. Banach spaces. Let X be a Banach space (real or complex as the case
may be) with elements x and the norm x. A regular probability P is given
on the Borel sets of X; this corresponds to a stochastic variable taking values
on X. Linear combinations of given stochastic variables i 6, .*-- as well as
limits of such sequences are then also well-defined stochastic variables on X.

In this way all linear functionals x*(x) become Borel measurable. For the
actual construction of probability measures it may be more convenient to start
with given finite dimensional simultaneous distributions of xl(x), x2(x), ,
xn*(x). In other words we start with the set algebra generated by cylinder sets
of the form

(4.1) {xI[x*l(x), xl(x), ,x"*(x)] E E},
where E is an arbitrary Borel set in Rn, and n an arbitrary positive integer.
Applying Kolmogorov's extension theorem we extend the probability measure
to the a-algebra. If X is separable, it can be shown that this a-algebra includes
all open sets, so that the domain of the measure is wide enough for us.

Following E. Mourier [17] we define the mean value Et = m as a Pettis inte-
gral: it is the unique element m, if it exists, satisfying the integral equation

(4.2) x*(m) = Ex*( )

for all linear functionals x* in the conjugate space X*. Note that x*(t) is a
numerically valued stochastic variable in the ordinary sense.
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With this definition the mean value operation has the usual properties:
(a) if Et1 and E62 cxist then so does

(4.3) E(C1it + C262) = Ct1E, + (C2E62,
(b) if Ell < oo and Et exists then JlEtjj Elltll.
There are various sufficient conditions ensuring the existence of E(t). The

following is very useful: if X is separable and if El ltlI< then Et exists, [17].
The Fourier transform of a stochastic variable t or of its probability distri-

bution P is now defined as
(4.4) P(X*) = E exp ix*(x), x* E X*.
We have
(a) P(x*) = 1 if Pl'x = O} = 1,

(b) Pi *P2(x*) =A (e),
(c) P(x*) is continuous in the weak topology of X*,
(d) P(x*) is nonnegative definite, that is

n

(4.5) E P(x* -X*)Zy _ 0

for any n and complex constants zi, Z2, ***, Zn.
For a discussion of the uniqueness and continuity theorems, see [17]. Note

that the space will in general not be locally compact.
The law of large numbers can now be formulated in many ways, one of which

is given in [17],
THEOREM 13. Let X be separable. If 1, is a sequence of independent

and identically distributed stochastic variables with values in X and if El It,J < 0o,
then the average

i n(4.6) n

converges almost certainly strongly toward the element Et.
We remark that the related but more general ergodic theorem also holds under

similar conditions; the limit is of course no longer necessarily a constant element
of the space.

4.2. Hilbert spaces. Let X be a separable Hilbert space. The existence of an
inner product makes possible a more detailed analysis.
A stochastic variable t taking values in X is said to have a normal distribution,

if the numerically valued stochastic variables x*(t) for x* E X*, are all normal.
Actually this definition can be used also in a Banach space but in the present
context it is especially simple since the linear functionals are easier to describe:
x*t) = (x*, t), X* = X. One can show that Et and Elltll2 exist and that the
Fourier transform of the distribution P associated with t is

(4.7) P(x*) = exp iEx*()- Var [x*)]
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Conversely any such expression is the Fourier transform of a normal stochastic
variable if t is a stochastic variable in the Hilbert space with finite El tl12. It is
also possible to find an orthogonal system x,, E X for n = 1, 2, ** ; such that

(4.8) C= E
n=l

where the coordinates Cn are independent normal stochastic variables.
The following central limit theorem holds [5]:
THEOREM 14. Let tl, 02, *.. be independent variables taking values in X and

identically distributed with Et = 0 and El tl12 < oo. Consider the normed partial
sums n = n-112 _I If f(x) is a function uniformly continuous in every sphere
II xiI < R, then f(ri.) has asymptotically the same distribution as f(,7), where 7v is a

normal stochastic variable in X with the Fourier transform

(4.9) PSq(x*) = exp {-E[x*(nq)]2}.

5. Banach algebras

If our stochastic variables take values in an algebra A, say, with unit element
e, then it is possible to proceed further. We now have two operations, addition
and multiplication, and to each there corresponds one definition of a homogene-
ous process, of limit theorems and so on. The probabilistic relation between the
additive and multiplicative concepts should be investigated. Since addition is
commutative the corresponding concept could be the simpler one, so that one
may wish to start with it to construct or study the other one.

Let Z be a given space and A an algebra of operators defined on Z. Given a
probability measure on A we have to deal with stochastic operators. Already the
case when Z = Rk and A is an algebra of linear operators leads to nontrivial
problems, the solutions of which are only partially known at present.
A multiplicative version of the law of large numbers is the following. Let A

be a separable Banach algebra and consider a sequence 7'1, fl2, . . . of independent
and identically distributed stochastic variables with values in A and such that
El 17111 < X . Form the product

(5.1) H. = (e + 7) (e + n2) ... e + n 1

and consider the behavior of I,I as n tends to infinity.
THEOREM 15. The above product converges strongly in probability to the fixed

element exp (m) C A, where m = Er, as n tends to infinity.
This is proved using the (additive) law of large numbers (see section 4.1. and

[7]).
Now, let r(t) for t > 0, be an additive homogeneous process with values in A.

It seems plausible that one could construct a multiplicative homogeneous process
by starting from products
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(5.2) t(t) = (e + Al 7)(e + A2 77) * (e + A.
where
(5.3) A, 71 = 7(4))-n(t,-.) and to = O< tl < t2 < ** * < t, = t,
is a division of the interval (0, t). Assuming that El 127(t) II exists for t > 0 and
that the sums

(5.4) .Ellvvill M <00
are uniformly bounded, then (n(t) converges in the Li-norm to a multiplicative
process. Symbolically we can write d((t) = t(t) d7)(t) with the initial condition
t(0) = e.

It is now possible to prove multiplicative limit theorems. Indeed, consider
the double array of stochastic variables taking values in A

711

(5.5) 7721, 7722

7731, X732, 7733

where the variables in each row are independent and identically distributed.
Assume that, uniformly,

n

(5.6) E E 1,7n,ll _ M<A x

and that q(t) is an additive homogeneous process such that for every fraction c
between 0 and 1 we have

[enr]
(5.7) -*y(c)
distributionwise.
THEOREM 16. l,nder the .tated conditions the product

(5.8) I1, = (e + 71i)(e + 27n2) * (C + '7n)
converges distributionwise to t(I).
From the point of view of applications we get a more interesting sort of limit

theorem using the L2-topology instead of the Li-topology; we refer the reader
to [7] for a more detailed statement.

In this connection one should mention a related but different limit problem
arising when A is an algebra of operators mapping a space Z into itself. These
operators need not be linear; actually the most interesting situations seem to
appear when this is not the case. Consider a sequence of independent and iden-
tically distributed stochastic operators * * an-,1 an, an+,, ... and form the
product #nm) = anan-, ... ann-. Can it happen that fm) converges to a non-
trivial stochastic operator O3n as m tends to infinity?

If this is so consider the stochastic element (in Z) Zn = fnz where z E Z. It
must have the same distribution as an+lzn if an equilibrium distribution exists.
It is clear that with a compactness assumption on Z equilibrium distributions
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exist, but this can also be guaranteed in noncompact situations if suitable con-
ditions are imposed on the operators belonging to the algebra.

While the general case does not seem to have been studied it is easy to deal
with certain special cases. Let us for example choose Z as the real line or a part
of it, and define the mappings by a function h(z, w), where w introduces the
randomness via a probability distribution P over a set Q of points w. The needed
measure-theoretic assumptions are made as usual. Suppose that

(5.9) sup h(Z", w) -h(Z', w)
p
<

and Eh2(Zo, w) < -x.
THEOREM 17. In the situation described above convergence holds and an equi-

librium distribution exists.
The above theorem generalizes easily to the case when Z is a linear vector

case.
Starting with this equilibrium distribution for the elements z, we can define

a stationary, real-valued stochastic process yn = ana ... a1z. Taking h(z, w)
as a linear function c(w) + zp, we get a moving average representation, taking
it as a fractional linear function we get a continued fraction representation.
Other choices of h(z, w) will be of interest in the study of nonlinear random
mechanisms.
A problem that has been given a good deal of attention is the random ergodic

theorem. It can be phrased as follows, leaving out the measure-theoretic details.
Consider two measure spaces Z and Q with finite, normed measures m and l'
respectively, m(Z) = P(Q) = 1. Let so., with w C Q, be a family of m-measure
preserving transformations defined on Z. Form the iterated stochastic trans-
formation
(5.10) = ...
where the elements wl, C2, *-- are independent stochastic elements on Q with
the probability distribution P. Let f(z) belong to LI(z).
THEOREM 18 (Kakutani). The average

1 n
(5.11) -vEf[[z]n_j
converges almost certainly (P) for almost all (m) values of z.
For other results on stochastic operators see [2] and papers by Hang and

Spacek referred to in [2].
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