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1. Introduction

Direct probabilistic constructions that allow us to build one Markov process
from another are of interest in the theory of Markov processes as well as in a
number of problems in mathematical analysis. In fact, if a Markov process X can
be obtained by means of a sufficiently simple transformation of a Markov process
X, then it is possible to derive properties of the trajectory of the process X from
those of the trajectory of the process X. On the other hand, the solution of many
problems in the theory of differential equations, as well as more general operator
equations, can be expressed by actual formulas in terms of probability distribu-
tions connected with Markov processes. Therefore, by making use of transforma-
tions of Markov processes, it is possible to reduce problems of this type for more
complicated operators to analogous problems for simpler operators.

In the present paper a general class of transformations of Markov processes is
introduced and discussed whose brief description (for stationary Markov proc-
esses) is contained in the survey article [5] and in the note [8]. This class of
transformations includes as special cases a number of special transformations
that were discussed earlier, such as the formation of subprocesses [4], the trans-
formation of the Wiener process which produces a drift (see for example [9]), and
others. In the construction of this general class of transformations an important
role is played by the concept of an additive functional of a Markov process. An
additive functional of a Markov process X is a collection of random variables
i with s < ¢ having the following two properties: (a) ¢} is defined in terms of the
process in the time [s, ] (a more exact formulation of this condition is given in
2.1A) and (b) ¢} + o4 = ¢paforalls <t < u.

The main results of the paper are given in sections 4 through 6 while section 2
is of an introductory nature. In it are given fundamental definitions and notations
of the theory of Markov processes following the monograph [4]. In section 3 are
given definitions and examples of additive functionals and some other allied
subjects (multiplicative functionals, almost additive functionals, and so forth).
The general construction giving transformations of Markov processes is described
in sections 4 and 5. In section 6 conditions are studied under which the homo-
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geneity of the process is preserved. In section 7 the results of Volkonsky [12] are
developed in a modified form, enabling us to describe wide classes of additive
functionals. Finally, the concluding section 8 is a survey of a number of results
about additive functionals and transformations of Markov processes, which have
been obtained recently by Volkonsky, Seregin, and the author.

2. Transition functions and Markov processes

2.1. Let ® be a o-algebra of the subsets of the set £ containing all subsets
consisting of a single point. Then the pair (E, ®) is called a state space. Let T be
any positive number or 4«. The function P(s, z;¢, T), with 0 S s =t < T,
z € E,and T € ®, is called a transition function if the following conditions are
satisfied.

2.1A. For fixed s, t, and z the function P(s, x;¢, I') is a measure over the
o-algebra ®;

2.1B. for fixed s, ¢, and T the function P(s, r; ¢, T') is a B-measurable function
of the point z;

2.1C. P(s,z;t, E) £ 1;

2.1D. P(s,z;s, E\ z) = 0;

2.1E. P(s,z;u, T = fEP(s, x;t, dy) P(t,y;u,T),fors £t < u.

The transition function is called normal if for any x and s, P(s, z;s, E) = 1.
As an example of a transition function we can take the so-called Wiener tran-
sttion function, which is defined in n-dimensional Euclidean space by the formula,

2w (t — §)]—n/2 _ g& - x22 ] <
(1) P(s, a1, T) = [27(t — )] /exp[ ]dy, 0=s<t<T,

2(t — s)
xr(2), 0Ss=t<T,
where xr is the indicator of the set T, that is the function defined by
1, z&T
) xr(z) = {
0, z&T.

Here ® is the system of all Borel subsets of the space E, while (y — x)? is the
scalar square of the vector y — z, and the integration proceeds with respect to
the Lebesgue measure in E.

2.2. Suppose we are given

(a) a function {(w) on a space €, which assumes values in a segment [0, 7'];

(b) afunction z(¢, w) = x:(w), defined for 0 £ ¢ < {(w) and assuming values in
the state space (E, ®);

(c) forevery 0 < s =t < T, a o-algebra M} in the space @, = {w: {(w) > t};

(d) forevery s &€ [0, T] and 2 € E a function P, .(4) over some o-algebra on:
in the space Q, which contains 91; for all ¢t € [s, T').

We shall say that these elements define a Markov process X = (x:, ¢, M, P, o),
if the following conditions are satisfied.
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22A. If s £t £ u,and A € N, then {4, ¢ > u} € M.

22B. {r; €T} EMiforevery0 < s Stand T € ®.

2.2C. P, , is a probability measure over the o-algebra 9’

2.2D. Forevery0 £ s <t < TandT € &,

3) P(s,z;t, T) = P, . {r, & T}
is a ®-measurable function of z.

2.2E. P(s,z;s, E\ z) = 0.

22F. f0L£s<st=2u<T,z €EETE ®, then
4) P,.{r, €E |} = P{, z:;u, T), a.s. O, P, .,
where the notation a.s. @, P, . stands for ‘“‘almost sure over the set Q, with re-
spect to the measure P, ,,”’ that is, for all w & Q,, except for a set of measure zero.

The function P(s, z; ¢, T) defined in (3) is a transition function in the space
(E, ®). It is called the transition function of the Markov process X. The quantity
¢ is called the terminal time (or lifetime) of the process X. For a fixed w the
function x,(w) defines in the space E a trajectory of the process which corresponds
to the elementary event w. The system 917 can be thought of as the totality of
events which are observed during the time interval [s, t]. The value of P, .(4)
can be interpreted as the probability of the event A under the condition that at
the moment s the trajectory is at the point x. The integral of the function £(w)
with respect to the measure P,,, over the whole domain in which it is defined is
denoted by M, .(¢).

It has been proved (see [4], theorem 4.2) that every normal transition function
in the state space (¥, ®) corresponds to some Markov process, if it is possible to
introduce into the space (¥, ®) a metric which satisfies the two following condi-
tions

(a) E isrepresentable as the sum of a denumerable number of compact subsets;

(b) the o-algebra ® is generated by the system of all open sets.

It has been proved (see, for example, [4], chapter 6, section 7) that the Wiener
transition function (see subsection 2.1) corresponds to some Markov process
with continuous trajectories and ¢ = T. This process is called the n-dimensional
Wiener process in the time interval [0, T').

2.3. A number of important allied concepts are connected with every Markov
process.

We say that A € e if for every & E there exist sets 4, and A; in IN* such
that 4, € A C A, and P, .(4:) = P,..(42). Taking P, ,(4) = P,,.(41) = P, .(42)
we can extend the probability measure P, , to the s-algebra M. The o-algebras
9% in the space @, are defined by 91} in the same way as J* by 91*.

The g-algebra 9 is defined as the minimal o-algebra of the space @, containing
the sets {w:z(w) € T}, with t = 5, I' € ®. It may be proved that for every
B & 91, the function P, (B) is a ®-measurable function of z.

If x is an arbitrary finite measure over the s-algebra ®, then the formula

(5) P, ,(B) = [ P, .(B)u(dx), Bco
E
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defines over the o-algebra 91 a certain measure P; .. If u(E) = 1, then P, ,(Q) = 1
and the value of P, ,(B) can be naturally interpreted as the probability of the
event B under the condition that the probability distribution of the state at the
moment s is equal to u.

We say that a € ¢ if for every finite measure u in ® we can construct an 4,
and an A4, of 9* such that A; € A C A,, and P, ,(4:) = P,..(4,). Analogously,
we say that I' € ® if for every finite measure u in B there exist a T'; and I'; of ®
such that T; € T C TI'; and p(Ty) = w(T,). The function P, ,(B) is a B-measur-
able function of z if B € .

It may be proved that if A &€ 3¢, then

(6) P, .(A|9M}) = Pi.(A), a.s. @, P, ,.
If the function £ is 9U-measurable and P, -integrable then
) M, ,(£9T) = Mz, (8), a.8. Q, P, 2.

Here the measure P, , is assumed to apply as above to the s-algebra M. In what
follows an important role is played by the s-algebra

8) G = M N e

3. Additive and multiplicative functionals

3.1. A function ¢i(w), with 0 £ s £ ¢ < {(w), assuming values in the interval
(=, 4], is called an additive functional of the Markov process X = (z, {, I,
P, .) if the following conditions are satisfied.

3.1A. ¢} is ®Ri-measurable.

3.1B. ¢i(w) + oh(w) = ei(w), 0=s=t=u<{(w.
If instead of 3.1B a weaker condition
3.1B'. ¢i{(w) + ¢h(w) = ei(w), a.8. Qy, P, 2,

is satisfied forany 0 < s < ¢ < u < Tand 2 € E. then we shall say that ¢ is an
almost additive functional of X.

The functional ¢} is called almost continuous on the right if for any s € [0, T),
z € E and for any sequence {, | ¢

©)) Pin— 1y R a.s. Q, P,...

If for each s € [0, T) and » € Q@ the function ¢i(w) is continuous on the right
with respect to ¢ € [s, {(w)), then we say that the functional ¢} is continuous on
the right. Analogously we define the notions of an almost continuous and of a
continuous functional.

In these definitions convergence is understood in the sense of the topology of
the extended segment (—w, 4], so that the requirement of continuity of ¢}
does not preclude the possibility of infinite values of ¢'.

The functional ¢} is called almost nonnegative if for any s € [0, T) and z € E

(10) ei(w) 2 0, a.s. Q, P,,..
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If oi(w) = Oforall0 = s £ ¢ < {(w), then the functional ¢} is called nonnegative.
For such a functional ¢i — ¢} = ¢4 = 0, with s £ ¢ £ u and therefore ¢} is a
nondecreasing function of ¢.

Two almost additive functionals ¢} and @i are called equivalent if for any
0<s=t<Tandanyz EE

(11) eiw) = gi(w), a.s. Q, P
THEOREM 1. Let ¢i be an almost additive funciional satisfying the condition
3.1C. ¢s(w) = 0, 2.8.Q, P, ,, foralls €0, T),z € E.

If o1 1s almost nonnegative and almost continuous on the right then there exists an
equivalent @ which 1s a nonnegative, continuous on the right additive functional.

If ¢} is almost continuous on the right (continuous), then there exists an equivalent
@i which 1s a continuous on the right (continuous) additive functional.

It follows from condition 3.1B with u = { = s that forall0 < s < T, and
x € E, the function ¢5(w) = 0 or +=, a.s. Q,, P, ... Therefore condition 2.1C is
equivalent to the requirement that forany0 = s < T,z € F

(12) P, {‘P:: = +°°} = 0.

The first conclusion of the theorem is proved in [4], chapter 3, theorem 3.2.
The second statement can be proved analogously.

ReMArk. It is possible to weaken somewhat the definition of the additive
functional by asking only that the function ¢i(w) be defined in the domain
{0 £ s £t < {(w)}, where {(w) is an arbitrary function satisfying the inequality
¢(w) £ {(w) = T.In doing so condition 3.1A is replaced by the requirement that
the function ¢} should be J*-measurable and that it should induce an J;-measur-
able function on Q.. In conditions 3.1B and 3.1B’ we replace ¢ by ¢ and Q, by
Q. = {w: {(w) > u}. Analogous changes must be made in the definitions of
continuity, almost continuity, equivalence, and so forth. In doing so theorem 1
remains true.

This remark will be used in section 7, where we shall let { = T, that is, we
shall suppose that the function ¢}(w) is defined for all w € 2. We note in this
connection that if ¢} is an additive or almost additive functional given in the
domain {0 < s =t < {(w)}, and if for every w € Q, there exists the limit

(13) ¢t-o = lim ¢},
the
then ¢} can be extended over the whole of & by the formula
0, ¢ s
(14) wil) =1
ot -0, s<¢ st

This extension retains all the properties: an additive functional remains additive,
a continuous one remains continuous, a nonnegative one remains nonnegative,
and so on.

3.2. We shall now consider some examples of additive functionals.
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3.2.1. If h(¢, x) is an arbirtary ®7 X ®-measurable function, where ®; is the
g-algebra of all Borel subsets of the segment [s, {], then

(15) ei(w) = h(t, z) — h(s, 2,)
is an additive functional.
3.2.2. Let the function 7,(w), where 0 < s < {(w) satisfy the conditions.
3.2.2A. s £ 1,(w) = ¢(w),
3.22B. {r, > t} € &, 0
3.22C. {r, >t} C {r. = 7}, 0
Then the formula

0, s St < 7w
(16) ei(w) = {
+o,  7(w) St <{(w

defines a right-continuous, nonnegative additive functional. This is the general
form of right-continuous additive functionals which assume only the two values
0 and .

3.2.3. Let V(u, x) be a % X B-measurable function on [0, T'] X E, let p be a
measure over the g-algebra ®% and let us suppose that foralls € [0, T], z € E,

I\ TIA

sSt< T,
s=st<T.

IIA A

the integral }; f V(u, x.) u(du) converges or diverges to 4 almost surely with
respect to P,,.. Then

an Piw) = [ V(u, z)u(dw), 0<sst <
(8]

defines a continuous on the right additive functional of X. If the measure u is

continuous, then this functional is continuous. If V(u, ) = 0, then it is nonnega-

tive.

3.24. Let X = (x4, T, 9, P,..) be an n-dimensional Wiener process, given in
the time interval [0, T). Let f(¢, z) for t € [0, T), x € E be a function with
values in E, satisfying the conditions

3.24A. forevery T E®

(18) {t,2) :ft, ) €T} € Br X B,
3.2.4B. foreveryt € [0, T)
(19) sup fi(u,z) < .
oO<ust
z€E

It has been proved [6] that it is possible to select a value of a stochastic inte-
gral such that

(20) ¢ = [8 f(u, z,)dz,

defines a continuous additive functional of X. If, moreover, the following con-
dition is fulfilled
3.24C, foreverys € [0, T),x € E,
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(1) /ST M...f*(u, v)du < =,

then the continuous additive functional (20) can be selected so that for every
w € Q@ and for every s € [0, T') there exists the limit

(22) er-o(w) = lim ¢i(w).
tr T

3.3. A function aj(w) where 0 < s < ¢ < {(w), which assumes values in the
interval [0, 4), is called a multiplicative functional of the Markov process X if

3.3A. o} is Ri-measurable,

3.3B. ai(w)ai(w) = as(w), 0

The formulas

IIA

s£t 2 u<{(w.

(23) o =c %, ¢ = — log o}

establish a one-to-one correspondence between the set of all additive and all
multiplicative functionals of the process X. In particular, to the additive func-
tionals described in subsection 3.2 correspond the multiplicative functionals

(24) a = exp {— [ V(u, zu(du)},
(8,t]
(25) ai = Xr>ty
. s gt x) — —h(t,2)
(26) ay = o(s, ) g(t,x) = ¢ .

To continuous on the right (continuous) additive functionals correspond
continuous on the right (continuous) multiplicative functionals. The analogous
assertions about almost continuous on the right and almost continuous function-
als are also valid. To nonnegative additive functionals correspond multiplicative
functionals which satisfy the condition of < 1, with 0 < s < ¢ < T. The notion
of almost multiplicative functionals arises naturally and theorem 1 can be carried
over to such functionals.

4. Transformations of transition functions

4.1. THEOREM 2. Let X = (x4, §, M}, Ps.2) be a Markov process in a state space
(E, ®). Let o be a multiplicative functional of the process X satisfying the condition
41A. M,.ai £ 1forall0 £s £t < T,z & E. Then the formula

(27) P(S, x;t, F) = MS.:[XF(Il)aﬂ
defines a transition function in the state space (E, ®).

Proor. The function P(s, z;¢, T) obviously satisfies conditions 2.1A and
2.1D. Condition 2.1C follows from 4.1A. Condition 2.1B is satisfied in view of
subsection 2.3. There remains to check condition 2.1E.

It is obvious from (27) that for any ®-measurable bounded function f(x)

(28) [1@)PG, 25t, dy) = M. [f(w)al]
E
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Ising conditions 3.3A and 3.3B and formula (7) we have
(29) f'(.ﬂ‘, T;u, I‘) = Ms.z[X[‘(xu)a;] = M;,z[aser(Iu)d;:]
= Ma,z{ai Ma.z[XF(xu)azl‘mi]}
= Mt.z{ai Mt,z.[Xr(ivu)aZ]} = Ms,x[a‘; P(t; Xy, U, F)]
Comparing (28) and (29) we see that the function P(s, ; ¢, T') satisfies condition
2.1E. This completes the proof of the theorem.

Condition 4.1A is always satisfied for the functional (25), and also for the
functional (24) with V(u,y) = 0. .

For a multiplicative functional o; = g(¢, x.)/g(s, ;) the function P(s, z; ¢, T)
can be directly expressed in terms of the transition function P(s, z; ¢, T') by the
formula

1
g(s, )

(30) P(s,2;t, 1) = / P(s,x;t, dy) g (1, v)-
i

In doing so, condition 4.1A becomes

4.1A". M, . g(t,z) S gs,r)foral0 =s =t < T,z E L.

Let X be an n-dimensional Wiener process in the time interval [0, T). Let us
set

t
(31) ap = exp I:— / Vu, z,)du — / flu, xu)dxu:l,

where V (u, y) satisfies condition 3.2.3 and f(u, y) satisfies 3.2.4A and 3.2.4B. It
can be shown [6] that condition 4.1A’ is satisfied for o} with V = f2/2. If V =
/2, then for any s € [0, T') and z € E,

(32) M, .ci = 1.

If the function f satisfies condition 3.2.4C as well as 3.2.4A and 3.2.4B then for
Vzf2

(33) M zor-o £ 1.
If, moreover
(34) sup_f(u, @) < <,
O0su<T
zEE

then, for V= f%/2,
(35) M, . a7 = 1.

5. Transformations of Markov processes

5.1. In section 4 we constructed a transition function P(s, z;t, ') starting
with a Markov process X and a multiplicative functional «i. By subsection 2.2
it is possible to construct a Markov process X from the transition function
P(s, z; t, T) under some general conditions. However, in doing so the connection
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between the characters of the trajectories of the processes X and X has not been
made clear. Under some additional conditions this connection is clarified in
theorem 3. It turns out that a Markov process with the transition function
B(s, z;t, T') can be selected in such a way that its trajectory coincides with the
beginning of some trajectory of the process X.

THEOREM 3. Let X = (x4, ¢, MG, Ps,2) be a normal Markov process given in the
ttme interval [0, T') in the state space (E, ®) and in the space of elementary events Q.
Let the multiplicative functional o of the process X and the nomnegative function
£(w), where 0 € Q,0 = t < {(w), satisfy the conditions

5.1A. o%; £ &, 0=s=t<{(w)

5.1B. liin aity = asts,
tys

5.1C. &, is 9l*-measurable,

51D. M, .t = 1 forevery0 = s < Tand x € E.

Let i = ok, for 0 S s St < {(w). For every w € Q, = {w: as(w) = 1} we
construct a measure ¥ over the o-algebra By on the interval (s, {(w)], such that for all

te[s ¢,
(36) P, §] = i
(such a measure exists and is unique). For w & Q, we denote by y* the unit measure
concentrated at the point s.

Let® = @ X [0, T], it = M X ®Y, F(w, ) = min [¢(w), 1], £(w, ) = 2.(w)
for 0 £t < §(w, u). For every C € F1* we let
(37) B..(C) = M, .¢(C.),

where C,, denotes the w-section of the set C, that is the totality of numbers u such that
(w, w) € C. In particular it follows from (37) that for A € In*

(38) Bus(d) = [£()P.u(da).
A

Let W be the totality of all subsets of the space Q of the form A X (¢, T, where
A € mi.

Then X = (&, §, 95, P,..) defines a Markov process in the state space (E, ®)
with the transition function

(39) P(S, z; t; P) = Mc.z[xl"(xt)a‘:]'
In general if n s a Mi-measurable function such that na; is P, ~integrable, then
(40) M, .[nxi> ] = M,.[nai].
Proor. (1) Let w & 2, We note that forany 0 £ s £t £ u < {{w)
(41) Vi = outy = dioit, < aify = Y.

Therefore, i for s = ¢ < { is a nonincreasing function of ¢. Comparing (41) with
5.1B we conclude that ¥ T ¢ifor u | ¢, and hence that ¢} for s £ ¢ < { is con-
tinuous on the right. Therefore there exists a measure (which is unique) over the
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o-algebra of all Borel subsets of the interval (s, {] such that y*(t, ¢{] = ¢i for all
t € [s, t). We extend this measure over the o-algebra ®%, letting
(42) ¥[0,s] =¢(5, T] = 0.

(2) Consider the system F of all subsets A of the set @ X [s, T], such that
A, € ®7for every w € € and the function ¢*(4,,) is M*-measurable. This system
satisfies the conditions

(a) the whole space @ X [s, T] is an elenemts of F;

(b) if two nonintersecting sets belong to & then their sum belongs to ;

(c) if A, BE T, and A C B, then B\ 4 € 7;

d) if Ay, -+, A --- EFand A, T A, then 4 € 7.

The system § contains the totality € of all sets of the form A X (¢, T'] for
tE[s, T), A E M.

Inasmuch as the intersection of two sets of @ belongs to @, it follows that &
contains the c-algebra Jit* = 9= X ®%, generated by € (see, for example, [4],
lemma 1.1). Therefore formula (37) has a meaning.

(3) Formula (37) obviously defines a measure over the o-algebra Jit*. We
prove that formula (40) holds for this measure. We denote by 3C the totality of
all functions 5(w) for which (40) holds. We note first of all that 3C contains the
indicators of all the sets A of 91;. In fact by (37), (36), (7), 3.3A, 5.1C, and 5.1D,
for any A € N,

(43) M. :(xaxe>) = Pos{d X (t, T} = Ma(¥ixa)
= Ms.z[XAai Ma,x(stlmi)]
= Ma.z[XAasi Mt,x;gt] = M:,:(XAaat‘)-

It is obvious that the system JC contains together with any two functions the
linear combination of these functions and together with any nondecreasing
sequence of nonnegative functions the limit of this sequence. Therefore (see, for
example, [4], lemma 1.2) 3C contains all 91;-measurable functions 5 for which na}
is P, ~summable. This proves formula (40). If in (40) we let 5 = xr(z:) we
obtain (39).

(4) We now show that (&, {, S, P,,) satisfies conditions 2.2A to 2.2F.
Conditions 2.2A and 2.2B are obviously satisfied. Further, by formulas (40) and
(37) and taking into consideration that of can be equal only to either 0 or 1, we
have

(44) ﬁ,,(ﬁ) = Ms.z{Xf>a + X{és} =M, 05+ M,. V[O, S]

= Ma,z a‘; + Ps.z(Q \ Qs) = Mc,za: + 1 - Pn,z' {a‘§ = 1} = 1.
Therefore condition 2.2C is satisfied. Conditions 2.2D and 2.2E follow readily
from formula (39). It remains to check condition 2.2F. In order to do this we

must show that forany0 £ s £t £ u < T, withz € E,T € ®, and 4 € 4it;,
when

(45) P..(4, 2, €T) = M,.[xaP(, T u, T)],
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we have A = A X (t, T], where A € 9%, and

(46) 4,2, €T} = 4, 2. ET} X (4, T].
By (40), 3.3B, 3.3A, and (39) we have
(47) B, (4, 2. € T) = M,[xaxr(@.)al] = M, [xsaixr(z.)a]

= M,,Z{XAaiM:.z[XP(xu)a:‘lm"]}
= Ms,z {XAQ:Ml,zu[Xr‘(xu)ai‘]}
= M:,z{XAaiP(ty T U, F)}

On the other hand,
(48) xaP(t, #;u, T) = xaxi>P (¢ x4, T)
and by (40)
(49) M..[x2P(t, 2w, T)] = M. {xaP(t, 214, D)}

Now (45) follows from (47) and (49).

5.2. The Markov process X constructed in theorem 3 will be called a (af, &)-
subprocess of the Markov process X. We shall consider the most important
special classes of the (ai, £;)-subprocesses.

Suppose that X is a normal Markov process. Let the multiplicative function
o} and the function &, satisfy conditions 5.1C and 5.1D and the two conditions

5.1A". aff, = oif, 0=s=t<{(w),
51B". P, {as =1} =1 foral0 s < T;z € E.

It is obvious that conditions 5.1A and 5.1B follow from 5.1A’ and therefore it is
possible to construet the (of, £;)-subprocesses of X.

Consider the mapping + of the space @ into &, defined by the formula y(w) =
{w, £(v)}. We note that for every C € Jii* = 9n* X ®%

(50) Pa(0) = [ £()Pua(do).
¢
This formula follows from (37) if we note that for every w & Q, the whole measure
¥* equal to &,(w) is concentrated in the point {(w) and that by condition 5.1B’ we
have P, .(Q,) = 1.
It follows from formula (50) that B, .{f = ¢} = 1 forall 0 s < T,z € E.
In the example under consideration it is natural to alter the process X slightly

in order to return from the space of elementary events { to the space 2. We note
that

(51) fv(@)] = §(w),
(52) T[v(w)] = z4(w),
(53) UG = o,

(54) 9T = owe.
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Let
(55) Pi.(v'4) = B, .(4), A € Fie.

Then X’ = (z,, ¢, 9%}, Ps,) defines a Markov process. This follows from theorem
2.5 of [4] or can be checked easily independently. In the terminology of [4] the
process X' is obtained from the process X by means of a transformation v of the
space of elementary events. The elements of this process are the same as those of
the original process X with the exception of P} .. The latter, in view of (50), can be
expressed by the formula

(56) Pi(d) = [6(@)Pus(de), 4 € o,
A

In this way the process X’ is obtained from the process X by means of the
transformation of the original measures P,, by formula (56). The transition
function of the process X’ is the same as of the process X and can be expressed by
formula (39).

We will suppose that the multiplicative function «f satisfies condition 5.1B’
and the following conditions.

5.2A. For every w € Q, there exists the limit

(57) at_o = li?m ai.
t1¢
52B. Foralls € {0, T),z € E,
(58) M, .af_o = 1.

It is easily seen that in this case the function & = of o satisfies the conditions
5.1A', 5.1B’, 5.1C, and 5.1D. Therefore we can obtain a Markov process with the
transition function (39) by transforming the measures P, . by the formula

(59) Pia(4) = [af-o(w)P.c(dw), 4 €.
A
As an example of a multiplicative functional for which the transformation (59)
is possible we can take the functional discussed in 4.1, where

(60) ol = exp (— % /  fr(u, w)du — / ‘fa, xu)dxu)

for an n-dimensional Wiener process X given in the time interval [0, T'). Here
we assume that f satisfies conditions 3.2.4A, 3.2.4B, 3.2.4C, and (34). According
to the remarks at the end of subsections 3.2 and 4.1, the functional o} satisfies
conditions 5.2A and 5.2B.

53. If £(w) =1 for all 0 £ s < {(w), then we shall denote the (o, &)-sub-
processes of X by the af-subprocesses. In order to be able to form the af-sub-
processes it is necessary and sufficient that the following conditions be satisfied.

5.3A. Forevery0 = s £ ¢ < {(w), wehave ai(w) £ 1.
5.3B. liin adi(w) = ai{w).
tls
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Conditions 5.3A and 5.3B are obviously equivalent to the requirement that
the corresponding additive functional to o} be nonnegative and continuous on
the right. In particular these conditions are satisfied for the functional (24) with
V = 0, and for the functional (25).

For the at-subprocess the measure P, . defined by formula (37) is an extension
of the measure P, .; that is, B,..(4 X [0, T]) = P,.(4) for A € an*. (The subset
A X [0, T] of the space @ X [0, T], as usual is identified with the subset A of
the space Q.) By (40) for any A &€ 9}

(61) B,.(4,T > t) = [aiP,.(dw) = [P, .(dw).
[ [

Starting with (37) it is not hard to verify that this formula holds for any A & 31*.
Since the function of is ®R}-measurable it is obvious that

(62) o =B, >t} =P, > tlm}
=B,.{f > tay, a.s. Q, P,...

In view of (62) an intuitive picture of the formation of the ai-subprocess can
be given as follows: the trajectories of the original process terminate with a cer-
tain probability distribution; «j(w) denotes the probability that the trajectory
Zu(w) will not terminate in the time interval [s, ¢].

The of-subprocesses of the Markov processes are studied in detail in chapter
3 of monograph [4].

5.4. The third important class of (af, £:)-subprocesses is connected with the
class of functions 7,(w), where 0 < ¢ < {(w), which satisfy the conditions

5.4A. n,(w) is F-measurable;

54B. 0 £ n(w) = 7(w) for0 £ s 2t < {(w);

5.4C. for every w € Q the function »,(w) is continuous on the right in ¢;

54D. foranys € [0, T), s €EE,0 < M, .n, < .

It is easily seen that under these conditions the function f(¢, ) = M, m.
satisfies condition 4.1A’, and that the pair

s __ fgtz xt} — N
(63) 4=tz T 1

satisfies conditions 5.1A to 5.1D. The transition function of the (of, £;)-subproc-
ess that corresponds to this pair can be expressed in terms of the transition
function of the original process by means of formula (30).

6. The stationary case

6.1. We shall now assume that the fundamental interval [0, T') coincides with
the half line [0, ). The transition function P(s, z; ¢, T) is called stationary if it
depends only on the difference ¢t — s:

(64) P(s,z;t, T) = P(t — s,z,T).
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The Markov process X = (x,, {, Mi, P,..) is called stationary if its transition
function is stationary and if forany 0 =< ¢ < {(w) there exists an o’ € @ such that

(65)  xpa(w) = m(w'), forall0 £ h < §(o) = (w) — ¢

Let X be a stationary process. We denote by 91* the minimal system of
subsets @ = {w: {(w) > 0}, that contains all the sets {w:z,(w) € I'}, with
t 2 0,T &€ ®, and is invariant with respect to the operations of addition, inter-
section, and complementation. For every 9t*-measurable function #(w) we set

(66) 0.£(w) = E(w'),
where ' is connected with w by relation (65). Note that this definition is correct
since for all w’ connected with a given w the value of #(w’) remains unaltered. The

operators ¢, preserve all algebraic operations and the operation of passing to the
limit. We have

Onf () = f(xisn),

m[ wmmm@o=f V (1, Tusn)(du).
(s,t] (s.t)

(67)

It may be proved that if the process X is stationary, then for any (30* N %*)-
measurable function #(w), with v € Q,, and any A = 0, z € E, the function
0x¢ 1s 9T**+-measurable and

(68) M. .t = M,14,.(0:5).

6.2. An additive functional ¢} of a stationary Markov process X is called sta-
tionary if forany h 2 0, with0 £ s £t < T,and zx € E,

(69) oh‘P.; = ﬁﬂ a.s. QH_;,, P.+h,,;.

The stationary property of multiplicative, almost additive, and almost multi-
plicative functionals is similarly defined. A functional that is equivalent to a
stationary function is also stationary. A multiplicative (almost multiplicative)
functional o} is stationary if and only if the corresponding additive (almost
additive) functional ¢} is stationary.

It follows from (67) that the additive functional

(70) a=ﬁwwm
is stationary. By [6] the functional
(71) ¢l = [ S,

is stationary also. It is easily seen that the functional described in 3.2.1 is station-
ary, if the function h(¢, x) does not depend on ¢; the functional described in 3.2.2
is stationary if and only if forany h,s 2 0,z € E

(72) Onrs = Togn — h, a.s. Pz {re > s + h}.

TuroreM 4. Let X be a stationary Markov process and let o} be a stationary
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multiplicative functional of this process. Then the transition function formed by (27)
18 stationary. Every (o, §,)-subprocess of the process X is a stationary Markov

process.
Proor. We have
(73) P(S: z;t, P) = Ml,z{Xl‘(xt)au;} = Ma.z{os[xr(xt—a)a‘t)—x]}

= Mo, {xr(zs)of-s} = P(0, z;t — s, T),

which proves that the transition function P(s, z;¢, I') is stationary. Since the
transition function of the (af, £;)-subprocesses X of the process X is given by
formula (39), in order to check that X is stationary it remains to show that for
every @ € 1 = @ X [0, T there exists an & such that

(74) Fon(@) = Eu(@), forall0 < h < ¥&@) = §(@) — t.

Let & = (v, u), where w € €, u € [0, T]. Since X is stationary there exists an ’
satisfying condition (65). It is easily seen that & = («’, u — t) satisfies (74).

7. Characteristics of almost additive functionals

7.1. The significance of additive functionals in the theory of Markov processes
should be sufficiently clear from the foregoing sections. It is natural therefore to
propose the problem of finding the most general form of additive and almost
additive functionals for the most important classes of Markov processes. In this
section we present the results first obtained by Volkonsky [12] in a somewhat
different form. We will consider additive and almost additive functionals ¢3(w)
defined for all w € Q (see remark at the end of section 4).

Let ¢! be an almost additive functional of the Markov process X =
(x, £, MG, P, ,.). We shall call the function
75) (@) = Mool
the characteristic of the functional ¢}. We assume that the mathematical expec-
tation of the right side exists.

We denote by W(X) the totality of all almost additive functionals ¢? of the

process X that satisfy the following condition.
7.1A. Forevery [s,t] C [0, T),and z € £

n—1
3 3 Sk 12 —
(7()) ll;lSll|n—];0 Ma,z kgo [(Pshx] - 0'
(We denote by S the subdivision s = s < 8 < -+ < s, =t of the segment
[s, t] and set ||S|| = maxogk<n (Sk+1 — Sx)-)

It is obvious that the class W(X) contains together with every almost additive
functional all the functionals equivalent to it. It is not difficult to see that the
following condition is satisfied for all functionals of the class W(X): for any
[5,8] C[0,T),z € E,

(77) Ma.z[‘P‘;P < o,
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THEOREM 5. Let ¢} be a nonnegative almost additive functional satisfying con-
dition (77). In order that ¢} belong to class W(X) it.is necessary and sufficient that
there exist for ¢} an equivalent nonnegative continuous additive functional.

Proor. Sufficiency: let ¢} be a nonnegative continuous additive functional.
Let

(78) vi(h, w) = sup ¢o(w).

sSusSvsSuth st

Since ¢} is continuous and by (77) we have
(79) lim ¥i(k, ) = 0, a.s. Q, P, ..

Since ¢} is nonnegative we have
n—1
(80) PIRCMig= yi(lISIl, w)et = [t

Hence Y 2-d8[¢i,.]? is majorized by a P, ,-summable function and tends to zero
a.s. , P, . as ||S|| — 0. Therefore condition 7.1A is satisfied.
Necessity:let 0 < s <t < T, | t Since ¢} is nonnegative

(81) PhZenZ ZeRZ 2 a.s P,
Therefore there exists almost surely with respect to P, . the limit £ = lim ¢j.
Let sy < 81 < -+ < s, be any subdivision containing as two consecutive points
t and t. Then

n—1
(82) (£ — 0D < (oh — o)) = [pa]* = Z‘b [osi.]?

i<

and by condition 7.1A we have M, .(f — ¢7)? = 0; that is, the functional ¢} is
continuous on the right. Obviously condition 3.1C is satisfied and by theorem 1 a
continuous nonnegative additive functional &} can be found that is equivalent
to ¢l

Wenote that forany s = sg <s1 < +++ <8, = ¢

®3) jup [BF <5 [, a5. 2 Po

Let

(84) A= {w: s =0 forallu & (s, T)}.

1t follows from (83) and 7.1A that P, .(4°) = 1 for all s and ». The formula
| L[ € A

(85) ;={+°°, o Ar

defines a nonnegative continuous additive functional equivalent to ¢:.

THEOREM 6. Almost additive functionals ¢ of class W(X) are defined by their
characteristic, uniquely up to equivalence. More precisely, for any 0 = s =t < T,
2 E
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) . . n—1
(86) ¢ = ﬁ’s‘;if}i ;Z‘o Mg a(da)  (Po.o)-

The notation ¢ = Lim. &, (P,,.) meansthat M, (¢, — £°*>— 0.
Proor. Let

(87) o = s0§:+‘ - mi:»,n(xu) = ¢::+1 - Msx.xakﬁogtu
= §0§:+l - Ma.z{¢§:+xlm§b}'
It is easily seen that

(88) M, .81 = 0, ko 1
and that
(89) M, .58 = Mo ilena]? — M, [mi,(x) ]2
< M. [ef.]%
Furthermore,
(90) o= mhm) = T b

1t follows from (88), (89), and (90) that
n—1 n—1

(91) Ms,x[‘Pi - Z mg:u(xsg)]z =< Mx,z Z [‘Pgtﬂ]z.
k=0 k=0

Hence (86) follows from 7.1A.

7.2. What functions mj(x) are characteristics of almost additive functionals of
the process X? It follows readily from 3.1A, 3.1B, and (7) that the following
condition is necessary.

72A. Forany0 £ s =t =u =T,

(92) mi(x) + M,,. mu(x,) = ma(x).

Condition 7.2A by itself is not sufficient. Some supplementary conditions are
given by the following theorem.

THEOREM 7. Suppose that a nonnegative function mi(x) satisfies condition
7.2A, as well as the following conditions.

7.2B. For every t € [0, T) the function mi(x) is a ® X ®-measurable function
of s and z.

7.2C. sup sup mi(z) = B(h) =0 as h — 0.
2ECE 0=5s=<t<s+h<T

Then mi(z) is a characteristic of some almost nonnegative almost additive func-
tional ¢} of class W(X). Moreover

t
(93) e = Lim. l7nﬁ+;.(a:u)du.
wio J, h
COROLLARY. By theorem 5 the functional ¢; satisfying (93) can be selected in
such a way as to be a nonnegative continuous additive functional of the process X.
In the proof of theorem 7 we need the following lemma.
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LemMma 1. If

(94) ot = [, w)du,
then forany0 £ s St 2 u < T,andx E K,
(95) M, .[¢\]? = 2M, . ﬁ * f(v, 2o)m(xo)dp.
Proor or LEMMA 1. We have
(96) [ = 2 [ (0, )k .
By (7)
(97) M. .[f(v, xo)ou(x0)] = M...{f(», xV)Ma.ZI:‘P;lm]}
= Ma.z[f(v, xv)Mv,x.th]
= M,..[f(v, xo)mu(x,)].
Proor or THEOREM 7. Let
i 1
(98) fh(u; T) = ﬁ mz+h(l°)7 fh.l(u; :L) = fh(u: x) - fl(u’ .’1?),
(99) oi(h) = f il za)du, oi(h, 1) = f  fai(u, 20)du,
(100) mi(z, h) = M, ih), mi(z, h, 1) = M, 0ih,1).

Note that by 7.2A

1 [t 1 [t+h 1 [e+h
(101) miz, h) = 7 f M. mion(edu = 7 f mi(e)du — ; f mi(z)du,
8 t s

and by 7.2C

(102) |mi(z, b) — mi(x)] < 2B(h).

Moreover,

(103)  |miz; ¢, )| = |mi(z, h) — mi(z)| + mi(z) — mi(z, D] = 2[8(h) + BD)].
By lemma 1 and by estimates (102) and (103) we have

(104) M. [oi(h, D = 2Ma.s [ fualv, z)miCas; b, Do

< 4[8(k) + B(D)][mi(x, k) + mi(z, D]
=< 8[8(h) + BDOIB( — 5) + B() + (D]

The inequality 8(a + b) < B(a) + B(b), for a, b = 0 follows readily from 7.2A,
and by 7.2C we have that g(a) < » for any a > 0. Therefore it folllows from
(104) that there exists the limit ¢} = 1i.m.s;00%(k), Where

(105) M, .[¢: — oi(h)]* < 8B(R)[B(t — 5) + B(M)].
It follows from (105) that ¢ satisfies condition 3.1B’. We shall show that the
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functions ¢} can be selected in such a way that they satisfy 3.1A. We note that
the above construction determines each function ¢; only up to an addition of a
function, which is equal to zero outside some set A satisfying the condition

P, .(4) = 0forall z € E. By (105) we can select a sequence h; | 0 such that for
allz € F

(106) P..{let = oih)] > 5} < 5
Then by the Borel-Cantelli lemma,
(107) ei(he) — ¢t a.s. Q P,
and we can let

. J lim @3(hy), if the limit exists,
e L+ o, otherwise.

It is clear that ¢} is an almost nonnegative, almost additive functional, satis-
fying the inequality (105) and therefore also (93).
It follows from (105) that

(109) M, .le! — ¢i(h)] = {M,.[¢t — ¢i(h)]}172
< 3{BMI[BE — 5) + B}
Comparing this formula with (102) we conclude that mi(z) is a characteristic of
the functional ¢7.
There remains to check that the functional ¢} belongs to W(X). Let § =

{s =8 < s < --- < 8, = t} be asubdivision of the segment [s, ¢]. By lemma 1,
inequality (102), and the fact that mi(x) is nonnegative we have

(108)

8k+41

(110) M, .o (W] = 2M.. | fule, @) m(xe; h)do

8k41

2M.,.. | - (v, 2 [mi(e) + 28(h)Jdv

IIA

k41

< 206(IS1) + 2800 IM..o [ o, 2.
From (110) and (102) we have
n—1
1) M T lena®)] < 208(I8]) + 28()]mitz, b)
< 2[8(IISI) + 28(R)1[mi(z) + 26(k)].
Therefore, .
(112) M.. ¥ [of.]" < 28(ISID mi(a).
7.3. The characteristic of an almost additive functional is a function of three
variables. With some additional conditions it can be expressed as a function of

two variables. In fact, suppose that for any s € [0, T) and x & E there exists
a.s. P, . the limit
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(113) ¢t-o0 = lim ¢}
the

and let || be majorized for all ¢ € [s, T) by some P, _-summable function.
Then forany0 S st su<T,

(114) llm’ Ms,#il = Ms.z‘PE‘—O'
Let

(115) m*(x) = M,,.0¢-0.
By (114)

(116) 11111; ma(z) = m*(z)

and from 7.2A we obtain the following expression for the characteristic of the
functional ¢} in terms of the function ms(z),

(117) mi(x) = m*(x) — M, . m(x,).

It is not hard to show that every function mi(x) obtained from any function
m*(z) by formula (117) satisfies condition 7.2A.

8. Survey of some results and problems concerning additive
functionals and transformations of Markov processes

In what follows we consider only stationary Markov processes. We make use
on several occasions of the notion of a strong Markov process. The definition of
this concept will be found in [4], chapter 5.

8.1. Random time change. It is possible to connect with additive functionals a
transformation of Markov processes having quite a different character from the
transformations described in section 5.

Let X = (x4, &, MG, Ps..) be a stationary Markov process and let ¢} be a con-
tinuous additive functional of X, satisfying the conditions

8.1A. foranyh 2 0,0 = s =t < T, w E Qi
(118) Bupi(w) = @iti(w);

8.1B. forany0 = s <t < T, w & Q,,
(119) ei(w) > 0.

Condition 8.1A is a stronger variant of the stationary condition, while condition
8.1B is a stronger variant of the condition on nonnegativeness.

For every w € Q the function ¢{(w), with0 < ¢ < {(w) is monotone increasing
and continuous. The inverse function 7,(w), with 0 < ¢ < ¢f_o(w), is also con-
tinuous and monotone increasing. Under some general assumptions about the
Markov process X it is possible to construct a Markov process X =
(&, §, 9, B, ..) for which the state space and space of elementary events are the
same as for the process X with

(120) F@) = ¢f-o(w),
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(121 T(w) = Trw)(@),
(122) g = 9,
(123) D

where 9} is defined with respect to £, in the same way as 91} is defined with
respect to x, and the measures B, .for s > 0 are defined in terms of the measures
Py.. = Py, by means of the formula P, .(§,4) = P,.(4), where the operators 4,
are constructed with respect to £, in the same way as the operators 8, are con-
structed with respect to ;. In 6.1 we defined the action of these operators 6, on
functions; their action on sets can be defined by the formula

(124) 0,A = {w:0,x4 = 1}.

In fact it is sufficient to require that E be a metrizable, locally compact space,
and that ® be a o-algebra of all Borel subsets of the space E, that X be a right-
continuous strongly Markov process and that the o-algebra 9% contain every
subset A € Q, such that for all w > ¢, we have A N\ Q, € NL.

We say that the process X is obtained from X by means of a random time
change 7.(w). Transformations of random time change are considered by
Volkonsky in papers [9] and [11]. I am also informed from a private letter of
K. Itd6 that random time change plays an important role in the monograph of
1t6 and H. P. McKean on the theory of diffusion processes that is to appear
shortly.

8.2. Transformations of infinitesimal operators. To a stationary transition
function P(¢, z, I') corresponds a family of operators

(125) T.4@) = [ P, =, dyf),

E

in the space E of all bounded ®-measurable functions f. The infinitesimal oper-
ator of the transition function P(t, z, I') is defined by the formula

for functions for which the limit of the right side exists uniformly with respect
to z € E. Sometimes it is more convenient to consider the weak infinitesimal
operator which is also defined by formula (126), but instead of uniform conver-
gence we require convergence for every z and boundedness of [7T.f(z) — f(z)]/t
forallz € Eandt 0. »

Let E be a metrizable space, let ® be a o-algebra of all its Borel subsets. The
transition function P(¢, x, T') in the space (E, ®) is called of Feller type if the
operators 7', transform the space C of all continuous bounded functions into
itself. For such transition functions it is natural to narrow down the domain of
definition of the operator A by imposing the following conditions: f € C, Af € C.
This restricted operator we shall call the C-infinitesimal operator.

Let X be a stationary Markov process, let o} = exp (—¢}) be a stationary
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multiplicative functional of X. Then the transition function defined by (27) is
stationary and its infinitesimal operator A can be calculated from the formula

(127) Af(e) = lim Yo ftrd = Lo

How is this operator 4 connected with the infinitesimal operator A of the process
X? The answer to this question is known only for some special classes of function-
als o

In 1955, Dynkin [3] showed that if the transition function of the process X is
Fellerian and stochastically continuous and if

(128) ¢ = — log a} = ] "V (z0)du,

where V(z) is a continuous bounded function, then A = A — V, where V is the
multiplication operator of the function V. Here we take for A and 4 weak C-in-
finitesimal operators and say that the transition function P(¢, z, IT') is stochasti-
cally continuous if lim; y o P(¢, x, U) = 1 for every neighborhood U of the point z.

Volkonsky [11] has shown that if ¢} is any stationary nonnegative continuous
additive functional for which My .¢?-o < , then

(129) A = AE + 8),
where
(130) §/@) = M [ fwdel.

The operator S can also be expressed in terms of the characteristics mi(x) of the
functional ¢j. The above result is proved under the assumption that X is a
standard continuous process, satisfying the condition sup.cgMo,.{ < ®.Aprocess
X is called standard if it satisfies the conditions shown after (129) as well as the
condition of “quasi-continuity on the left,” namely, if . are quantities which do
not depend on the future (or Markov times), then it follows from r,(w) T 7(w),
with @ € © that for every z € E the relation ., — &, a.s. &, Py . holds. This
condition is satisfied for instance by all continuous processes.

If o} = g(x.)/g(x.) where the functions g(z) and 1/g(x) are bounded, then it
follows readily from (30) that Af = (1/¢9)A(gf)-

It is known (the case n = 1 is considered for instance in [9]) that if X is an
n-dimensional Wiener process and if
(131) d=3 / W) du + / W) dz.

s 8

then the operator A for doubly continuously differentiable functions is given by
the formula

(132) Af(z) = Af(x) — h(x) grad f(2),
where

(133) ar=zar =355
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The question as to how the infinitesimal operator changes with the random
time change is considered by Volkonsky [9]. He proved in particular that if X is
a right-continuous process of Feller type in a compact state space, then under a
time change corresponding to an additive functional

(134) ol = / " Vi(r)dy,

where V' is a continuous positive function, the C-infinitesimal operator of the
process X is multiplied by the function 1/V ().

8.3. Regular excessive functions. Integral representation of excessive functions.
Let the state space (E, ®) satisfy conditions (a) and (b) of subsection 2.2. Denote
by Q(E) the totality of all functions ¢(t) with values in E, defined on all intervals
[0,N). Let

) =N\
zi(e) = (1), 0=<t<¢(e).

Denote by 9° the s-algebra of the space Q(E) generated by {¢:z.(¢) € T},
where I' & &, u = s, and by 9T} the s-algebra of the space %(E) = {¢: t(¢) > t},
generated by {¢:x.(¢) €T} where T © ®, u € [s,t]. It is shown (see [4],
theorems 4.2 and 2.6) that to every normal transition function in the space
(E, ®) corresponds uniquely the Markov process X = (x,, {, 9}, P,,.) for which
Q(E) is the space of elementary events; x, and ¢ are defined by formula (135) and
the measures P, . are given over the g-algebra 91*. We call this Markov process
canonical. If the transition function is stationary, then the corresponding
canonical process is also stationary.

Suppose that ¢ and ¢ belong to Q(E). We shall say that ¢ is a contraction of
o, if $(¥) = (o) and Y(t) = o(t) for 0 £ ¢ < (). We shall call the subset
A C Q(E) complete if together with every element ¢ every contraction of ¢ is
contained in A.

Let P(t, z, T) be a stationary transition function in the state space (E, ®),
let T, be the operators defined by (125). The nonnegative function f(x) is called
excessive with respect to P(t, z, T) if

8.3A1. Tf(z) = f(x) forallt 20,z € L.

8.3A2. T\f(z) T f(z)fort | O.

Let the positive function f(z) be excessive with respect to the normal tran-
sition function P(¢, z, T'). Then

(136) Pi(t, 2, T) = f—(la P(t, z, dy) f(z)
T

(135)

is again some normal transition function in the space (E,®). Let X =
(ze, &, 9, Poz) and X7 = (w4, ¢, 9, PY;) be two canonical Markov processes
corresponding to the transition functions P(¢, z, T') and P/(¢, z, T'). We shall
call the function f regular if the following condition is satisfied.

8.3B. If A is a complete subset of the space 2(E) and if for some s and for all
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z € E we have P¥(A) = 1, then P%(4) = 1. By P& and P/ we denote the
outer measures corresponding to the measures P,,; and P;,.

In order that there exist a Markov process with the transition function P(¢,z, T')
and a set of trajectories A C Q(E), it is necessary and sufficient that P¥.(4) = 1
for all s = 0 and z € E. Therefore condition 7.3B means that every complete
set A which can serve as a set of all trajectories for a process with the transition
function P(t, z, T') can also serve as a set of all trajectories for a process with the
transition function P/(¢, z, T).

The question of regularity of the excessive function f is closely connected
with the question of the possibility of representing this function as a mathemat-
ical expectation. We shall say that the 37°-measurable nonnegative function £(w)
with w € @ is an excessive random variable of a stationary Markov process X if

83Cl. 0t =¢tforallt=0,w& Q.

8.3C2. }i{x& 6. = ¢

By (7), if ¢ is an excessive random variable for X, then

(137) f(@) = Mo.£
is an excessive function with respect to the transition function P(t, z, I').

We note that the possibility of representing the function f(z) in the form (137)
depends only on P(t, z, T'), but does not depend on the choice of the process X
having the transition function P(¢, z, T'). This follows readily from the results
of section 3 of chapter 2 of [4], where a description will be found of the class of
all Markov processes corresponding to the same transition function. We shall
show that the representability of the function 0 < f(z) < + « by the form
(137) is sufficient for the function to be regular. In fact let A be any complete
subset of the space Q¢ which can serve as the set of trajectories of a process
with the transition function P(¢, z, T'). Let X be such a process. Consider the
representation (137) for the process X. The system of functions

(138) ne = 04, 0=t<¢(w
satisfies conditions 5.4A to 5.4D. Let

B 3 s @) . me
(139) f) = Miame = Mg, o @) = T

By 5.4, the (af, £&)-subprocess X of the process X has the transition function
P/(t, z, T'). But, obviously, the set of all trajectories of X coincides with 4.

One criterion for the representation of an excessive function by means of an
excessive random variable follows from theorem 7. In fact, let

(140) sup |T:f(x) — f(z)| =0 fort | 0.
zEE

Then the function
(141) mi(x) = f(x) — Teaf(@)
satisfies conditions 7.2A to 7.2C, and by the corollary to theorem 7
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(142) mi(x) = M, .o},

where ¢} is some nonnegative additive functional of the process X. It follows
from (141) and (142) with s = 0 that

(143) Mo0¢ = f(z) — Tif(2) = f(z) — Mo.f(0).
As is known (see, for example, [2]) there exists a.s. P, ., the limit
(144) zlimf(x‘) = 7(w).

This follows from a general theorem about semimartingales ([1], theorem 4.1).
In fact if we let

0=t <¢(u),
(145) £ = J(x0) $(uw)
0, tZ f(w),
then it can be easily checked that for any 0 < s < ¢,
(146) Mo,z{ftlmg} = £s, a.s. Q, Po‘z.

Therefore (£, 9N) is a semimartingale.

From formula (143) with ¢t T «, we have f(x) = My.£, where £ = v 4 ¢f_o.
It is not hard to check that this last formula defines an excessive random variable.

Hence condition (140) is sufficient for the representation of the excessive
function f in the form (137) and therefore for the regularity of f. Every function
satisfying condition (140) is bounded. L. V. Seregin found sufficient conditions
of regularity applicable to nonbounded functions. These conditions are close to
being necessary and make possible the construction of large classes of nonregular
excessive functions (all these functions are unbounded).

8.4. Transformations of one-dimensional regular diffusion processes. Let
E = [ry, r5] be a line segment, let ® be a s-algebra of all Borel subsets of E.
Every stationary continuous strongly Markov process in the state space (E, ®)
is called a diffusion process. A diffusion process is called regular if for any points
z,yof &

(147) P {x, =y | forsomet & [0, {(w)} = 1.

Let ¢(x), with 11 £ 2 = 7, be an arbitrary continuous increasing function, let
¢_1(y), with ¢(r1) < y = ¢(r2) be the inverse function. Then, as can be easily seen,
X' = [e(xs), ¢, MG, Pspiz)] defines a regular diffusion process in the segment
[¢(r1), ¢(r2)]. It is not hard to check that the class of one-dimensional regular
diffusion processes is invariant also with respect to a random time change cor-
responding to an arbitrary continuous additive functional satisfying conditions
8.1A and 8.1B. Volkonsky [10] showed that with the help of these two transfor-
mations every regular diffusion process with infinite lifetime can be obtained
from a Wiener process on the segment [0, 1] with reflecting screens at the points
0 and 1.

In order to obtain all processes with arbitrary lifetimes it is necessary to add
to the two types of transformations above some of the other transformations



142 FOURTH BERKELEY SYMPOSIUM: DYNKIN

described in section 5. As was shown in [7], it is sufficient to consider the (ai, £/)-
subprocesses where o} and £ are defined in terms of some excessive random vari-
able £ by the formulas

5 MO,IIE 0;5 .
(148) “= MO,I;E’ E{ B MO,r,E
Sce 5.4 and (139).

Another class of additional transformations that is sufficient for obtaining all
regular diffusion processes with arbitrary lifetimes from the regular diffusion
processes with infinite lifetimes is proposed by Volkonsky [11] (see also [12]).
Volkonsky has shown that such a class forms the ai-subprocesses, where o} is a
multiplicative functional, satisfying conditions 5.3A-5.3B.
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