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1. Introduction

Direct probabilistic constructions that allow us to build one Markov process
from another are of interest in the theory of Markov processes as well as in a
number of problems in mathematical analysis. In fact, if a Markov process Xcan
be obtained by means of a sufficiently simple transformation of a Markov process
X, then it is possible to derive properties of the trajectory of the process X from
those of the trajectory of the process X. On the other hand, the solution of many
problems in the theory of differential equations, as well as more general operator
equations, can be expressed by actual formulas in terms of probability distribu-
tions connected with Markov processes. Therefore, by making use of transforma-
tions of Markov processes, it is possible to reduce problems of this type for more
complicated operators to analogous problems for simpler operators.

In the present paper a general class of transformations of Markov processes is
introduced and discussed whose brief description (for stationary Markov proc-
esses) is contained in the survey article [5] and in the note [8]. This class of
transformations includes as special cases a number of special transformations
that were discussed earlier, such as the formation of subprocesses [4], the trans-
formation of the Wiener process which produces a drift (see for example [9]), and
others. In the construction of this general class of transformations an important
role is played by the concept of an additive functional of a Markov process. An
additive functional of a Markov process X is a collection of random variables
so: with s _ t having the following two properties: (a) 9 t is defined in terms of the
process in the time [s, t] (a more exact formulation of this condition is given in
2.1A) and (b) sp' + sot = pu for all s < t _ u.
The main results of the paper are given in sections 4 through 6 while section 2

is of an introductory nature. In it are given fundamental definitions and notations
of the theory of Markov processes following the monograph [4]. In section 3 are
given definitions and examples of additive functionals and some other allied
subjects (multiplicative functionals, almost additive functionals, and so forth).
The general construction giving transformations of Markov processes is described
in sections 4 and 5. In section 6 conditions are studied under which the homo-
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geneity of the process is preserved. In section 7 the results of Volkonsky [12] are
developed in a modified form, enabling us to describe wide classes of additive
functionals. Finally, the concluding section 8 is a survey of a number of results
about additive functionals and transformations of Markov processes, which have
been obtained recently by Volkonsky, Seregin, and the author.

2. Transition functions and Markov processes

2.1. Let 63 be a a-algebra of the subsets of the set E containing all subsets
consisting of a single point. Then the pair (E, (B) is called a state space. Let T be
any positive number or +Xo. The function P(s, x; t, r), with 0 _ s _ t < T,
x E E, and F E (B, is called a transition function if the following conditions are
satisfied.

2.1A. For fixed s, t, and x the function P(s, x; t, r) is a measure over the
a-algebra (B;

2.1B. for fixed s, t, and r the function P(s, x; t, r) is a (B-measurable function
of the point x;

2.1C. P(s,x;t,E) <_1;
2.1D. P(s, x; s, E \x) = 0;
2.1E. P(s, x; u, r) = JEP(s, x; t, dy) P(t, y; u, r), for s _ t < u.
The transition function is called normal if for any x and s, P(s, x; s, E) = 1.
As an example of a transition function we can take the so-called Wiener tran-

sition ftnction, which is defined in n-dimensional Euclidean space by the formula

(1) P(s, x; t, F) = {[2ir(t- s)]-L2 f exp [-(Y-X)] dy, < s <t< T,
Xr(X) O_ s = t < T,

where xr is the indicator of the set F, that is the function defined by

(2) Xr(;)
o, x r.

Here (B is the system of all Borel subsets of the space E, while (y - x)2 is the
scalar square of the vector y - x, and the integration proceeds with respect to
the Lebesgue measure in E.

2.2. Suppose we are given
(a) a function t(w) on a space Q, which assumes values in a segmenit [0, T'];
(b) a function x(t, w) = xt(w), defined for 0 _ t < t(w) and assuming values in

the state space (E, (B);
(c) for every 0 < s < t < T, a a-algebra WI in the space il = {w: (c(w) > t};
(d) for every s E [0, T] and x C E a function P.,, (A) over some a-algebra Mt'

in the space 2, which contains itn for all t C [s, T].
We shall say that these elements define a Markov process X = (xt, ¢, , P,.,.),

if the following conditions are satisfied.
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2.2A. If s _ t < u, and A C R', then {A, r > u} CE MU.
2.2B. {xt,E}ErZ tfor everyO _ s . t and rlE .
2.2C. P,,, is a probability measure over the a-algebra MS.
2.2D. For every 0 < s _ t < T and r E 63,

(3) P(s, x; t, r) = P..{xt C }
is a 68-measurable function of x.

2.2E. P(s, x; s, E \x) = 0.
2.2F. If 0 _ s _ t _ u < T, x E E, r E 63, theni

(4) P.,z{xu E rl8lt} = P(t, xt; u, r), a.s. Qt, P8,X
where the notation a.s. Qt, P.,z stands for "almost sure over the set Q.t with re-
spect to the measure P,_.," that is, for all XE Qz, except for a set of measure zero.
The function P(s, x; t, r) defined in (3) is a transition function in the space

(E, 63). It is called the transition function of the Markov process X. The quantity
r is called the terminal time (or lifetime) of the process X. For a fixed w the
function x,(w) defines in the space E a trajectory of the process which corresponds
to the elementary event w. The system Mt can be thought of as the totality of
events which are observed during the time interval [s, t]. The value of P,,r(A)
can be interpreted as the probability of the event A under the condition that at
the moment s the trajectory is at the point x. The integral of the function t(W)
with respect to the measure PR,,. over the whole domain in which it is defined is
denoted by M8,,(Q).

It has been proved (see [4], theorem 4.2) that every normal transition function
in the state space (E, 63) corresponds to some Markov process, if it is possible to
introduce into the space (E, 63) a metric which satisfies the two following condi-
tions

(a) E is representable as the sum of a denumerable number of compact subsets;
(b) the a-algebra 63 is generated by the system of all open sets.
It has been proved (see, for example, [4], chapter 6, section 7) that the Wiener

transition function (see subsection 2.1) corresponds to some Markov process
with continuous trajectories and r = T. This process is called the n-dimensional
Wiener process in the time interval [0, T).

2.3. A number of important allied concepts are connected with every Markov
process.
We say that A E w8 if for every x C E there exist sets Al and A2 in Se such

that A1 C A C A2and P.,.(Al) = P.,z(A2). Taking P8,e(A) = P.,.(Al) = P, (A2)
we can extend the probability measure P8,. to the o-algebra YU7T. The a-algebras
UMWS in the space %t are defined by M1t in the same way as We8 by M8.
The c-algebra Se is defined as the minimal a-algebra of the space Q, containing

the sets {w: xt(w) E r}, with t _ s, r E 63. It may be proved that for every
B E %I', the function P,,,8(B) is a 63-measurable function of x.

If ,u is an arbitrary finite measure over the a-algebra 63, then the formula

(5) P.,,(B) = J Pa.z(B)p,(dx), B E Di
B
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defines over the --algebra 91/ a certaini measure P. ,,. If IA(E) = 1, theni P,(5,2)-I
and the value of P,M,(B) can be naturally interpreted as the probability of the
event B under the condition that the probability distribution of the state at the
moment s is equal to ,u.
We say that a £E t8 if for every finite measure /i in 63 we can construct an AI

and an A2 of 9OP such that A, C A C A2, and P8,,(Al) = P8.,8(A2). Analogously,
we say that r C a if for every finite measure ,u in B there exist a rF and r2 of 63
such that r c r -c r2 and ,.(rl) = ,u(r2). The function P, Z((B) is a E-measur-
able function of x if B C M,.

It may be proved that if A C MI, then
(6) P.,x(AIW1,t) = Pt,.,(A), a.s. 5t, Pa,.

If the function t is MI-measurable and P.,,-integrable then
(7) MW, (tlWs) = mt,XA) a.s. Q, P8, .

Here the measure P8, is assumed to apply as above to the o--algebra Ml'. In what
follows an important role is played by the a-algebra
(8) < = Ml n M"-

3. Additive and multiplicative functionals

3.1. A function so:(co), with 0 < s _ t < t(w), assuming values in the interval
(- oo, +0 ], is called an additive functional of the Markov process X = (xt, ¢, 91Z,
P.,.) if the following conditions are satisfied.

3.1A. so: is Ge-measurable.
3.1B. 4pl(co) + solu(cw) = ou(w), 0 <_ s <_ t <_ u < P(W)
If instead of 3.1B a weaker condition
3.1B'. sol(cw) + (p' (w) = pu(w), a.s. au, P., ,

is satisfied for any 0 < s < t _ u < T and x E E. then we shall say that so: is an
almost additive functional of X.
The functional (p' is called almost continuous on the right if for any s E [0, T),

x E E and for any sequence tn J, t

(9) - a.s. Qj, P.,2.
If for each s C [0, T) and w C Q the function pot((O) is continuous on the right
with respect to t C [s, P(w)), then we say that the functional p't is continuous on
the right. Analogously we define the notions of an almost continuous and of a
continuous functional.

In these definitions convergence is understood in the sense of the topology of
the extended segment (-xo, +oo], so that the requirement of continuity of s3t
does not preclude the possibility of infinite values of 4oj.
The functional so is called almost nonnegative if for any s E [0, T) and x E E

(10) s(w) _ 0, a.s. Qt, P8,,.
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If p(w) > 0 for all 0 < s . t < t(w), then the functional$ is called nonnegative.
For such a functional sou-t = p'u 2 0, with s . t . u and therefore , is a
nondecreasing function of t.
Two almost additive functionals (p't and , are called equivalent if for any

0 _ s _ t < T and any x E E
(11) SoS(W) = 01(w) a.s. Q2, P8,,.
THEOREM 1. Let sp' be an almost additive functional satisfying the condition

3.1C. po?(w) = 0, a.s. %, P8,,, for all s C [0, T), x E E.
If (p' is almiost nonnegative and almost continuous on the right then there exists an

equivalent O@, which is a nonnegative, continuous on the right additive functional.
If (pt is almost continuous on the right (continuous), then there exists an equivalent

sot which is a continuous on the right (continuous) additive functional.
It follows from condition 3.1B with u = t = s that for all 0 _ s < T, and

x C E, the function p,(w) = 0 or +o, a.s. U., P,,,. Therefore condition 2.1C is
equivalent to the requirement that for any 0 _ s < T, x C E

(12) P.,. {'pss = +X} = O.
The first conclusion of the theorem is proved in [4], chapter 3, theorem 3.2.

The second statement can be proved analogously.
REMARK. It is possible to weaken somewhat the definition of the additive

functional by asking only that the function so:(w) be defined in the domain
{0 < s < t < (w)}, where D(w) is an arbitrary function satisfying the inequality
(c) < (c(w) _ T. In doing so condition 3.1A is replaced by the requirement that

the function so: should be 1TB-measurable and that it should induce an Jt:-measur-
able function on Qt. In conditions 3.1B and 3.1B' we replace r by f and U. by
Qu = {w: (w) > u}. Analogous changes must be made in the definitions of
continuity, almost continuity, equivalence, and so forth. In doing so theorem 1
remains true.

This remark will be used in section 7, where we shall let r = T, that is, we
shall suppose that the function pot(w) is defined for all w EC U. We note in this
connection that if d is an additive or almost additive functional given in the
domain {O < s _ t < P(w)}, and if for every w C Q,, there exists the limit

(13) 4-O = lim y,tfl.

then .pt can be extended over the whole of Q by the formula

(14) vo(w) _
'Pr -0) s < < t.

This extension retains all the properties: an additive functional remains additive,
a continuous one remains continuous, a nonnegative one remains nonnegative,
and so on.

3.2. We shall now consider some examples of additive functionals.
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3.2.1. If h(t, x) is an arbirtary cB' X 63-measurable function, where e3t is the
a-algebra of all Borel subsets of the segment [s, t], then

(15) = h(t, xt) - h(s, x.)
is an additive functional.

3.2.2. Let the function r.(w), where 0 . s < t(w) satisfy the conditions.
3.2.2A. s . r,(w) <_ r(@),
3.2.2B. {Tr.> t} E Rt, 0.s. t < T,
3.2.2Cr.{T > t} {Ta=Tt} S < t < T.

Then the formula

(16) 0w)={0 S < t <Te(W)
+00 X 8(w) _ t < tU

defines a right-continuous, nonnegative additive functional. This is the general
form of right-continuous additive functionals which assume only the two values
0 and o.

3.2.3. Let V(u, x) be a T X 83-measurable function on [0, T] X E, let ,u be a
measure over the a-algebra O and let us suppose that for all s E [0, T], x E E,

the integral f V(u, xu) ,(du) converges or diverges to +oo almost surely with

respect to P._.. Then

(17) PK(W) = f V(u, xu),(du), 0 s _ t < D(W)
(8At]

defines a continuous on the right additive functional of X. If the measure ,u is
continuous, then this functional is continuous. If V(u, x) > 0, then it is nonnega-
tive.

3.2.4. Let X = (xt, T, WI, PJ,Z) be an n-dimensional Wiener process, given in
the time interval [0, T). Let f(t, x) for t C [0, T), x C E be a function with
values in E, satisfying the conditions

3.2.4A. for every r E 63

(18) {(t, x) :f(t, x) C r} C- 63TX 63,
3.2.4B. for every t C [0, T)

(19) sup f2(u, x) <oo.
O0but
zEE

It has beeil proved [6] that it is possible to select a value of a stochastic inte-
gral such that

(20) f= f(u, xu)dxu

defines a continuous additive functional of X. If, moreover, the following con-
dition is fulfilled

3.2.4C0 for every s E [0, T), x C E,
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(21) fT M f2(u x,,)d <

then the contiiiuous additive functionial (20) can be selected so that for overy
X E 2 and for every s C [0, T) there exists the limit

(22) PT-O(W) = lim t(co).
tt T

,3.3. A function alt(co) where 0 _ s _ t < t(co) which assumes values in the
interval [0, + o ), is called a multiplicative functional of the Markov process X if

3.3A. aCt is G{t-measurable,
3.3B. axt(co)atu(co) = a'(o), 0 _ t <it < ¢
The formulas

(23) aYt = et, S' = -log aCt
establish a one-to-one correspondence betwveen the set of all additive anld all
multiplicative functionals of the process X. In particular, to the additive func-
tionals described in subsection 3.2 correspond the multiplicative functionals

(24) at= exp f-f V(u, xu)y(du)},
(s,tI

(25) at >XT,t,

(26) a g(s, X.) g(t, x) = e-h(',z)
To continuous on the right (continuous) additive functionals correspond

continuous on the right (continuous) multiplicative functionals. The analogous
assertions about almost continuous on the right and almost continuous function-
als are also valid. To nonnegative additive functionals correspond multiplicative
functionals which satisfy the condition a' < 1, with 0 _ s _ t < T. The notion
of almost multiplicative fuiictionals arises naturally and theorem 1 can be carried
over to such functionals.

4. Transformations of transition functions

4.1. THEOREM 2. Let X = (Xt, ¢, s P.,.) be a Mllarkov process in a state space
(E, (B). Let Cat be a multiplicative functional of the process X satisfying the condition

4.1A. Wxa 1 for all 0 _ s _ t < T, x C E. Then the formula
(27) P(s, x; t, F) = Ms, [xr(xt)a't]
defines a transition function in the state space (E, T).

PROOF. The function P(s, x; t, r) obviously satisfies conditions 2. IA and
2.1D. Condition 2.1C follows from 4.1A. Condition 2.1B is satisfied in view of
subsection 2.3. There remains to check condition 2.1E.

It is obvious from (27) that for any (B-measurable bounded function f(x)

(28) ff(y)P(s, x; t, dy) = M.,x[f(x,)a't].
E
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Using conditions 3.3A and 3.3B and formula (7) we have

(29) P(s, x; u, I') = M8,z[xr(xu)acU] = M.,.[acxr(x,,)a7l]
= Ma,z{ad Me,z[Xr(xu)actTV,]}

M.,{a Mt,1[xr(xu)a'U]} = M.,.[a:P(t, xt; U, r)].

Comparing (28) and (29) we see that the function P(s, x; t, F) satisfies conditiol
2. 1E. This completes the proof of the theorem.

Condition 4.1A is always satisfied for the functional (25), and also for the
functional (24) with V(u, y) _ 0.

For a multiplicative functional a: = g(t, Xt)/g(S, x8) the function P(s, x; t, r)
can be directly expressed in terms of the transition function P(s, x; t, r) by the
formula

(30) P(8, x; t, F) = Pf! (s, x; t, dy) g (t, y).

In doing so, condition 4.1A becomes
4.1A'. M,.,g(t, Xt) < g(s, x) for all 0 _ s < t < T, x & E.
Let X be an n-dimensional Wiener process in the time interval [0, T). Let us

set

(31) at = exp [- fV(u, xu)du - f(u, x/,)dx,,

where V(u, y) satisfies condition 3.2.3 and f(u, y) satisfies 3.2.4A and 3.2.4B. It
can be shown [6] that condition 4.1A' is satisfied for a, with V _ f2/2. If V
f2/2, then for any s E [0, T) and x E E,
(32) K, = 1.

If the function f satisfies condition 3.2.4C as well as 3.2.4A and 3.2.4B then for
V _ f2/2
(33) ;tIT 1.

If, moreover

(34) sup f2(ut, x) < 0c,
OSu<T
xEE

then, for V = f2/2,
(35) M aCT-O = 1.

5. Transformations of Markov processes

5.1. In section 4 we constructed a transition function P(s, x; t, r) starting
with a Markov process X and a multiplicative functional a't. By subsection 2.2
it is possible to construct a Markov process X from the transition function
P(s, x; t, r) under some general conditions. However, in doing so the connection
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between the characters of the trajectories of the processes X and X has not been
made clear. Under some additional conditions this connection is clarified in
theorem 3. It turns out that a Markov process with the transition function
P(s, x; t, I) can be selected in such a way that its trajectory coincides with the
beginning of some trajectory of the process X.
THEOREM 3. Let X = (Xt, ¢, 5t Pa,.) be a normal Markov process given in the

time interval [0, T) in the state space (E, (B) and in the space of elementary events U.
Let the multiplicative functional ad of the process X and the nonnegative function
tt(W), where X C Q, 0 < t < t(w), satisfy the conditions

5.1A. a'ttt < t., 0 < s _ t < P@
5.1B. lim acSt = a'X,

tJ1a

5.1C. 6 is MI-measurable,
5.1D. M.,Z,t. = 1 for every 0 _ s < T and x E E.
Let {t' = alt, for 0 _ s _ t < ¢(w). For every X E Qs = {w: as(w) = 1} we

construct a measure 4t over the o-algebra eT on the interval (., ], such that for all
t E [s, r],
(36) #'(t, ] ={S
(such a measure exists and is unique). For X a Q. we denote by P the unit measure
concentrated at the point s.

Let Q = U X [0, T], A" = S X (B', T(co, u) = min [r(w), u], Xt(w, u) = xt(w)
for 0 < t < T(co, u). For every C C Al we let
(37) f8,,(C) = MJ ,4/J(C-)
where C,, denotes the c-section of the set C, that is the totality of numbers u such that
(c, u) E C. In particular it follows from (37) that for A C Ms

(38) Ps, (A) = fts(w))Ps,z(dco).
A

Let A't be the totality of all subsets of the space Q2 of the fornm A X (t, T], where
A C(s,.

Then X = (X,, T, Ast P.,x) defines a AMarkov process in the state space (E, M)
with the transition function
(39) P(s, x; t, r) = M,t,[Xr(x,)a'].
In general if q is a -sn-measurable function such that at is P,---integrable, then

(40) ks,Z[X7Xf >t] MS Z[77aSt] -
PROOF. (1) Let w & £4. We note that for any 0 _ s _ t _ u < P(co)

(41) 44U = au3tu = alt:a'(uu _ alttt = 411t.
Therefore, 46t4 for s _ t < is a nonincreasing function of t. Comparing (41) with
5.1B we conclude that ,'u T 4A for u I t, and hence that 6t4 for s < t < P is con-
tinuous on the right. Therefore there exists a measure (which is unique) over the
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a-algebra of all Borel subsets of the interval (s, t] such that p(t, t] _ ft for all
t E [s, t). We extend this measure over the c-algebra AT, letting
(42) ,s8[0, s] = P(¢, T] = 0.

(2) Consider the system iF of all subsets A of the set Q X [s, T], such that
As., E V for every w E Qand the function 468(A.) is Mtt-measurable. This system
satisfies the conditions

(a) the whole space Q X [s, T] is an elenemts of F;
(b) if two nonintersecting sets belong to 5F then their sum belongs to i;
(c) if A, B E fF, and A C B, then B \A E F;
(d) if A1, * * , An, * * * E. 3f and An T A, then A E i.
The system 5: contains the totality e of all sets of the form A X (t, T] for

t E [s, T], A E M.
Inasmuch as the intersection of two sets of e belongs to C, it follows that 5f

contains the a-algebra Arl = Ml' X VT, generated by e (see, for example, [4],
lemma 1.1). Therefore formula (37) has a meaning.

(3) Formula (37) obviously defines a measure over the a-algebra Al8. We
prove that formula (40) holds for this measure. We denote by SC the totality of
all functions q(w) for which (40) holds. We note first of all that 3C contains the
indicators of all the sets A of M't. In fact by (37), (36), (7), 3.3A, 5.1C, and 5.1D,
for any A E M't,
(43) Ms,x(XAXf>g) = Ps,x{A X (t, T]} = M8.,(V&XA)

= M.,Z[XAac M.,.(%jlMW)]
= MS.,[XAas W.,61 = M.S.(XAat)

It is obvious that the system JC contains together with any two functions the
linear combination of these functions and together with any nondecreasing
sequence of nonnegative functions the limit of this sequence. Therefore (see, for
example, [4], lemma 1.2) 3C contains all Ml1t-measurable functions l for which 71al
is P8,,-summable. This proves formula (40). If in (40) we let 7q = XI'(x) we
obtain (39).

(4) We now show that (Xi, T, St, fP, ) satisfies conditions 2.2A to 2.2F.
Conditions 2.2A and 2.2B are obviously satisfied. Further, by formulas (40) and
(37) and taking into consideration that aS can be equal only to either 0 or 1, we
have

(44) PaQ) = M.,{xE>. + xr a} = M8,xas + M8.4p[0, s]
= M,. a; + Pa,z(Q \ Q.) = M.,. I + 1 -P,X{a = 1} = 1.

Therefore condition 2.2C is satisfied. Conditions 2.2D and 2.2E follow readily
from formula (39). It remains to check condition 2.2F. In order to do this we
must show that for any 0 _ s _ t _ u < T, with x E E, r C 6, and X CE t,
when

(45) P.,__(, xu E r) = M[,jxAP(t, x; u, r)],
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we have i = A X (t, T], where A E MT, and

(46) {J, .E- r} .A,xuE } X (u, T].
By (40), 3.3B, 3.3A, and (39) we have

(47) P,(J, Zu Fr) = M,z[XAXr(xu)aU] = M.,z[XAaXtXr(xu)at]
= M..z{XAacxM,.z[Xr(xu)atsITEt]}
= M.,z{XAa1Mt,..[Xr(Xu)(u]}
- MS,Z{XAa1P(t, x:; u, r)}.

On the other hand,

(48) xlP(t, t; u, F) = XAXj>tP(t, xi; u, r)
and by (40)

(49) Me zxiP(t, x; u, r)] = MZ, {XAP(t, xI; U, I)a'}.-
Now (45) follows from (47) and (49).

5.2. The Markov process X constructed in theorem 3 will be called a (at, Et)-
subprocess of the Markov process X. We shall consider the most important
special classes of the (act, Qg)-subprocesses.
Suppose that X is a normal Markov process. Let the multiplicative function

at and the function {t satisfy conditions 5.1C and 5.1D and the two conditions

5.1A'. at% = a'X, 0 _ S <- t < t(w),
5.1B'. P8,2{a' = 1} = 1 forallO _s < T; x E E.

It is obvious that conditions 5. 1A and 5. 1B follow from 5. 1A' and therefore it is
possible to construct the (at, (,)-subprocesses of X.

Consider the mapping -y of the space Q into Q, defined by the formula -y() =
{w, P(w)}. We note that for every C O'= S X (B°T

(50) Pa (C) f (w)P.,(dw).

This formula follows from (37) if we note that for every co E Q. the whole measure
4,, equal to t8(w) is concentrated in the point t(w) and that by condition 5.1B' we
have P., (Q.) = 1.

It follows from formula (50) that P = = 1 for all 0_ s < T, x E E.
In the example under consideration it is natural to alter the process X slightly

in order to return from the space of elementary events f2 to the space Q2. We note
that

(51) P[y(w)] =

(52) £g[Y(Wc)] = W)
(53) a-iRf=
(54) ly-A=s
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Let
(55) Ps z(r'A)=P8,±(A), A E
Then X' = (xt,, , P.'x) defines a Markov process. This follows from theorem
2.5 of [4] or can be checked easily independently. In the terminology of [4] the
process X' is obtained from the process i: by means of a transformation 'y of the
space of elementary events. The elements of this process are the same as those of
the original process X with the exception of P',x. The latter, in view of (50), can be
expressed by the formula

(56) P'.x(A) = fr8(w)P8,.(do), A E f..
A

In this way the process X' is obtained from the process X by means of the
transformation of the original measures P. , by formula (56). The transition
function of the process X' is the same as of the process X and can be expressed by
formula (39).
We will suppose that the multiplicative function at satisfies condition 5.1B'

and the following conditions.
5.2A. For every w E 12X, there exists the limit

(57) a'-o = lim a'.
ttv.

5.2B. For all s E [0, T), x E E,
(58) Wrar_o= 1.

It is easily seen that in this case the function {= a_o satisfies the conditions
5.1A', 5.1B', 5.1C, and 5.1D. Therefore we can obtain a Markov process with the
transition function (39) by transforming the measures P,,. by the formula

(59) P'..(A) = fa'ro(w)P8x(dw), A E
A

As an example of a multiplicative functional for which the transformation (59)
is possible we can take the functional discussed in 4.1, where

(60) = exp ( ff(u, xu)du - f(u, x.)dxu)

for an n-dimensional Wiener process X given in the time interval [0, T). Here
we assume that f satisfies conditions 3.2.4A, 3.2.4B, 3.2.4C, and (34). According
to the remarks at the end of subsections 3.2 and 4.1, the functional a, satisfies
conditions 5.2A and 5.2B.

5.3. If {8(w) = 1 for all 0 _ s < t(w), then we shall denote the (a', t.)-sub-
processes of X by the arsubprocesses. In order to be able to form the alrsub-
processes it is necessary and sufficient that the following conditions be satisfied.

5.3A. Forevery0 _ s _ t < ¢(w), wehavea(co) < 1.
5.3B. lim at(X) = a,(w).

t I J



TRANSFORMATIONS OF MARKOV PROCESSES 129

Conditions 5.3A and 5.3B are obviously equivalent to the requirement that
the corresponding additive functional to a, be nonnegative and continuous on
the right. In particular these conditions are satisfied for the functional (24) with
V _ 0, and for the functional (25).
For the acrsubprocess the measure P , defined by formula (37) is an extension

of the measure P.,,; that is, P8.,(A X [0, T]) = P,,,z(A) for A E Miv. (The subset
A X [0, T] of the space Q X [0, T], as usual is identified with the subset A of
the space U.) By (40) for any A E

(61) p.(, > t) = fa'tP,,.(dcw) == act P,,,(dco).
A A

Starting with (37) it is not hard to verify that this formula holds for any A E MT.
Since the function a(4 is GV,-measurable it is obvious that

(62) a"I = P {I> tItR} = pe,z{¢ > tIl t}

=i { > tl(R}I, a.s. Qt, PJ 2-.
In view of (62) an intuitive picture of the formation of the a(rsubprocess can

be given as follows: the trajectories of the original process terminate with a cer-
tain probability distribution; d4(w) denotes the probability that the trajectory
x.(w) will not terminate in the time interval [s, t].
The a(subprocesses of the Markov processes are studied in detail in chapter

3 of monograph [4].
5.4. The third important class of (a(4,t, )-subprocesses is connected with the

class of functions 7t(w), where 0 _ t < t( which satisfy the conditions
5.4A. 77t(w) is NI-measurable;
5.4B. O <_ 7I(w)<_ (w) for 0 _ s _ t < ¢(w);
5.4C. for everywcE the function 77t(w) is continuous on the right in t;
5.4D. for any s E [0, T), x E E, 0 < M,,S71N < oo.
It is easily seen that under these conditions the function f(t, x) = Mt?7t

satisfies condition 4.1A', and that the pair

(63) a f(s, X.) f(t, X,)
satisfies conditions 5.1A to 5.1D. The transition function of the (a4t', (t)-subproc-
ess that corresponds to this pair can be expressed in terms of the transition
function of the original process by means of formula (30).

6. The stationary case

6.1. We shall now assume that the fundamental interval [0, T) coincides with
the half line [0, mo). The transition function P(s, x; t, r) is called stationary if it
depends only on the difference t - s:

(64) P(s, x; t, r) = P(t - s, x, F).
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The Markov process X = (x,, ¢, St, P8,x) is called stationary if its transition
function is stationary and if for any 0 < t < ~(w) there exists an ' E Q such that
(65) Xt+h(O) = Xh(w'), for all 0 < h < () = () - t.

Let X be a stationary process. We denote by O* the minimal system of
subsets Ro = {w: P(w) > 0}, that contains all the sets {w: xt(w) E r}, with
t > 0, r E 6, and is invariant with respect to the operations of addition, inter-
section, and complementation. For every 91*-measurable function t(co) we set

(66) MM(=()=( ),
where w' is connected with w by relation (65). Note that this definition is correct
since for all w' connected with a given w the value of t(w') remains unaltered. The
operators Ot preserve all algebraic operations and the operation of passing to the
limit. We have

(67) Ohf(Xt) = f(Xl+h)X

oh f V(u, xu),(du) = f 1'(ut, X.+h)14(du).
(8,t] (8,t]

It may be proved that if the process X is stationary, then for any (xP nl 9m*)-
measurable function t(w), with w E QS, and any h _ 0, x E E, the function
Oht is s8+k.measurable and
(68) Me xt = M8+h,x(0ht)-

6.2. An additive functional p' of a stationary Markov process X is called sta-
tionary if for any h > 0, with 0 _ s _ t < T, and x E E,
(69) O t = (Pts+h a.s. Qt+h, Ps+h,x.
The stationary property of multiplicative, almost additive, and almost multi-
plicative functionals is similarly defined. A functional that is equivalent to a
stationary function is also stationary. A multiplicative (almost multiplicative)
functional at is stationary if and only if the corresponding additive (almost
additive) functional Xp' is stationary.

It follows from (67) that the additive functional

(70) = i: V(xz)du
is stationary. By [6] the functional

(71) s f=(x,,)dx.
is stationary also. It is easily seen that the functional described in 3.2.1 is station-
ary, if the function h(t, x) does not depend on t, the functional described in 3.2.2
is stationary if and only if for any h, s _ 0, x E E

(72) OhrT. = T.+h - h, a.s. P.+h.z {T, > S + h}.
THEOREM 4. Let X be a stationary Markov process and let a, be a stationary
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mnultiplicative functional of this process. Then the transition function formed by (27)
is stationary. Every (al, {t)-subprocess of the process X is a stationary Markov
process.

PROOF. We have

(73) P(s, x; t, r) = Ma,z{Xr(xt)a'} = M.,z{Gs[xr(Xt-.)ac-sI}
= Mo,.{xr(Xt_..)a?_s} = P(O, x; t - s, r),

which proves that the transition function P(s, x; t, r) is stationary. Since the
transition function of the (a', {t)-subprocesses 2Z of the process X is given by
formula (39), in order to check that .D is stationary it remains to show that for
every co = Q X [0, T] there exists an C' such that

(74) Xt+h(6) = Xh(°%), forallO _ h < T(CV) = (6) - t.

Let X = (c, u), where co Ez , u E [0, T]. Since X is stationary there exists anc'
satisfying condition (65). It is easily seen that c' = (w', u - t) satisfies (74).

7. Characteristics of almost additive functionals

7.1. The significance of additive functionals in the theory of Markov processes
should be sufficiently clear from the foregoing sections. It is natural therefore to
propose the problem of finding the most general form of additive and almost
additive functionals for the most important classes of Markov processes. In this
section we present the results first obtained by Volkonsky [12] in a somewhat
different form. We will consider additive and almost additive functionals 'ps(w)
defined for all X C Q (see remark at the end of section 4).
Let 'pt be an almost additive functional of the Markov process X =

(x,, r, UW,, P.,.). We shall call the function
(75) ml(x) = Ma sI
the characteristic of the functional spo. We assume that the mathematical expec-
tation of the right side exists.
We denote by W(X) the totality of all almost additive functionals s'o of the

process X that satisfy the following condition.
7.1A. For every [s, t] C [0, T), and x E E

n-1
(76) IllimlO M8,z kE0 [APSk+ ]2 = 0.IISI-.O k=O

(We denote by S the subdivision s = so < s1 < ... < Sn = t of the segment
[s, t] and set St! = maxO k<n (sk+1 -k)-)

It is obvious that the class W(X) contains together with every almost additive
functional all the functionals equivalent to it. It is not difficult to see that the
following condition is satisfied for all functionals of the class W(X): for any
[s, t] C [0, T), x E E,

{''3'~~ ~ ~ ~~M..,p]<ur^s2
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THEOREM 5. Let 9't be a nonnegative almost additive functional satisfying con-
dition (77). In order that 95g belong to class W(X) it. is necessary and sufficient that
there exist for fpt an equivalent nonnegative continuous additive functional.

PROOF. Sufficency: let pll be a nonnegative continuous additive functional.
Let

(78) IY(h, w) = sup ouv(w)
a <=u:v _u+h _t

Since ep' is continuous and by (77) we have

(79) lim 7'(h, w) = 0, a.s. Q, P8, .

Since so: is nonnegative we have
n-1

(80)E os+] _PS( Sl,,)o_ os2
k=O

Hence E_o[0;k1,j] is majorized by a Pa,, -summable function and tends to zero
a.s. Q, P.,Z as IISII - 0. Therefore condition 7.1A is satisfied.

Necessity: let 0 _ s _ t < T, tk I t. Since fp is nonnegative

(81) t _t > ... > (P' _ ... > a.s. 0, PJ,Z.

Therefore there exists almost surely with respect to Pa,z the limit l= 4lrqo.
Let so <s5 < ... < sn be any subdivision containing as two consecutive points
t and tk. Then

n-1
(82) ( - p)2 _ (,l - pt)2 = []2 < E [,.i ]2

and by condition 7.1A we have Ma,z(t - p' = 0; that is, the functional ft is
continuous on the right. Obviously condition 3.1C is satisfied and by theorem 1 a
continuous nonnegative additive functional Yt can be found that is equivalent
to 4p".
We note that for any s = so< si < ... < Sn = t

n-1
(83) sup [@g012 _ E [@°+k 2 a.s. Qu, P.,z.

Ue(8,t) k-0

Let

(84) A, = {co: = 0 for all u E (s, T)}.

It follows from (83) and 7.1A that P,_z(Aa) = 1 for all s and x. The formula

el,I X Ez As
(85) A+ oo c (= AS

defines a nonnegative continuous additive functional equivalent to 4*o.
THEOREM 6. Almost additive functionals (pt of class W(X) are defined by their

characteristic, uniquely up to equivalence. More precisely, for any 0 < s _ t < T,
x E E
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n-i

(86) I.i.nm. E un4k 1('X.,) (P8,Z)-
IWSIIV-O k=0

The notationi = l.i.m. t,, (PS,Z) means that MJ,x(t - )2 o 0.
PROOF. Let

k k~~~~~~~~~~~~8(87) bk = S0Sk+- mSk+t(x8") =fS,k+l Kk,XMO'Sk,l
- -k MJ,Z {PSk+Il0Sk} -

It is easily seen that

(88) M,,xZkbl 0, k s 1

and that

(89) X,x6i = MK,k[4k^+] - MS,X[mSk+l(xk)]'
<MS Z[,,k+lj2-

Furthermore,
n-1 n-1

(90) t - E mkl~(Xk) EIk.
k=0 k=O

It follows from (88), (89), and (90) that
n-1 n-1

(91) MS,Z[Yt - E msi+l(x8)]~_ MS,4 E <*l
k=O k=O

Hence (86) follows from 7.1A.
7.2. What functions ms:(x) are characteristics of almost additive functionals of

the process X? It follows readily from 3.1A, 3.1B, and (7) that the following
condition is necessary.

7.2A. For any 0 _ s < t _ u < T,

(92) m:(x) + M8,Z MTh(X¢) = m,,(x).
Condition 7.2A by itself is not sufficient. Some supplementary conditions are
given by the following theorem.
THEOREM 7. Suppose that a nonnegative function mnt(x) satisfies condition

7.2A, as well as the following conditions.
7.2B. For every t C [0, T) the function m£(x) is a OVI X MB-measurable function

of s and x.
7.2C. sup sup rnt(x) = ,B(h) -- 0 as h -+0.

xEg' 0_J.t 5e+h<T
Then m't(x) is a characteristic of some almost nonnegative almost additive func-

tional p't of class W(X). Moreover

(93) s1= l.i.m. f; 1 +(xu)dit.

COROLLARY. By theorem 5 the functional pt satisfying (93) can be selected in
such a way as to be a nonnegative continuous additive functional of the process X.

In the proof of theorem 7 we need the following lemma.
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LEMMA 1. If

(94) f(u, x,)du,
then for any 0 < s _ I _ u < T, and x E E,

(95) M., [S12 = 2MS,Z ft f(v, x,,)mU(x.)dv.

PROOF OF LEMMA ]. WVe have

(96) j2 = 2 ff(v, x,)"dv.

By (7)

(97) MS,2Uf(V, X04'o(XV)] M,,Z{fV, X')M-'Z[§pU"1fl]}1
=M8.Z[fV, XV)MV9XESpU]
= Ma,J[f(v, x.)mU(x.)].

PIROOF OF THEORtEM 7. Let

(98) f'(u, x) =
I

'Mu+h(x), fh,l(u, x) = fh(U, x) - fl(u, x),

(99) fS'(h) = ftfh(u, xu)du, 9p(h, 1) = Lfh,i(U, x.)du,

(100) mt(x, h) = M]II8sp1(h), rn'(x, h, 1) = M1Iz.,jpt(h, 1).

Note that by 7.2A
muh (xx)ddu= 1 #+

m(du,

(101) m(x, h) = 1 M,1m+h(xu)du f+ m m-(x)du,

and by 7.2C

(102) Int(x, h) - m,(x)j < 2,(h).
Moreover,
(103) Ims(x; t, 1)1 < |m(x, h) -mn,(x)| + IWm(x)- mn(x, 1)1 . 2[6(h) + i3(l)].
By lemma 1 and by estimates (102) and (103) we have

(104) MJ.,.[,p(h, 1)]2 = 2M.,. f|fh,t(v, x,)mt(x.; h, 1)dv

_ 4[,3(h) + 03(l)][mt(x, h) + n4s(x, 1)]
_ 8[,3(h) + ,B(1)][L(t - s) + 0(h) + 0(l)].

The inequality ,B(a + b) _ 3(a) + ,B(b), for a, b > 0 follows readily from 7.2A,
and by 7.2C we have that 13(a) < oo for any a > 0. Therefore it folllows from
(104) that there exists the limit p' = l.i.m.h o(th), where
(105) M.,.p't-spt(h)]2 < 813(h)[O(t - s) + ,B(h)].
It follows from (105) that sp' satisfies condition 3.1B'. We shall show that the
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functions sot can be selected in such a way that they satisfy 3.1A. We note that
the above construction determines each function sot only up to an addition of a
function, which is equal to zero outside some set A satisfying the condition
P8,,(A) = 0 for all x E E. By (105) we can select a sequence hk l 0 such that for
all x E E

C ~~~211(106) P8XLI -
{l&t (he)|>k}

Then by the Borel-Cantelli lemma

(107) (pl(hk) -0 a.s. Q2, P.,,
and we can let

(108) = flim 9(hk), if the limit exists,
|108)+ x0, otherwise.

It is clear that ' is an almost nonnegative, almost additive functional, satis-
fying the inequality (105) and therefore also (93).

It follows from (105) that

(109) M3.[g't-y(h)] _ {Me[ (h)]-112
_ 3{d(h)[O(t - s) + ,B(h)]}"12.

Comparing this formula with (102) we conclude that m1(x) is a characteristic of
the functional (p,.

There remains to check that the functional pt belongs to W(X). Let S =
{s = so < Si< ... < s, = t} be a subdivision of the segment [s, t]. By lemma 1,
inequality (102), and the fact that mt(x) is nonnegative we have

(110) M.,.[,Plki,(h)]2 2M.,x | f,(1,x')rnl(xV; h)dv

_ 2M, |:k+l f,&(v, xV)[t,nk±,(xV) + 2(3(h)]dv

< 2[O(flSfl) + 203(h)]M.,:,| fh(V, xw)dv.

From (110) and (102) we have
n-1

(111) NIS,Z E [,.k+,(h)]2 _ 2[0(IISfl) + 2,3(h)]mrn(x, h)
kc=O

_ 2[0(jjSfl) + 20(h)][m'(x) + 20(h)].
Therefore,

n-1

(112) Msw E<<Skl 2,B(l |S||) m:(x)-

7.3. The characteristic of an almost additive functional is a function of three
variables. With some additioiial conditions it can be expressed as a function of
two variables. In fact, suppose that for aiiy s E [0, T) and x C E there exists
a.s. P.,, the limit
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(113) o = lim (Pt
ttR.

and let 1t[ be majorized for all t E [s, T) by some P.,.-summable function.
Then for any 0 < s . t :; u < T,
(114) rim M8,2sotu =M8,<r_O.

u t T

Let
(115) ms(x) = M
By (114)
(116) lim mu(x) = ml(x)

u t T

and from 7.2A we obtain the following expression for the characteristic of the
functional Xp' in terms of the function ms(x),
(117) m't(x) = ms(x) - M, rtnt(x,).

It is not hard to show that every function m't(x) obtained from any function
ms(x) by formula (117) satisfies condition 7.2A.

8. Survey of some results and problems concerning additive
functionals and transformations of Markov processes

In what follows we consider only stationary Markov processes. We make use
on several occasions of the notion of a strong Markov process. The definition of
this concept will be found in [4], chapter 5.

8.1. Random time change. It is possible to connect with additive functionals a
transformation of Markov processes having quite a different character from the
transformations described in section 5.

Let X = (xt, P, Sst, P,,,) be a stationary Markov process and let fs: be a con-
tinuous additive functional of X, satisfying the conditions

8.1A. for any h _ 0,0 _ s _ t < T, C E 91+h,
(118) Oh)P(CO) = Pt+)l(1);

8.1B. forany0 _ s <t < T, C Qt

(119) *&St(w) > 0.

Condition 8.1A is a stronger variant of the stationary condition, while condition
8.1B is a stronger variant of the condition on nonnegativeness.

For every co (E Q the function fp°(w), with 0 _ t < P(w) is monotone increasing
and continuous. The inverse function Tr(W), with 0 _ t <q,o-o(co), is also con-
tinuous and monotone increasing. Under some general assumptions about the
Markov process X it is possible to construct a Markov process X=
(t, T, , P.,.) for which the state space and space of elementary events are the
same as for the process X with

(120) T(w) = 40-0(w),
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(121) It(w) =XT(.)(@)J
(122) =

(123) P0' = PO X,
where 9t' is defined with respect to xt in the same way as 9V is defined with
respect to xt and the measures P., for s > 0 are defined in terms of the measures
PO Z = Po,. by means of the formula P,(8A) = Po0,(A), where the operators G.
are constructed with respect to Xt in the same way as the operators 0a are con-
structed with respect to xt. In 6.1 we defined the action of these operators 0, on
functions; their action on sets can be defined by the formula
(124) 0,A = {W: OXA = 1}-

In fact it is sufficient to require that E be a metrizable, locally compact space,
and that m be a a-algebra of all Borel subsets of the space E, that X be a right-
continuous strongly Markov process and that the a-algebra 0nt? contain every
subset A C Qt such that for all u > t, we have A nf u Ez oz.
We say that the process X is obtained from X by means of a random time

change Tt(w). Transformations of random time change are considered by
Volkonsky in papers [9] and [11]. I am also informed from a private letter of
K. It6 that random time change plays an important role in the monograph of
Ito and H. P. McKean on the theory of diffusion processes that is to appear
shortly.

8.2. Transformations of infinitesimal operators. To a stationary transition
function P(t, x, r) corresponds a family of operators

(125) T,f(x) = f P(t, x, dy)f(y),
E

in the space E of all bounded 63-measurable functions f. The infinitesimal oper-
ator of the transition function P(t, x, r) is defined by the formula

(126) Af(x) = lim Ttf(x) - f(x)
t 4 0 t

for functions for which the limit of the right side exists uniformly with respect
to x E E. Sometimes it is more convenient to consider the weak infinitesimal
operator which is also defined by formula (126), but instead of uniform conver-
gence we require convergence for every x and boundedness of [Tgf(x) - f(x)]/t
for all x E E and t { 0.

Let E be a metrizable space, let 63 be a a-algebra of all its Borel subsets. The
transition function P(t, x, r) in the space (E, 63) is called of Feller type if the
operators Tt transform the space C of all continuous bounded functions into
itself. For such transition functions it is natural to narrow down the domain of
definition of the operator A by imposing the following conditions:f E C, Af E C.
This restricted operator we shall call the C-infinitesimal operator.

Let X be a stationary Markov process, let at = exp (-Sqt) be a stationary
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multiplicative functional of X. Then the transition function defined by (27) is
stationary and its infinitesimal operator A can be caleulated from the formula

(127) Af(x) = lim Mo0, a'tf(xt) - f(x)
tJIo t

How is this operator i connected with the infinitesimal operator A of the process
X? The answer to this question is known only for some special classes of function-
als al.

In 1955, Dynkin [3] showed that if the transition function of the process X is
Fellerian and stochastically continuous and if

(128) (plt = - log a't = f V(x,,)du,

where V(x) is a continuous bounded function, then A = A - V, where V is the
multiplication operator of the function V. Here we take for A and A weak C-in-
finitesimal operators and say that the transition function P(t, x, r) is stochasti-
cally continuous if limt ; o P(t, x, U) = 1 for every neighborhood U of the point x.
Volkonsky [11] has shown that if p't is any stationary nonniegative continuous

additive functional for which Mo0, so_o < x, then

(129) A = A(E + S),
where
(130) Sf(x) = MW fz f(x.)ds°.

The operator S can also be expressed in terms of the characteristics mt(x) of the
functional f't. The above result is proved under the assumption that X is a
standard continuous process, satisfying the condition supx EMo,xz < 00. A process
X is called standard if it satisfies the conditions shown after (129) as well as the
condition of "quasi-continuity on the left," namely, if Tn are quantities which do
not depend on the future (or Markov times), then it follows from Tr.(w) T r(o),
with w E Qthat for every x E E the relation xn- x,, a.s. Q, Po,0 holds. This
condition is satisfied for instance by all continuous processes.

If a, = g(x&)/g(x,) where the functions g(x) and 1/g(x) are bounded, then it
follows readily from (30) that Af = (l/g)A (gf).

It is known (the case n = 1 is considered for instance in [9]) that if X is an
n-dimensional Wiener process and if

(131) = 1 f h2(x.)du + f h(x,,)dx,,

then the operator A for doubly continuously differentiable functions is given by
the formula
(132) Af(x) = Af(x) -h(x) gradf(x),
where

(133) Af= 1 Af =1 E [2f]2.2 2 4OxiJ
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The question as to how the infinitesimal operator changes with the random
time change is considered by Volkonsky [9]. He proved in particular that if X is
a right-continuous process of Feller type in a compact state space, then under a
time change corresponding to an additive functionial

(134) s= f V(x.)du,

where V is a continuous positive function, the C-infinitesimal operator of the
process X is multiplied by the function 1/V(x).

8.3. Regular excessive functions. Integral representation of excessive functions.
Let the state space (E, B) satisfy conditions (a) and (b) of subsection 2.2. Denote
by Q(E) the totality of all functions (p(t) with values in E, defined on all intervals
[0, X). Let

(135) P(y) =
X(3)t(O) = _(t),0 _ t < (

Denote by a- the v-algebra of the space Q(E) generated by {so: xu(,p) E r},
where r (E (, u _ s, and by S the a-algebra of the space Qt(E) = {p: P(p) > t},
generated by {,o: x.(so) E r} where r (E 6, u E [s, t]. It is shown (see [4],
theorems 4.2 and 2.6) that to every normal transition function in the space
(E, (B) corresponds uniquely the Markov process X = (xt, ¢, t, P8, ) for which
Q(E) is the space of elementary events; xt and ¢ are defined by formula (135) and
the measures P,, are given over the a-algebra D. We call this Markov process
canonical. If the transition function is stationary, then the corresponding
canonical process is also stationary.
Suppose that s and &6 belong to Q(E). We shall say that 4t is a contraction of

p, if ¢(4t) <_ t(s) and '(t) = (p(t) for 0 < t < P(4,). We shall call the subset
A C Q(E) complete if together with every element p every contraction of s is
contained in A.

Let P(t, x, r) be a stationary transition function in the state space (E, CB),
let Tt be the operators defined by (125). The nonnegative function f(x) is called
excessive with respect to P(t, x, r) if

8.3A1. Ttf(x) _ f(x) for all t > 0, x E E.
8.3A2. Tif(x) T f(x) for t I 0.
Let the positive function f(x) be excessive with respect to the normal trani-

sition function P(t, x, r). Then

(136) Pf(t, x, r) = f jP(t, x, dy) f(y)

is again some normal transition function in the space (E, (B). Let X =
(xt, r, 9V, P,x) and Xf = (xt, ¢, O, P,'.) be two canonical Markov processes
corresponding to the transition functions P(t, x, F) and Pf(t, x, r). We shall
call the function f regular if the following condition is satisfied.

8.3B. If A is a complete subset of the space Q(E) and if for some s and for all
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x E E we have PJ*Z(A) = 1, then Pft*(A) = 1. By Ps*x and PfS* we denote the
outer measures corresponding to the measures P., and PS.

In order that there exist a Markov process with the transition function P(t, x, r)
and a set of trajectories A C Q(E), it is necessary and sufficient that P,*,(A) = 1
for all s _ 0 and x E E. Therefore condition 7.3B means that every complete
set A which can serve as a set of all trajectories for a process with the transition
function P(t, x, r) can also serve as a set of all trajectories for a process with the
transition function Pf(t, x, r).
The question of regularity of the excessive function f is closely connected

with the question of the possibility of representing this function as a mathemat-
ical expectation. We shall say that the UP-measurable nonnegative function t(w)
with ,w Ez Oo is an excessive random variable of a stationary Markov process X if

8.3C1. O,t _ t for all t > 0, w C Qo.
8.3C2. lim Ott = t.

tUo
By (7), if t is an excessive random variable for X, then

(137) f(x) = MO,zt
is an excessive function with respect to the transition function P(t, x, F).
We note that the possibility of representing the function f(x) in the form (137)

depends only on P(t, x, r), but does not depend on the choice of the process X
having the transition function P(t, x, r). This follows readily from the results
of section 3 of chapter 2 of [4], where a description will be found of the class of
all Markov processes corresponding to the same transition function. We shall
show that the representability of the function 0 < f(x) < + oo by the form
(137) is sufficient for the function to be regular. In fact let A be any complete
subset of the space QE which can serve as the set of trajectories of a process
with the transition function P(t, x, r). Let X be such a process. Consider the
representation (137) for the process X. The system of functions

(138) nt =Ott, 0 _ t <()

satisfies conditions 5.4A to 5.4D. Let

(139) f(X) = Mt,-l7t = MO,-, ast = fAxt) {t = f(7)t

By 5.4, the (al, tt)-subprocess XZ of the process X has the transition function
Pf(t. x, r). But, obviously, the set of all trajectories of X coincides with A.
One criterion for the representation of an excessive function by means of an

excessive random variable follows from theorem 7. In fact, let

(140) sup ITef(x) -f(x) -0 for t J, 0.

Then the function

(141) m,(x) = f(x) - Tt_.f(x)

satisfies conditions 7.2A to 7.2C, and by the corollary to theorem 7
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(142) m(x) =

where sot is some nonnegative additive functional of the process X. It follows
from (141) and (142) with s = 0 that

(143) Mo,p? = f(x) - Tf(x) = f(x) - Mo0,(xt).
As is known (see, for example, [2]) there exists a.s. P.,. the limit

(144) limf(xt) = 7(W)-

This follows from a general theorem about semimartingales ([1], theorem 4.1).
In fact if we let

(145) {f(Xa) 0
_

t < (u),
0, tt >_ (W)

then it can be easily checked that for any 0 _ s _ 1,

(146) Mo -OMO= a.s. Q, P0o,.
Therefore (Q, Mto) is a semimartingale.
From formula (143) with t t oo, we have f(x) = Mo,z,4 where t = y + 0-o*

It is not hard to check that this last formula defines an excessive random variable.
Hence condition (140) is sufficient for the representation of the excessive

function f in the form (137) and therefore for the regularity of f. Every function
satisfying condition (140) is bounded. L. V. Seregin found sufficient conditions
of regularity applicable to nonbounded functions. These conditions are close to
being necessary and make possible the construction of large classes of nonregular
excessive functions (all these functions are unbounded).

8.4. Transformations of one-dimensional regular diffusion processes. Let
E = [ri, r2] be a line segment, let (B be a oa-algebra of all Borel subsets of E.
Every stationary continuous strongly Markov process in the state space (E, (SB)
is called a diffusion process. A diffusion process is called regular if for any points
x, y of E

(147) Po, {xt = y I for some t E [0, t(w))} = 1.

Let so(x), with ri ! x _ r2 be an arbitrary continuous increasing function, let
<-1(y), with p(r1) y _ (p(r2) be the inverse function. Then, as can be easily seen,
X, = [$0(X£), , =84 P.,"-,(.)] defines a regular diffusion process in the segment
[<,(r1), p(r2)]. It is not hard to check that the class of one-dimensional regular
diffusion processes is invariant also with respect to a random time change cor-
responding to an arbitrary continuous additive functional satisfying conditions
8.1A and 8.1B. Volkonsky [10] showed that with the help of these two transfor-
mations every regular diffusion process with infinite lifetime can be obtained
from a Wiener process on the segment [0, 1] with reflecting screens at the points
0 and 1.

In order to obtain all processes with arbitrary lifetimes it is necessary to add
to the two types of transformations above some of the other transformations
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described in section 5. As was showni in [7], it is sufficienit to coinsider the (a )-
subprocesses where aCY a3nC( ( are defined in terms of some excessive random vari-
able t l)y the formulas

(148) a Mot

See 5.4 anid (139).
Another class of additionial tranisforiimationis that is sufficiemit for obtainiing all

regular diffusion processes with arbitrary lifetimes from the regular diffusioni
processes with ilifinite lifetimes is proposed by Volkonsky [11] (see also [12]).
AVolkonsky has shown that such a class forms the a'-subprocesses, where a' is a
multiplicative functional, satisfying coniditiolns 5.3A-5.3B.
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