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1. The nonstochastic theory

The interpolation problems to be discussed in this paper arise in the theory
of approximation by rational functions in the complex domain. The problems
are connected with the following basic question, here stated rather informally.
Let B denote a bounded point set of the complex z-plane, let the function f be
given on the boundary of B, and let {S, zn z2n,*Z2., Z-, be a sequence of point
sets chosen somehow on the boundary of B. Let L. = Ln(f; z) denote the poly-
nomial in z of degree at most n - 1 which is found by interpolation to the values
of f at the points S.. Under what circumstances will limn1_O Ln exist, and when
it does what will the limit be? Preferably of course it will be related in some way
to f.

If B is the unit disk, the question becomes one of a special kind of trigono-
metric interpolation, but not of a type which has been studied intensively as
such. If B is the real interval - 1 _ z _ 1 the question involves interpolation
by real polynomials, or trigonometric interpolation by cosine polynomials. Such
problems have been thoroughly investigated over the last fifty years (see
Zygmund [1], chapter 10). Attention in the general complex case has been cen-
tered on convergence at interior points of B rather than on the boundary of B
where the interpolation points are placed, and the required techniques appear to
be quite different from those useful in the purely real case. It is the complex
case with which this paper is solely concerned.
The history of the complex case might be said to go back to MWray [2], who

in 1884 came up with a slightly disturbing example. He pointed out that if B
is the unit disk, and S. consists of the nth roots of unity, and f(z) = 1Iz, then
Ln(f; z) = zn-. This L. has the limit zero for lzl < 1, and elsewhere diverges
except at z = 1, where it equals the corresponding value of f for all n. Except
at z = 1 the limit, where it exists, seems to bear little relation to the function
to which Ln interpolates. However, later work showed that if the boundary of
B consists of one or more rectifiable curves, then what one should be looking
for is convergence to the function
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(1.1) F(z) = (t

at interior points of B, where the integral is extended over the boundary of B.
In such cases, if f is analytic at interior points of B and continuous in the corre-
sponding closed region, or set of regions, then (1.1) is the familiar Cauchy
integral formula, and F(z) = f(z) at interior points of B. In the Meray case, a
simple calculation shows that F(z) = 0 for lzl < 1.

It turns out that in the classical theory of the complex case, a key role is
played by the concept of "uniformly distributed" or "equidistributed" inter-
polation points, where here a distribution means an asymptotic relative fre-
quency distribution, not a probability distribution. It is the purpose of this paper
to cast further light on this role through the use of the techniques of probability
theory.
The concept of an equidistribution was introduced by Hermann Weyl [3] in

1916. There is an easily accessible treatment in P61ya and Szeg6's Aufgaben und
Lehrsatze ([4], pp. 67-77 and 230-242). For present purposes it is convenient
to give the definition as follows: Let {°n : Onx, 02n, * *,Xnn} be a sequence of sets
of real numbers lying on the closed interval [0, 27r] and let Nn(O) be the number
of the numbers o- lying on the closed interval [0, 0]. If for each 0,

(1.2) lim Nn(O) = 0
n-- n 27r'

then the sequence {0n} is equidistributed on [0, 27r] and the corresponding se-
quence, {zln, Z2,,, *, Zn,}, where Zk = exp (i0kn), is equidistributed on the circle
-Y : IZI = 1.
The simplest example of an equidistribution on ry is given by the sequence of

nth roots of unity, for which Zkn is exp (27rik/n), for k = 1, ** , n. Another classi-
cal example is {t2, -2 * * }, where %I = 1 but t is not a root of unity.
We henceforth impose the restriction that B shall be a simply connected region

of the finite z-plane bounded by a Jordan curve F. (A Jordan curve is homeo-
morphic to a circle.) There are generalizations of some of the deterministic and
probabilistic developments of the sequel to regions with more general boundaries,
and to point sets consisting of several mutually exterior regions.
The particular extension to a general Jordan curve r of the concept of equi-

distribution on the unit circle which has usually turned out to be appropriate in
the problems here under consideration is as follows. Let the analytic function

(1.3) z = 4(w) = cw+ co+ C+ W2 + *W1 > 1,
w w2

map the exterior K of r onto the region lwl > 1 in the complex w-plane con-
formally and in a one-to-one manner so that the respective points at infinity
in the two regions correspond. Then we shall say that the sequence
{Sn : Zl, Z2, * * * Z..} is equidistributed on F if and only if the image sequence
{Wlnj W2n, ..** Wnn, is equidistributed on y: |w| = 1, where Zkn = r(Wkn).
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The theory for the case in which f is analytic on B + r, and therefore on a
larger region containing B + 1, was worked out first. It is made accessible by
the availability of the so-called Cauchy-Hermite formula which we shall display
below in section 2 (2.1). The class of functions analytic on a given closed Jordan
region B + F will henceforth be designated by the symbol (A)r, with r re-
placed by y if r is the unit circle. This is of course a subclass of the class of all
functions defined and continuous on F, which we denote by (C)r or (C)., The
principal classical result for functions in (A)r is
THEOREM 1.1. A necessary and sufficient condition that

(1.4) lim Ln(f; z) = f(z), z on B,

for every f E (>-r, is that the sequence fSn} of sets of interpolating points be equi-
distributed on r. I -S,,' satisfies this condition, then

(1.5) Ln(f; z) -*f(z) = 0 (R)

on and inside each level curve rR: Z -[R exp (iO)], R fixed, R > 1, 0 _ 0 < 27r,
which does not contain or pass through a singularity of f. If convergence for all
f E (A)r, or indeed justfor all analyticfunctionsf of the type 1/(a - z), a exterior
to F, is known to take place at only a single point zo of B, then it must take place at
all points of B + r and the points Sn must be equidistributed on P.
Runge [5] published in 1904 a proof that convergence takes place inside the

unit circle for all f E (A), when S,, is the set of nth roots of unity. Fej6r [6]
announced the general sufficiency condition as given above in 1918; Kalmar [7]
the necessity in 1926. The statement in the last sentence was proved by Curtiss
[8] in 1941. Walsh and Szeg6 have established various generalizations. (The
standard reference work on complex polynomial approximation in general, and
complex interpolation in particular, is Walsh's Colloquium volume [9], which
has a bibliography complete to 1956.)
The convergence problem for functions knowni only to be in class (C)r is

more delicate, and a number of questions still remain- open, some of which moti-
vated the present investigation. The following statement partially summarizes
the facts which have so far been established.
THEOREM 1.2. If F is rectifiable, then a necessary and sufficient condition that

limn-. Ln(f; z) = F(z) at a single point zo of B, for every f E (C)r, where F(z) is
given by (1.1), is that both of the following relations shall hold true:

(1.6) lim Ln[(z - a)-k;zO] = 0, k = 1, 2, *

where a is an arbitrary fixed point on B; and there exists a number M1 > 0 intdc-
pendent of n such that

(1.7) n(z -ZkW)w,(zO ) < M, n = t, 2, * *

where Wn(z) = (z - Zin) (z -z2n) ... (z - Zkn). Convergence is uniform on any
subset of B on which these conditions hold uniformly.
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If F is rectifiable and S. is the transform under (1.3) of the nth roots of unity, then
(1.6) holds true uniformly for zo on any closed subset of B, and if +"(w) is non-
vanishing and of bounded variation for Iwl = 1, then both (1.6) and (1.7) hold
uniformly for zo on any closed subset of B.
The first part of the theorem was only recently announced [10]. The basic

theory for the sufficient conditions involving the roots of unity was published
in 1935 [11] with improvements in 1941 [12]. Earlier, Walsh had proved con-
vergence for the case in which r is the unit circle and S,, consists of the nth roots
of unity (see [9], p. 179).
A class of functions contained in (C)r but containing (A)r is that of the

functions which are continuous on r + B and analytic on B. We shall call this
the class (CA)r, or (CA), when r is the unit circle. For these functions it turns
out ([10], theorem 4) that (1.7) above is a sufficient condition for convergence of
{L,} on B. Fej6r [6] in 1918 established the convergence inside the unit circle
when Sn consists of the nth roots of unity.
The implication of the italicized statement in the preceding paragraph is that

if (1.7) holds at just one point z0 of B, the sequence of interpolation points {Sn}
must be equidistributed on r, because (CA)r contains (A)r and the last sentence
of theorem 1.1 becomes applicable. Yet in a broad sense just what is the role
of equidistribution in the convergence process? In the (A)r case, it is clear from
theorem (1.1) that the role is a crucial one, but the relevance (if any) of equi-
distribution is not evident in interpolation to less heavily restricted classes of
functions. It is possible (see [13]) to construct sequences of interpolation points
equidistributed on the unit circle y for which neither (1.6) nor (1.7) is valid, and
yet such that for functions f of class (CA),, satisfying a light restriction on their
boundary values the convergence of {Ln} to f(z) takes place everywhere inside
-y. One such construction involves merely adjoining a single point (, with 141 = 1
but not a root of unity, to the nth roots of unity for each n. The failure of formula
(1.6) to hold true means in particular that {Ln(1/z; zo)} does not converge to
the "right" value. It seems strange that the convergence process should be so
delicate, even for a function like l/z which is analytic on -y, that this process
can be upset by just adding another interpolation point at each stage. Some of
the questions now open relate to whether equidistribution is always sufficient
for convergence if f E (CA)r, and to what restriction on an equidistribution
will make (1.3) and (1.4) hold true.
The (CA), question was posed to the author by the late Professor Aurel

Wintner some years ago, and now seems to be of considerable interest because
of its bearing on parallel and unresolved convergence problems concerning the
convergence of harmonic interpolating polynomials.
There is of course a close relationship between numerical equidistributions of

the type we have been discussing here and probability distributions. The study
on which we shall now report was motivated primarily by the hope that the
methods of probability theory might cast some light on a few of the unresolved
questions concerning the role of equidistribution in the deterministic theory. It
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was undertaken also with the idea that it might perhaps be helpful in studying
other function-theoretic interpolation problems. A final motivation, of course,
was just curiosity.

2. The stochastic formulation and the principal new results

As in section 1, we shall be dealing with a function f given on a Jordan curve
r of the complex z-plane. The interior of r will be denoted by B and the exterior
of r will be denoted by K. We let Ln(f: z) again denote the polynomial in z of
degree at most n - 1 which interpolates to f in n designated points Sn lying on
r. But now we shall postulate that the interpolation points are random variables
defined on a certain probability space, and this means that Ln(f; z) will be a
random variable too. It seems to serve no useful purpose to continue to make a
distinction between the interpolation points in the set Sn and the first n inter-
polation points in any successive set Sn+k, so our basic set of interpolation points
will be taken to be the infinite family of random variables zi, Z2, *, with Sn
designating the first n of them.
We assign the probability measure as follows: Let, 61, 02, *--, be an infinite

family of mutually independent random variables, and let Ok have a uniform
(that is, rectangular) marginal probability distribution on the real interval
[0, 27r]. If r is a circle of radius R, we define Zk by Zk = R exp (iOk), for
k = 1, 2, .... More generally, if r is any Jordan curve, we let Zk be given by
Zk = 4 [exp (iOk)], for k = 1, 2, *, where 4 is the mapping function (1.3) dis-
cussed above.
The interpolation points Zk will thus be mutually independent. This is a more

restrictive condition than will be needed for some of the developments below,
but in this first treatment it does not seem inappropriate.
The question of possible coincidences in a given sample sequence z*, z2 X** of

the process {z,n} should receive passing attention. First we shall review briefly
some of the formulas for Ln(f; z).

If f E (A)r the following formula, known as the Cauchy-Hermite formula, is
available:

(2.1) L(,,ff; z) = t-~ I - -( dt,(2.1 ) ~~~~27ri|t -z [ 6n

where
(2.2) CO" (Z) = (Z - Z1)(Z - Z2) . . . (Z Zn)
and r' is a suitably chosen rectifiable Jordan curve containing B + F in its
interior. If f is analytic on r but not throughout B then (2.1) is still valid when
the path of integration consists not only of the exterior curve r' but also of
another suitably chosen curve F" lying in B. If f is analytic on r + K, where K
is the region exterior to r, then we have recourse to a slightly unfamiliar form
of the Cauchy integral formula (Osgood, in [14], Vol. 1, p. 344, ascribes the
theorem to D. R. Curtiss):
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(2.3) f(z) f(c ) + 2 f j-z ' z exterior to F",

I"''

where I"' is suitably choseni oni B. This formula implies that the following
representation for Ln(f; z) is valid for all z when f is analytic on r + K:

(2.4) L.(f; z) f| f(t) [1 - wz] dt + f( )
I,,"

A special case of these integral formulas in which the ilntegrals can be evaluated
by residuies, is

(2.5) L;[zz] =za [ J z a.
a-z a-z won(a)

The value of L,, at z = a is w'(a)/1wc(a). Finally for an f unrestricted except for
finiiteness at z,, z2, ,w-e have the so-called Lagrange interpolation polynomial

(2.6) LUn(f; z) = f(f) (z - Zk)k)(Zk)
There are inaiiy eq(uivalents of (2.6) which cani be writteni dowin by usilig divided
differences.
Now the Cauchy-Hermite formula (2.1) and its variations (2.4) and (2.5)

automatically make provision for coincidences among the points of interpo-
lation. The polynomial L,n as so represented takes on the value of f and of its
first (k - 1) derivatives at a coincidence of k points. The same is not true of
the Lagranige interpolationi formula (2.6), which is formally meaningless in case
of a coincidence because of the presence of Wn(Zk) in the denominator of the
summand. But in our stochastic model, the probability of a coincidence of anly
multiplicity is alvays zero. Thus, for any function in (C)r, we can say that (2.6)
defines the interpolationi polynomial Ln with probability one, and with these
remarks the question of coincidences will receive no further attention.
We shall now summarize the principal results concerning the stochastic con-

vergence of the process {Ln(f; z)}.
THEOREM 2.1. Iff C (A)r, then

(2.7) lim L.(f; z) = f(z), z onl B,
n--

with probability one. Injfact, with probability onC a sample seqluence of interpolation
points will cause uniform convergence of {Ln} to f for z on and inside each level
curve rR: Z = 4J[R exp (iO)], 0 < 0 < 27r, R fixed, R > 1, which does not contain
or pass through a singularity off.
THEOREM 2.2. For the function f(z) = 1/(a - z), with a on B, the following

relati6ns hold at each z on B, where z # a.
(a) For any E > 0

(2.8) lim P{IILn(f; Z) - f(z) e}<n--i2
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(b) If g(z) $ f(z) and if q < lg(z) - f(z)I, then

(2.9) lim P{jLn (f; z) - g(z)I < 71} = 0.
n- o

(c) Given any M > 0, however large,

(2.10) lim P{ILn(f; z) - f(z)l > 31M 2
n-- ~~~~~2-

(d) Given any M > 0, however large,
(2.11) lim P{ILn(f; a)l > M} = 1.

n-o
Part (a) of theorem 2.2 seems surprising, partly because of the following fact.

Let r' be any rectifiable Jordan curve lying inside B and containing the point a
in its interior. Let X be the length of v. Then with any sample sequence
of interpolation points z*, z*, *--, it is impossible to have the inequality
IL*(f; z) - f(z)l < e holding everywhere on rI if f < 1/X. Here f(z) is still
1/(a - z) and {Ln} is the sample sequence of interpolating polynomials corre-

sponding to {zn}. The reason is that I L*(f; z) dz = 0 by the Cauchy integral

theorem; also f, [1/(a - z)] dz =-2wri, and if the inequality were to hold every-

where on rI we would have the contradiction:

(2.12) 27r = If [L.*(f; z) -f(z)] dz|

_ f L*(f; z) -f(z)l IdzI < eX < 1.
r,

But still the theorem says that for a fixed large n and a fixed z, approximately
fifty per cent of the sample sequences of interpolation points will cause the value
of L* to fall arbitrarily close to that of f.

Part (b) merely provides further evidence on how sensitive the convergence of
our interpolation procedure is to the spacing of points, even for functions
analytic on r. It will be recalled that theorem 1.2 states that with g(z) = 0,
{Ln[1/(a - z); z]} does converge to g(z) when Ln is found by interpolation to
1/(a - z) in the nth roots of unity and r is rectifiable. Our present stochastic
theory is easily modified so as to admit the nth roots of unity as a possible sample
sequence. It would now appear that there are "almost no other" equidistributed
sequences for which {Ln} will behave properly. Analogous results can be estab-
lished for more general functions f for which the representation (2.3) is valid.

In the following theorems, E denotes the expected value operator.
THEOREM 2.3. If r is a circle with center at zo, and if f belongs to (C)r and its

(n - l)st derivative is bounded in absolute value on r, then for all z

(2.13) E[Ln(f; z)] = ao + a1(z - zo) + * * * + an-l(Z -Z)n-1
where _0 ak(z -ZO)k is the Taylor expansion of the analytic function
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(2.14) F(z) =
I
i LL dt, z on B,
r

around the point z0. Thus limnO- E[Ln(f; z)] exists and equals F(z) for all z oil B,
and the limit also exists on r itself. If f E (A) r, then the limit exists and equals
f(z) on each closed disk with center at z0 which does not contain a singularity of f.

THEOREM 2.4. Iff is analytic on F + K, where r is an arbitrary Jordan curve
and K is the region exterior to r, then E[Ln(f; z] = f(ct) for all z.
THEOREM 2.5. For any r there exists a smnallest number R = R(r), where

1 < R < x,with the following property. For all f analytic on and interior to the
level curve rT: z = ¢[T exp (i6)], 0 _ 0 < 27r,1imni,- E[Ln(f;z)] = f(z)for every
z on r + B, uniformily for z on any closed subset of B. If R > 1, there exist func-
tions f E (.l)r such that {E[Ln(f; z)], diverges to injiniity on0 a subset of B.
The significance of theorem 2.5 is that the process {L,J, will be asymptotically

unbiased onily for a subclass of (A), characterized by having singularities suffi-
ciently distant from r. The required distance is never infinite. Theorem 2.3
shows that if F is a circle, then T I and there is no restriction on the position
of the singularities of a functioin f (A),. But if r is an ellipse, it turns out that
R > 1, and this in fact is the general situatioil. A somewlhat more explicit state-
ment of the result in the last sentence of the theorem is that if R > 1, there exist
functiolns f C (A)r analytic on and interior to any level curve given by z =
q)[R exp (i6)], 0 _ 06 2r, R fixed, 1 < R < TR such that the se(uence of mean
values of Ln diverges to infinity on a subset of B.
THEOREM 2.6. Iff is analytic on some closed dis1; of radiui,s R containing r, and

with center at a point z0 on B, and if the random interpolation points on F are the
points x [exp (i6k)], for kI = 1, 2, , where z = X(w) maps B + F coinformnally
onto Iwl < I so that the poilt uw = 0 corresponds to z = zt,, thleni

(2.15) E[L,,(f; z)] = ak(Z -
0

where the nimbers ak are the coefficients of the 7'aylor expansioni of.f about zo. Thus

(2.16) lim E[L,,(f; z)] = f(z), IZ- zl - R.

THEOREM 2.7. If r is a circle of radius R and f is analytic otn anid iisi(te a con1-
centric circle of radius 2R, then

(2.17) lim E[IL.(f; z) - f(z)l2] = 0
n--

uniformly for Izl _ R. There are functions f E (A)r for which this expected value
diverges to infinity for z on some subset of F. For all futnctions of the type I /(a -z),
a on B, this expected value diverges to infinity everywhere.
Theorem 2.7 seems to indicate that stochastic convergence in the mean is Ilot

a useful type of stochastic convergence to study in connection with the process
{Ln(f; z)), and so no attempt was made to generalize to noncircular regions.
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3. Indications of proofs, and further results
Theorem 2.1 is a translation into probability language of the sufficient con-

dition in theorem 1.1, and thus really gives us no new information. If a sample
sequence of interpolation points is equidistributed on r, then the classical theory
indicates that the corresponding sequence {L*} has the convergence property
stated in theorem 1.1. But by the Glivenko-Cantelli theorem ([15], pp. 20-21),
the sample sequences of our sequence z1, Z2, * * * of random interpolation points
have the equidistribution property with probability one, so the indicated con-
vergence of the stochastic process {Ln} takes place with probability one.
Theorem 2.2, parts (a), (b), and (c), depend on the following result, in which

as usual wO(z) = fl' (Z - Zk)
LEMMA 3.1. Given any two real numbers ml and ?n2, with 0 < m1 < M2, if z

and a lie on B,

(a) limP {n( <Zm}=

(b) lim P {M <I ' l < M2 = 0,

(c) iim P {|a'| > M2} 21

(d) lim.PfI'(a) > M2} 1
n- ww(a)

For the proof of parts (a) to (c), we first observe that if 0 is a random variable
with a uniform distribution on [0, 27r], then

(3.1) E[log Iz - 4(ee)I] = log jz -(e°)I dO

21; log z -c(e) IdO + log Icl,
where of course c is given by (1.3). Now if z lies on B, then the function
(3.2) -z-+(W) Z co _

cw cw w w

is continuous for lwl _ 1 and analytic for lwl > 1 including at w = 0, where it
equals one, and there is no w, with lwl > 1, such that +(w) = z. Therefore the
logarithm of the absolute value of this function is harmonic for lwl > 1 and
continuous for lwl _ 1, and equals zero at w = oo; so by the Gauss mean value
theorem the integral in the third member of (3.1) has the value zero. So we

have shown that
E[log lz - 0(el)I] = log Icl,

(3.3) E[log|Z = 0
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It should also be noted that the variance of log 'lz- [exp (i)] I/ la - [exp (iO)]1L
exists for z and a on B. We denote it by a2.
The rest of the proof now follows quickly from standard probability theory.

The inequality Ico(z)l/lwn(a)I < m1 is equivalent to
n z - e6~

(3.4) a -_ *(e lk)< log m.
ax/n a/fn

By the central limit theorem the expression on the left converges in distributioni
to the normal distribution with zero meani and unit variance. The uniformity
of the convergence insures that the limiting value of the probability of (3.4) is

(3.5) v+ f c-82/2 (lu = 1

as indicated in the statement of part (a) of the lemma. Parts (b) and (c) are
also now immediate consequences. For part (d) we observe that

(3.6) =(a) E 1
w (a) 1 a - (i)

The function 1/[a -+(w)] is analytic for lwI > I and continuous for lwl _ 1.
It vanishes at w = o. Therefore

(3.7)E [ t I =~~~~~~~~~iwI 1 d(~~~ ~[a-(Ci6k)] 27ri J a o(wl)I w
1WJ=1

by the staindard calculus of residues for regions containinlg the point at infinity
([16], pp. 110-112). The variance of the function is finite. Reference to any of
various well-known results concerning sums of random variables, for example,
again the central limit theorem, now completes the proof of part (d).
We now return to theorem 2.2. Part (a) of that theorem is, by (2.5), e(quivalenit

to statinig that the limiting probability of the inequality

(3.8) -l[1 I-=,(a)] a z = a zKwX (a),
is 1/2, and with m1 = Ea - zl, that is just what part (a) of the lemma does
state. In part (b) of theorem 2.2 we observe that

(39) 1)Ila - z[ con(a)
= P fW(a) - [1I (a - z)g(z)]l < 71a - zI}-

This probability can be no greater than

(3.10)

P{l1 - (a - z)g(z)l- 77|a - zl < < it (a - z)g(z)l + 7la - zl},
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because whenever the event in braces in (3.9) occurs, so does the event in braces
in (3.10), but the one in (3.10) can occur without the occurrence of that in (3.9).
If 7 is small enough so that the left member of the inequality in (3.10) is positive,
then part (b) of the lemma becomes applicable, which establishes part (b) of
theorem 2.2. The proofs of parts (c) and (d) proceed similarly.
Our proof of theorem 2.3 makes use of the recursion relation

(3.11) L.(f; z) = (z -Fzf)L-[f *Z);z] +f(zn)

and proceeds by induction in parallel applied to f and its first difference quotient.
The computations are too long to reproduce here and will be published else-
where [13]. A consequence of the theorem worth mentioning is the following,
which is obtained by combining equation (2.13) with a result due to Walsh
([9], pp. 153-154).
THEOREM 3.1. Let F be the unit circle, and let f be analytic for IzI < p > 1 but

have a singularity on lzl = p. Let Pn(z) be the polynomial of degree at most n - 1
found by interpolation to f in the nth roots of unity. Then

(3.12) lim {l,n(z) - E[L(f; z)] = 0
n--

for lzl < p2, uniformly for lzl _ r < p2.
We turn now to theorems 2.4 and 2.5. For the proofs of these, we need the

following result.
LEMMA 3.2.

3l, all z; t on B

(3.13) E[wflL]I + wt,o(wt)] all z; t on K.
where t = 4(wt).

Because of the independence and commoni distribution of the random vari-
ables z1, Z2, * ..,we have the equation

(3.14) E [ ] = {E[ (e)

By again using the theory of residues for regions containing the point at infinity
([16], pp. 110-112) it is easy to show that for all z and for t on K,

3~~~ ~ ~~~15oZ(ei*)l 1 r2 z (eil) z- o(wt)(3.15) I(z, t) = E[z=ei) I- T z-( dO = +zLt - 4(el)J - 2 r jO (wt) - 4(ei9) Wto'(wg)
and for t on B, I(z, t) = 1. The proof of the lemma is complete.
Theorem 2.4 now follows at once from formula (2.4) and the lemma; the

interchange of the order of application of the E operator and the integration
over v" is of course permissible.
The proof of theorem 2.5 is not quite so immediate. For any f E (A) r there

will exist an appropriate path of integration r1 on K such that (2.1) is valid. It
is permissible to change the order of integration, so we obtain, using the lemma,
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(3.16) E[L.(f; z)] = 21i jtf(t)- {1 - [I(z, t)]} dt,

and the problem is to determine the conditions under which II(z, t)j < 1. Let
M(R) = M(z, R) = maxIwgI=R II(z, t)I. Since z = +(w) gives a schlicht mapping
of lwl > 1 onto K, it follows that +'(w) cannot vanish for lwl > 1. Therefore
each of the two functions

(3.17) 1 w'(w) w41(w)
is analytic for Iwl > 1 and by inspection of (1.2) it can be seen that each of
them vanishes at infinity. It follows from the standard maximum modulus theory
([17], pp. 165-168) that for each z, M(R) is a continuous monotonically de-
creasing function of R, where 1 < R < oo, and also M(oo) = 0. We now define
for each fixed z on r + B a number R2 as follows:

Case (a) If M(R) < 1 for 1 < R < c, thenRz = 1.
Case (b) If M(R) = 1 for some value of R, 1 < R < c, then R. is taken as

this value of R.
Because of the continuity and monotonicity of M(R), these cases exhaust the

possibilities insofar as the behavior of M(R) on the interval 1 < R < ct is con-
cerned, and they uniquely define R, for each z. We note that in either case,
M(R) < 1 for R, < R < , and in case (b), M(R) > 1 for 1 < R < R,.
Now for all z on r + B,

(3.18) M(z, R) _ max 1 - 0(wt)| + (max Izi) [ max
IwgI=R Wt4 (Wt) zonr+B lw,I= R Wt (Wt)

Since max lzI for z on r + B is surely finite, and since each of the other maximum
values decreases monotonically with R to zero, there certainly must exist some
value of R, say R', 1 _ R' < oo, such that the right member of this inequality
is less than one. Therefore for all z on r + B, 1 _ R, _ R'. So the least upper
bound of the numbers R. as z ranges over r + B is finite and not greater than
R'. We take this least upper bound to be the number 7X referred to in theorem 2.5. It
has the property that for all z on B + r and all R > R, M(R) < 1, and if R > 1,
then every interval R - e < R < R, E> 0, contains at least one of the numbers
R.. The implication of the latter statement is that every interval TR- e < R < R
contains values of R such that for at least one z on r + B, M(R, z) > 1.
Now if f is analytic on and inside the level curve rTi, it will be analytic on and

inside some level curve FR", R" > R. Thus taking FR" to be r' in (3.16) we
obtain

(3.19) jE[Ln(f; Z)] - f(Z)I < [M(z, R")]n mX, z on r + B,2ird

where d is the distance from rR" to r, and m is the maximum of If on rR", and
X is the length of rR". But for each z on r + B we have M(z, R") < 1, so the
above inequality establishes the convergence of {E[Ln(f; z)]} to f(z) pointwise
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Onl F + B. However, it also shows that {LE(Ln) } is a uniformly bounded se-
quence for z on F + B, and uniform convergence on any closed subset of B
then follows from Vitali's theorem ([17], pp. 168-169).

Finally consider the case TR > 1. We shall show that for any level curve rFR_,
where e > 0 is arbitrarily small, there exists a function analytic on and inside
]PT-E, for which {E(Ln)} diverges to infinity on a subset of B. To do this we use the
fact, mentioned above, that given any e > 0, the Cartesian product of the z-set
r + B with the R-interval R - e < R < T contains a point (zo, Ro) such that
M(zo, Ro) > 1. Let to be a point on rRo such that II(zo, to) = M(zo, Ro). Consider
the function f(z) = 1/(to - z). This function is analytic on rTh_. By (2.5) and
lemma 3.2,

(3.20) E[n(,Ln Z)] = t0 _ z (1 - [I(z) tO)].)
We know that iI(zo, to) > 1. It is also clear from continuity that this inequality
holds for all z in some neighborhood of zo, and such a neighborhood will surely
contain points of B. Wherever the inequality holds, the sequence {E(Ln)}
obviously diverges to infinity.

This completes the proof of theorem 2.5.
The actual value of R, which is a characteristic constant of r like the so-called

"conformal radii" and "transfinite diameter," may be hard to determine in
given cases. It is slightly tiresome to compute even for an ellipse. If the foci of
the ellipse are at z = i1 and the major axis is of length p + (l/p), then

1

(3.21) I(z, t) = pwt t on K,
t -

pwt

from which at least the fact that R > 1 can easily be deduced.
The proof of theorem 2.6 is similar to that of theorem 2.5 but is simpler, since

there is no problem of finding the location of a critical level curve. We omit the
proof.

Finally, we shall look briefly at the proof of theorem 2.7. It is no restriction
to take the center of r at zero, which we shall do. Suppose that f is analytic on
Izl _ 2R, and therefore on Izl _ R', where R' is a suitably chosen number
greater than 2R. Formula (2.1) now states that for Izi < R',

(3.22) IL.(.f; z) - f(z)12 = | f| (-t cn(z) dt 2127i j t- z c,Q
Itl=R'

and using the Schwarz inequality, we find that

(3.23) IL.(f; z) - f(z)12 < m2R' f c,(Z)12 IdtI27r J W.(t)
Iti=R'

where m is the maximum of If(t)I/It - zl for Izl _ R, and Itl = R'. Therefore
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(3.24) EIL n(f; z) - f(Z) 2 _< max E t

the maximiium being restricted by lzl _ R, Iti = R'. We must lnow evaluate the
expectationi oni the right side of the iniequality. The result is
LEMMA 3.3.

p[+ R2 Jtl]T, all z; Ii < R

(3.25) 1 -2 allz; itl > 1 .

T'lhe lemmiia is easily piroved by the calculus of residues. B3y examining the geom-
etry of the situation it cani he shown that for all lzi < R, the expression in square
l)rackets iii the lemma for the case iti > Rt is less thani one in absolute value for

1't > 2R, but if [itl < 2R, there are values of z oni Izl < R for which the absolute
value of the expression is greater than onie. The convergelnce property stated in
theorem 2.7 then follows from (3.24), and the divergence indicated in the second
sentence of the theorem is established by considering (2.5) for a suitably chosen
function 1/(a - z). The third sentence of the theorem follows mainly from the
fact that the absolute value of the expression in square brackets in the lemma
for the case 1tt < R is greater than one if z X t. Therefore divergence in the
mean will take place for all functions of the type 1/(a - z), with lal < R, at
least for all z not equal to a. The case in which z = a is lnot meaningful insofar
as the expression IL,-.f 12 is concernied, hut it can be shown that

(3.26) ILn ( a)| = ().
We omit t he (let ails.
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