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1. Introduction and summary

1.1. On the transition from tacit to explicit allowance for residual errors in
explanatory models. This transition, which can be regarded as a subtitle for the
present paper, marks a bold raise of aspiration levels in applied statistics. In par-
ticular, it is so for model construction in the wide realm of nonexperimental
situations. Speaking broadly, there is a lower level where the model is mainly a
theoretical construct, and the confrontation with reality consists of ad hoc
comparisons between theoretical model and empirical evidence. At a higher level
the model is built by way of systematic coordination between theoretical ap-
proaches on the one hand and statistical data and statistical techniques on the
other. Jan Tinbergen’s work with multirelation models is an outstanding case in
point; his macroeconomic systems for the Netherlands [57], the United States
[58], and Great Britain [60] are pioneering in their joint theoretical-empirical
approach.

The transition provides clear-cut illustrations of the give and take performance
of all deductive theory: generalization of the basic assumptions of a model versus
attenuation of the inference from the model. Disturbances (residuals) in the form
of stochastic error terms are introduced to allow for deviations between theoreti-
cal relations and actual observations, and this stochastization makes a radical
generalization of the model. The attenuation shows up in the fact that the
procedures of inference from exact (disturbance-free) relations may or may not
extend to inference from stochastic relations. The following procedures are
critical cases in point.

(1) The reversal of relationships; or, to paraphrase, the symmetric treatment
of explanatory variables and variables to be explained.

(ii) The transformation back and forth from implicit to explicit systems of
relationships.

The problems that arise under (i) and (ii) are veritable stumbling blocks on
the road of stochastization. They are marked by the long-drawn and partly
controversial and confused debate on two key issues: on “choice or regression”
in the 1920°s and 1930’s, and on “interdependent systems” in the 1940’s and
1950’s. The present paper reviews the situation for models where some or all of
the relations are unbiased predictors. Being defined in terms of conditional
expectations, unbiased predictors are the natural tool for the stochastization of
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explanatory models, and in particular for the treatment of stimulus-response
relations and behavioral relations.

Our review focuses on three types of multirelation models:

Pure causal chain (PCC) systems, also known as recursive systems. This is the
the approach of Tinbergen in the macroeconomic models referred to above.

Interdependent (ID) systems. Initiated by Haavelmo [23] in 1943, this approach
was soon thereafter developed under the auspices of the Cowles Foundation
[26], [34].

Conditional causal chain (CCC) systems. This approach was introduced re-
cently [78] as an alternative to ID systems.

The main incentives for the review are (a) the three approaches, and in
particular PCC systems, make the framework for a central line of development
in nonexperimental model building, and (b) it is an urgent task to make a com-
parison and appraisal of the rationale of multirelation approaches, with a view to
obtaining better guidance in theoretical and applied work. The allocation of re-
sources is indeed an important problem. To stress one feature on the applied
side, the large budgets for big model construction projects are in ample part
consumed by the prerequisite compilation of statistical data, and the require-
ments as to what types of data are needed are partly conflicting, notably for
causal chains versus input-output models.

1.2. Summary. Sections 2 to 4 deal with three aspects of unbiased predictors:
unirelation applications; multirelation applications; estimation by least squares
regression. Section 5 adduces an array of comments toward a coordinated view of
ends and means in nonexperimental model construction. Section 6 poses the
intriguing question whether under favorable circumstances it is possible to assess
the direction of causal relations by purely statistical devices.

The upshot of the review is that unbiased predictors, in not being reversible,
place the model builder under the burden of designing part or the whole of his
model in terms of directed (asymmetric) relations, whether the direction is intrin-
sically implied, as in behavioral relations and other cause-effect relations, or is
imputed by specifying the intended operative use of a relation. To “directionize”’
the explanatory models makes a development program for econometrics and
other areas of nonexperimental model construction. If the review can stimulate
increased activity along this line it will have fulfilled a main part of its task.

In the emphasis on directed relationships and causal analysis in nonexperimen-
tal model building the present review leans heavily on my earlier studies [7], [15],
[51], [66] to [82], and links up with [78] to [80] in the systematic use of unbiased
predictors. What is novel should partly lie in the arrangement of review material;
here we note the emphasis in 4.1 to 4.3 on least squares regression as an unbiased
estimation technique that is nonparametric with regard to residual intercorre-
lations (including autocorrelations) whose assessment in practice would be a
problem in itself. Partly it lies in passages where arguments on the basis of typical
illustrations like those in (3.8) to (3.10) or those in (3.19) to (3.21) have been
carried further by way of general theorems, notably: the explicit formulation of
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lemma 2.4.4; the conjugate connection between ID and CCC systems shown by
theorem 3.2.4; the general interpretation in 3.2.4 of CCC systems in reduced
form. As regards the new material in section 6, see the general introduction in
that section.

The reader is assumed to be oriented in the foundations of regression analysis
(see Cramér [10], especially chapters 23 and 37). For a review with emphasis
on causal aspects, see [82], chapter 2.

For helpful discussions during the final revision of the manuscript my thanks
are due to Ruth Gomulicka (Cambridge, England), E. Robinson (University of
Wisconsin), J.-C. Schoenman (Columbia University), and Lyttkens and S. Thore
(University of Uppsala).

2. Unbiased predictors: unirelation inference

2.1. Summing up. Explanatory relations and the rationale of their operative
use are in this section surveyed from the point of view of unbiased predictors.
The conclusions are summed up in table I. The results refer primarily to unirela-
tion models, but are valid also for unbiased predictors that make part of multi-
relation models. Under category C belongs the familiar fact that unbiased
predictors are directed relations, that is, the reverse relation never constitutes an
unbiased predictor. A symmetric treatment of unbiased predictors is permissible
only in the restricted sense indicated under category A, namely, reversal of the
direction of inference. Substitutive inference, it will be noted, is the key to the
subsequent typification of multirelation models.

TABLE I

Basic PROCEDURES OF OPERATIVE INFERENCE, CLASSIFIED AS TO PoOSSIBILITY
oF EXTENSION FROM DISTURBANCE-FREE RELATIONS TO UNBIASED PREDICTORS

Category A. Procedures that are always valid for unbiased predictors.
1. Direct prediction.
2. Reversal of the direction of inference from the predictor.

Category B. Procedures that are valid for unbiased predictors, subject to supplementary
assumptions.
1. Substitutive inference.

Category C. Procedures that are not valid for unbiased predictors.
1. Reversal of the direction of the predictor.

2.2. The notion of unbiased predictor. A stochastic relation with additive
disturbance term (residual), say
(2'1) y=f(x)zJ )+U
is called an unbiased predictor if f(x, 2, - - -) is the conditional expectation of y for
known z, z, - - - ; in symbols,

(2.2) f(xy 2, -+0) = E(ylxi 2, 000).
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In situations where (2.1) is a behavior relation or some other explanatory
relation, z, z, - - - are the explanatory variables and y the variable to be explained.

The term unbiased predictor, a new name for an old notion, serves to emphasize
the operative aspects of conditional expectations. It will suffice for our purpose
to consider linear predictors. The definition, given by (2.3) and (2.4), establishes
in one stroke (a) the operative use of unbiased predictors (section 2.4), and (b)
their estimation by least squares regression (lemma 4.2). By lemma 2.2.1, the
residual properties (2.5) need not be assumed; they are implied in the very
definition of linear predictors.

2.2.1. Linear relations. In the treatment of explanatory relations it is custom-
ary to assume that the residuals of linear relations are uncorrelated with the
explanatory variables. The approach of unbiased predictors is closely related, as
seen from the following elementary lemma and coroliary ([78], p. 362).

Lemma 2.2.1.  Given the linear stochastic relation

(2.3) Y =B+ 1+ - + Buti + v,
suppose that the relation is an unbiased predictor, that s,

(2.4) Eylry, <+, 21) = o+ Bxr + -+ + Buzs
and that all variables have finite variance. Then

(2.5) Ev) =0, E(@uz) =0,

showing that v has zero mean and is uncorrelated with x, - -+ , Z».

The proof is immediate, for if we consider (2.3) for any fixed 21, -+, s,
assumption (2.4) implies E(v|zy, - - -, 2n) = 0, E(vzixy, - - -, xx) = 0, which on
integration over zy, - - -, 2 gives (2.5).

CoroLLARY. Conversely, (2.4) sometimes but not always follows from (2.5); ¢
does, for example, if the variables are jointly normally distributed.

2.3. Simple tllustrations of disturbance-free relations versus unbiased predictors.
We shall consider the relations

(2.6) y = a+ Bz,

2.7 y=a+pz+v with E(@ylz) =+ Bz,

where (2.6) is a disturbance-free relation, and (2.7) is a corresponding unbiased
predictor.

(1) The case of several explanatory variables. Assuming that there are h explana-
tory variables, as in (2.3), the linear case is covered by (2.7) if we interpret 8 as a
row vector (81, - - - , B1») and x as a column vector {zi, -+ - , Za}.

(ii) The case of time series data. A simple disturbance-free model in time series
analysis is
(28) Yy = « + ﬁyg_l, t = 0, :|:1, ﬂ:2, RN
The corresponding model subject to disturbance is

(2.9) Y= a+ By + vy, with E(ye|ye—1) = a + By
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Taking the residuals v, vit1, vise, - - - to be mutually independent and to have
zero mean, the left equation in (2.9) defines an autoregressive stochastic process
that satisfies the right equation.

2.4. Basic procedures of operative inference. Most of the material in section 2.4
belongs to the foundations of regression analysis; see Cramér [10] also for further
references. The present exposition is somewhat more general since no restrictions
are imposed on the unbiased predictors. For a related treatment see Hurwicz [27],
who formulates the restrictive conditions in terms of the conditional distribu-
tions that define the residuals.

To establish table I, we shall consider four modes of inference, all of which
involve an element of prediction. The procedures will be illustrated by relations
(2.6) to (2.9). Speaking generally, the procedures will yield exact prediction in the
case of disturbance-free relations, expected or average values in the case of un-
biased predictors.

2.4.1. Direct inference. This is the fundamental mode of inference from unbi-
ased predictors. Considering the disturbance-free relation in (2.6) and assuming
z to be known, the procedure is to predict y directly from the given relation.
For the unbiased predictor (2.7), the procedure is the same, except that the
residual is ignored and the prediction yields the expected value of y for known z.
This gives

(2.10) Predy = o + 8z, Predy = E(ylr) = a + Bz

for the two models (2.6) and (2.7), respectively.

2.4.2. Reverse inference: reversal of relations.

(i) Disturbance-free models. Again considering relation (2.6), now assuming y
to be known, the procedure is to predict x from the reverse relation, that is,

@.11) Pmdx=%@-—@.

The reverse inference (2.11) is or is not unique according to whether x stands for
one or more variables.

(ii) Unbiased predictors. Ever since the beginning of correlation theory it has
been known that unqualified reversal (2.11) is not allowed when dealing with
unbiased predictors. In fact, for any joint distribution (z, y) with relation (2.7)
and P{v = 0} < 1, we have

(2.12) E@M)#%@-—@.

2.4.3. Reverse inference: reversal of the direclion of inference. Both for disturb-
ance-free relations and unbiased predictors, as also is well known, reverse infer-
ence is allowed in a weaker sense than in (2.11). Given y = y,, if we ask for what
value z the predicted (expected) value of y will equal yo, the answer is

(2.13) x=#ﬁwy—®,
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where

(2.14) yo = Predy, yo = Predy = E(yx)

for models (2.6) and (2.7), respectively. As in (2.11) the reverse inference is not
unique in the case of several explanatory variables.

2.4.4. Substitutive inference. Substitution not always being a permissible pro-
cedure for unbiased predictors, lemma 2.4.4 shows that the procedure is valid
when one of the explanatory variables is substituted in terms of all the other ones.
The situation may seem restrictive, but will suffice for our purposes. In the
simplest applications xy, x, - - - are lagged values of y; the predictor (2.15) is a
lagged version of (2.3); and (2.3) is an autoregressive relation with 8y =

Brag = ++- =0.
Lemma 2.4.4. Let (2.3) and

(2.15) Ty =op + oyt -+ o + o,

be two unbiased predictors, and let the relation obtained by substituting (2.15) into
(2.3) be written

(2.16) y =L+ v+ B,

where

(2.17) L = Bo+ ay + (B + B2z + -+ + (Br + anBu)z.

Then (2.16) is an unbiased predictor with

(2.18) E(y|xs, x5, - -+, 1) = L.

The lemma is a simple corollary to Xolmogorov’s general theorem that the
expectation of a conditional expectation equals the unconditional expectation
[32]. The theorem gives

219)  E(le, -, m) = Ba[Ef, -, o) = Eo[0] = 0,
where the subscripts to F indicate that the expectation is formed by integration
over the distribution of the variable in the subscript, and where the expectation

in the bracket vanishes owing to (2.6). Now since expectations are additive,
(2.16) gives

(2.20) E(ylx% o) =EWL+ v+ Blwlx% ", Tn)
=L 4+ E(vlzy, <+, 24) + BB (wlxg, -+ - 21) = L.

Here the conditional expectation of v is zero according to (2.19). Further, the
expectation of » vanishes, since (2.15) is an unbiased predictor.

InLusTRATION 2.4.4. We apply the procedure of substitution to the disturb-
ance-free relation (2.8). For known y,, exact prediction of . is provided by

(2.21) Pred yur = a(l + B8 + + -+ + B51) + B4y,

which is obtained from (2.8) by k¥ — 1 iterated substitutions.
Similarly, the substitutive procedure applies to the unbiased predictor (2.9), if
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interpreted as an autoregressive process. The ensuing formula is again (2.21),
where Pred y.ix now gives E(y .14]y:), that is, the expected value of y. for
known y;.

2.5. Ceteris paribus, and the concept of operative frame. This subsection borrows
from [78], with some elaboration of the argument.

2.5.1. Sample, population, frame. To discuss the rationale of applied work with
explanatory models it will be helpful to distinguish three notions:

(i) the sample S of empirical observations used in the model construction for
parameter estimation and related statistical purposes,

(ii) the population P, or statistical universe, which is assumed to have gener-
ated the observed sample,

(iii) the field of potential applications of the model, or its operative frame, or
simply its frame, say F.

As a rule, the frame F involves an extension in one or more respects relative to
the sample S and the population P. In symbols,

(2.22) SCPCF.

Usually, the main practical value of the model construction lies in the extension
from S and P to F.

A universe U is sometimes defined as a superpopulation that includes P and
has the same distribution properties as P. The notion of frame is more general,
the point being to emphasize that the potential applications of a model may
extend to populations that in some respect or other differ from P.

2.5.2. Ceteris paribus. Typically, predictions from an explanatory model in-
volve two assumptions regarding the frame F, namely (a) specified changes in the
explanatory variables, and (b) a ceterss paribus clause, requiring that there be no
changes in other respects. The ceteris paribus clause is a crucial point in the
models under review. In accordance with customary phrasings of the clause, we
have thus far given (b) a vague formulation. In disturbance-free models the
clause requires no comment, but for stochastic models it is illuminating to specify
two interpretations of the clause,

Ceteris paribus clause A. In the frame F (outside P) the disturbances are
absent.

Ceteris paribus clause B. The distribution properties of the disturbances are the
same in the frame F as in the population P.

ILLusTrRATION 2.5.2a. In the language of economics, elasticity is the loga-
rithmic derivative taken with negative or positive sign. Introduced by Marshall
[41] for disturbance-free relations, the definition allows a straightforward exten-
sion to unbiased predictors.

The notion of demand elasticity provides material for an instructive case study
of stochastization, the approach hovering between symmetric and asymmetric
treatment of the variables, between ceferis paribus clauses A and B, and between
descriptive and causal interpretation of the demand relation. Typical for a
symmetric treatment is the unqualified definition of price flexibility as the inverse
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with respect to demand elasticity with respect to price. Taking (3.8) to be a
demand relation with logarithmic variables, suppose that price p. increases by
1 per cent while the other conditions remain the same in the sense of clause B.
Then B, is the price elasticity of demand in the sense that the expected decrease
of demand y is 8; per cent. It is less in line with the logic of stochastic models to
invoke clause A. On clause A the same relation (3.8) is treated as disturbance-
free, and the exact decrease of demand is 8, per cent.

ILLusTRATION 2.5.2b. Linking with formulas (2.8) and (2.9), figure 1 refers to
prediction by relation (2.21). The sample is observed up to the time ¢, the predic-
tion is made at ¢t and refers to the future time point ¢ + k. Hence the time up to ¢
belongs to the sample S and the population P, whereas the time after ¢ belongs to
the frame F.

(a) Disturbance free model
Ceteris paribus clause A or B

f S T T N S T M B M s 'l

t t+k

A\ A

t
—/ V V (b) Stochastic model

< M Ceteris paribus clause A

VV t t+k

\

(c) Stochastic model

Ceteris paoribus clause B /\/
L \ AT TN

FiGcure 1
Prediction by models (2.8) and (2.9).

Figure 1(a) refers to the disturbance-free relation (2.8) and exact prediction by
formula (2.21), valid on ceteris partbus clause A (or B). Figures 1(b) and 1(c)
refer to the unbiased predictor (2.9). In figure 1(c) the prediction is subject to
clause B. The prediction, read from the broken curve, yields the expected value
of y.x for known y,, and the prediction works in situations where the future
disturbances have the same distribution properties as in the past. Figure 1(b)
emphasizes that clause A is not satisfactory in stochastic models. The prediction
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here yields the exact value of y for known z, and the prediction works in situations
where the disturbances cease to occur after time point ¢.

2.5.3. Pitfalls of stochastization.

(i) Clearly, ceteris paribus clause A (or B) is appropriate for prediction on the
basis of disturbance-free models, whereas clause B is designed for unbiased
predictors.

(ii) An unbiased predictor that works on the “stochastic” clause B is also
valid on the “disturbance-free” clause A. The converse is not true in general.

(iii) As applied to models that involve disturbances, clause A may be regarded
as a reminiscence of nonstochastic procedures in the treatment of stochastic
models. Such reminiscences are dangerous and may give rise to serious bias in the
operative procedures, so to speak, a “pitfall of stochastization.” Unqualified
reversal of unbiased predictors is a case in point, as we know from subsection
2.4.2.

2.6. Cross section versus time series prediction. Conditional predictors. Unbiased
predictors, as is well known, are used both for cross section and time series infer-
ence. In cross section prediction the explanatory variables and the predicted
variable refer to the same time period, as in relation (3.8). In time series predic-
tion, the explanatory variables are lagged relative to the predicted variable, as
in (3.9) or (3.10).

In practice, cross section prediction often refers to some future time point
t + k, while the requisite values of the explanatory variables are provided by
ad hoc assumptions or predictions. For example, suppose that (3.8) is a demand
relation in logarithmic variables with ex = 1.28 and price elasticity g, = 0.52.
Then, if we take pigro to be given by means of an assumption or an auxiliary
prediction, this relation gives
(223) Pred dig7o = 1.28 — 0.52 Pigr0

for the expected value of demand in 1970. We shall speak of conditional prediction
when an unbiased predictor in this way is applied on the basis of ancillary infor-
mation on the explanatory variables.

Cross section prediction and time series prediction are in everyday use.
Figure 2 serves to emphasize that they are complementary modes of inference.

SN\ o\
<\

t-2 t-1 1 t+k

FIGure 2

Cross section prediction and time series prediction.
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The cross sections, drawn as planes perpendicular to the time axis, are symbolic
fields of simultaneous observations. The two time series shown in the graph may,
for example, represent demand d and price p in model (3.8) to (3.10).

2.7. Mean square predictors. Relation (2.1) is called a least squares predictor
or, in line with the terminology of Cramér [10], a mean square predictor if
f(z, z, - - -) involves unknown parameters and these are chosen so as to make v of

minimum variance over the joint distribution of z, 2, - - -. If the joint probability
distribution of y, z, z, - - - is normal, then E(ylz, z, - - +) is linear in z, z, - - - and
the unbiased predictor coincides with the corresponding linear mean square
predictor.

With due qualifications, the considerations of our review can be generalized in
the direction of mean square predictors. The change in the argument is mainly
that conditions of independence will be replaced by conditions of noncorrelation.
In lemma 2.4.4, for example, the requisite extension is straightforward (see [82],
exercise 1V, 9).

3. Unbiased predictors in multirelation models

Our brief review assumes the reader to have some orientation in the large
literature on multirelation models. The textbooks of Baumol [4] and Klein [30]
emphasize the wide potential scope of the models for economic analysis in gen-
eral. For PCC systems the basic references are Tinbergen [58], [59]; on the ra-
tionale of the approach see also [7], [71], [75], [78]. For ID systems [34] and
[26] are authoritative expositions of the theory of the approach, with somewhat
revised account of earlier papers; for applied work see [8], [25], [29], [31], [52],
[2]. For CCC systems see [78] to [80]. Reference is further made to Leontif’s
input-output models [35], essentially an approach of comparative statistics
working with disturbance-free models. For comparative studies with emphasis
on the theoretical rationale of the approaches, see also [6], [49], [43], [51], [50].

3.1. Introductory. Speaking generally, a multirelation model contains relations
of two types. .

(1) Relations that constitute the fundamental hypotheses of the model. This is the
model in original form, also known as the structural form, or, as we shall say, the
primary form. In PCC, ID, and CCC systems the primary form contains, first of
all, the behavior relations of the decision-taking units whose actions it is the
system’s fundamental purpose to explain. The variables that enter the model as
variables to be explained, explicitly or implicitly, are called endogenous. The
system may further involve ezogenous variables; these represent outside influ-
ences. In a behavior relation the variable to be explained thus is a current
endogenous variable, and the explanatory variables may involve (a) other
current endogenous variables, (b) lagged values of the endogenous variables, and
(¢) current or lagged values of the exogeneous variables.

(2) Relations that by formal procedures are derived from the primary form. For
PCC, ID, and CCC systems these relations include the reduced form. Obtained
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by regarding the primary form as an implicit system for the current endogenous
variables, the reduced form gives the current endogenous variables explicitly in
terms of (a) lagged values of the endogenous variables and (b) current or lagged
values of the exogenous variables.

In disturbance-free systems the primary and reduced forms are equivalent for
purposes of prediction. Thus if we know the past of the endogenous variables,
and the past and the future of the exogenous variables, the two forms give the
same results when predicting the future development of the endogenous vari-
ables. For example, this is so in the simple cobweb model with primary form

(3.1) q: = an — Bipy, qe = oz + BePi,

and reduced form

(3.2) P = Ol_xﬁ_;l_g!g - %pt—l; q: = az + BePer.

(See [14], [56] for the cobweb theory of the early 1930’s with its disturbance-
free models for the demand-supply balance.) The free use of both the primary
form and the reduced form for predictive inference may or may not extend to

systems constructed in terms of unbiased predictors. The ensuing parting of the
ways is shown in table II, where categories A to C refer to table I.

TABLE II

PCC, ID, anp CCC SystEMs CLASSIFIED WITH REGARD To DIRECT
PREDICTION FROM THE SYSTEM IN PRIMARY AND/OR REDUCED ForM

1. Direct prediction from the model in primary form.
PCC and CCC systems belong to category A.
ID systems belong to category C.

2. Direct prediction from the model in reduced form.
PCC and ID systems belong to category B.
CCC systems belong to category C.

3. Direct prediction from the model both in primary and reduced form.
PCC systems belong to category B.
ID and CCC systems belong to category C.

3.2. The formal structure of PCC, ID, and CCC systems. In the subsequent
specifications of PCC, ID, and CCC systems we do not press for generality.
Our intention is, rather, to set forth what is typical for the three approaches and
to give a set of simple illustrations. For all three types of models we shall use the
notation

n is the number of relations and endogenous variables;

y = {31, -+ , Ya} denotes the eurrent endogenous variables;

z denotes lagged endogenous and current or lagged exogenous variables.

We adduce two definitions and an auxiliary lemma to prepare a key argument
in the mathematics behind table II.
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DEerintrioN 3.2.1a. A square matriz A = [a] ts called recursive if there are
mere zeros in and above the main diagonal, giving

0 0 0 0
an 0 0 0
A =|ay Az 0 0}
(1% (2% an 0
(3.3) - ’ *
1 0 0 0
—da91 1 0 0
I —-A= — a3 — a3 1 0l
—0n1 —Qn2 —0n3 e 1

DErFiniTION 3.2.2b. A system of linear relations (3.4) is called recursive if and
only if (a) the system contains one and only one explanatory relation for each of the
(current) endogenous variables, and (b) the relations can be so ordered that the
matriz A s recursive.

LemMA 3.2. The system (3.4) is recursive if and only if its reduced form (3.6)
can be obtained from (3.4) by a sequence of substitutions.

The terminology for FCC systems is fluent [59], [7], [51], [78]. In this review
we shall say that a system (3.4) is recursive if the matrix A is recursive in the
sense of definition 3.2.1, and that it is a pure causal chain if it satisfies the
additional assumptions (8.5) and (3.7), which ensure that the relations of
the model are unbiased predictors both before and after transformation to the
reduced form.

3.2.1. Pure causal chain (PCC) systems. Linear PCC systems in primary form
may be written

(3.4) y = Ay + Bz + v,
where
(i) the system is recursive;
(ii) all relations of the primary form are unbiased predictors; hence
(35) E(yilz: Yu Yz -, yi—l) = {Ay + Bz} iy 1= 1,--eym,
where the 7th element of a column vector {-} is denoted {:};;
(iii) in the reduced form of the system, that is,

(3.6) y=I—-A)"1Bz+ (I — A) 1y,
all relations are unbiased predictors; hence
3.7 E(yle) = I — A)! Bz.

ReMARK 3.2.1. By lemma 2.2.1, assumption (3.5) implies that the residual v;
of the 7th relation is uncorrelated with the explanatory variables z, yy, - - -, g1 of
the same relation. In the customary design of PCC systems a typical assumption
is, furthermore, that all current residuals v, - - - , v» are mutually uncorrelated.
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On the assumption of jointly normal distributions the two sets of residual
noncorrelation assumptions will, under general conditions of stationarity, be
equivalent with assumptions (3.5) and (3.7). We shall come back to these matters
in subsection 5.3.2.

IrLusTrATION 3.2.1. We quote the following PCC system, a simple demand-
supply model for a market under free competition,

(3.8) d; = ay — Bp: + v demand relation
(3.9) 8¢ = oy + BoPer + vt supply relation
(3.10) Dt = Peaa + ¥(dems — 80) + v’ price mechanism

(See [71], [75], [78] for more detailed comment on this and related models.)
The system has no exogenous variables. Taking the endogenous variables in
order s;, p:, d; the nonzero elements of matrix A are

(3.11) an = —v, an= —f,

which shows that A is recursive.
The system in (3.8) to (3.10) is the primary form of the model. The reduced
form is given by

(3.12) St = ay — Pepey + Vi,
(3.13) Pe = ¥(on — a2} + (1 — ¥B1 — ¥B2)Per + Vi,
(3.14) de = ay — Bryv(on — az) — Bi(1 — ¥B1 — ¥B2)Pes + Vi,

where the residuals v}, v}* are linear expressions of v;, vr, vi'.

According to 3.2.1(ii) and (iii), all relations in (3.8) to (3.10) and in (3.12) to
(3.14) are unbiased predictors, and further unbiased predictors can be obtained
by iterated substitutions in the primary or the reduced form. We note, for ex-
ample, that (3.8) and (3.14) imply

Edip:) = o1 — Bip,,

E(di|pes) = o1 — Brv(en - az) — Bi(1 — ¥B1 — ¥B2)Pe1.

The directional structure of the unbiased predictors in (3.8) to (3.10) is illus-
trated in figure 3 by an arrcw scheme, a type of graph used by Tinbergen [59] for
illustration of PCC systems, in particular for the causal interpretation of the
behavior relations.

3.2.2. Interdependent (ID) systems. Linear ID systems in primary (structural)
form may be written

(3.16) Cy = Bz + v,

where

(i) the coefficient matrix C = [cix] of the current endogenous variables is
nonsingular, which implies that the reduced form of the system is well defined,
being given by

3.17) y=C"1Bz + C'v;

(3.15)
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Arrow scheme for the pure
casual chain system (3.8) to (3.10).

(ii) the residuals » satisfy assumptions to the effect that the relations of the
reduced form are unbiased predictors; hence

(3.18) E(ylz) = C-! Be.

ReMark 3.2.2a. In the theory of ID systems the customary assumption is
that the variables are jointly normally distributed, and that the current residuals
are uncorrelated with the (relevant) exogenous and lagged endogenous variables.
The residual noncorrelation assumptions will under general conditions be equiva-
lent to assumption (3.18). (Compare remark 3.2.1.)

IrvusTrATION 3.2.2. We quote the following ID system, a simple cobweb
model subject to disturbance,

(3.19) di(=q)) = a1 — Bip: + v, demand relation,
(3.20) si(=q0) = ag + Bpi + ¥ supply relation,
(3.21) d. = s, = q;: relation of instantaneous equilibrium.

See [78] for further discussion from the present points of view. Models of the
same simple type were used in the early works on ID systems; see [19].

All variables are endogenous, and since there is no behavior relation for price
p, the model is not a PCC system. The two first relations give

(822) cn = 1, Cig = ﬁl, Co1 = 1, Cog = 0;
showing that the matrix C is nonsingular. The reduced form is
(3.23) G = oy + Bapes +vF,  po= P2 13_1 = ?; Pe1 + vi ,

where »f = »;and »}* are linear in », and #..
- According to 3.2.2(ii), the relations (3.23) are unbiased predictors,

(324)  E(ipes) = aak Bipes,  E@lp) = S5 — Loy



UNBIASED PREDICTORS 733

and further unbiased predictors can be obtained from (3.24) by iterated substitu-
tions. The supply relation (3.20) is an unbiased predictor since it so happens that
it coincides with the first relation (3.23) of the reduced form, whereas the demand
relation (3.19) in general is not an unbiased predictor,

(3.25) E(qps) # a1 — Bipe.
For later reference we note the special case
(3.26)
0.6 25p — 12

a = ap =0, B = T’ Bz = 0.6, (v, v) = 4(25p7 — 24p + 9)1/2’
where p is arbitrarily fixed in the interval 0 < p < 0.96.

Relation (3.21) illustrates a typical situation in ID systems, namely that the
endogenous variables are subject to one or more exact relationships, also called
linear constraints. Such constraints in general will reduce the number of relevant
endogenous variables, in systems (3.19) to (3.21) from three (d, s, p) to two (g, p).
In the representation (3.16) it is assumed that such elimination of variables has
already been performed. For some purposes it is useful to have a representation
of the model before performing the elimination, and the following formula refers
to this situation,

Gy = Bz +» m relations
Li(y,2) =0 j=1,-,k;m+k=n.

In current terminology, the first part of (3.27) is m behavioral relations, and the
second is k linear constraints. ‘

Remark 3.2.2b. For ID systems, as we know from lemma 3.2 and table II,
the behavior relations (3.27) of the primary form in general are not unbiased
predictors. If we ask what kind of relations they are, a general answer is: given
the exogenous and lagged endogenous variables z, suppose we wish to find values
g for the current endogenous variables y such that the relations of the primary
form, taken without residuals (compare the ceteris paribus clause A of 2.5.2) are
identically satisfied by 7 and z; then ¥ are obtainable from the reduced form as
the conditional expectations of y for given z. That this is so is seen if we determine
7 from the reduced form, taken without residuals; then on transformation back
to the primary form, this, with the residuals still omitted, will be satisfied by %
and z. (For a more elaborate discussion see [51], where the interpretation is the
same, except for the terminology.)

Ilustration: (3.19) to (3.21) specified by (3.26). The reduced form gives us

(3.28) P = E(@dp) = — ppes, Gt = E(@lpe) = 0.6 sy
while the primary form, taken without residuals, is required to give

(3.29) Gi= - (% P, G =06pe,

(3.27)

and (3.29) is identically satisfied by P, and §. as given by (3.28).
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DErFiniTION 3.2.2.  An ID system is called just identified, over- or underidenti-
fied according as the coefficients of the primary form are uniquely, over- or under-
determined by the coefficients of the reduced form.

While (3.19) to (3.21) is just identified, the usual situation in practice is that
ID systems are overidentified (see theorem 3.2.4.).

3.2.3. Conditional causal chain (CCC) systems. CCC systems have the same
general coefficient pattern as ID systems, that is, (3.16) or (3.27). To make for
easy comparison with (3.27) we shall use the following representation for linear
CCC systems in primary form,

(3.30) y* = Hy + Bz + «, m relations,
(331) Lf(y¢ Z)= 0’ .7'__ 1; Jk;ﬂl’+k=n;
where

(i) any component of the column vector y*, say y¥, is a current endogenous
variable, say y.. The components yf = y,, -+-, ym = y». are not necessarily

different variables.

(ii) The prime (') of matrix H’ indicates that
(3.32) hiye = 0, i=1,:-,m,
that is, the term h;.y7 is missing in the ith relation in (3.30).

(iii) Relations (3.30) are unbiased predictors; hence
(3.33) E@*ly',2) = H'y + Bz,
where the prime of the vector y’ indicates that y¥ does not enter among the
variables 3’ in the conditional expectation E(y¥ly’, 2).

ReMARK 3.2.3. By lemma 2.1, assumption (3.33) implies that the residual
w; in the 7th relation of the system is uncorrelated with the explanatory variables
y’, z of the same relation.

IrLusTrATION 3.2.3.  On appropriate respecification of the stochastic assump-
tions, system (3.19) to (3.21) provides an illustration of the CCC approach. (See
[78] for a discussion of this and related designs of CCC systems.)

The ensuing reduced form may again be written as in (3.23). According to
3.2.3(ii1) it is now relations (3.19) and (3.20) that are unbiased predictors. Hence

(3.34) E(qdp)) = s — Bipy,  E(qdpe-1) = a2 + Bope.

In the reduced form the first relation (3.23) is now an unbiased predictor since it
so happens that it coincides with the supply relation (3.20) in the primary form of
the model, whereas the second relation (3.23) in general is not an unbiased
predictor,

(3.35) Epdpey) = =2 _Bp
b1 B1

It will be noted that characteristic differences between ID and CCC systems
show up in (3.25) and the first part of (3.34) and also in the second part of (3.24)
and (3.35).
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It is illuminating to consider the special case
(336) a=a=0, B=08 L=06  r(w,w)=p

where o, and w, denote the residuals in model (3.19) to (3.21) when specified as a
CCC system. It can be shown that if p, and g, are normally distributed with zero
mean and unit variance, a CCC system (3.19) to (3.21) specified by (3.36) defines
the same stationary Gauss-Markov process as an ID system (3.19) to (3.21)
specified by (3.26). Thus when the two models are used for generating artificial
time series the ensuing two sets of series will be identically the same, [78].

3.2.4. Reversal of the direction of inference in PCC and CCC systems.

(i) The direction of inference from PCC systems can be reversed in the sense of
2.4.3. Thus if the current endogenous variables are given, say y = y©@, the
system (it does not matter if taken in primary or reduced form) makes a set of
conditions that the exogenous and lagged endogenous variables z must satisfy in
order that the expected value of ¥ should equal ¥, conditions by which z may or
may not be uniquely determined.

(ii) For CCC systems the corresponding problem will be dealt with in two
installments since the reduced form relations in general are not unbiased predic-
tors.

(a) To begin with, the situation is related to that in definition 3.2.2 in a
conjugate fashion.

TreEOREM 3.2.4. In reversing the direction of inference from the behavior rela-
tions of a CCC system, the exogenous and lagged endogenous variables will be
uniquely determined, over- or underdetermined by the current endogenous variables
according as the corresponding ID system s just identified, over- or underidentified.

(b) If we ask what interpretation can be given to the reduced form relations
of a CCC system, the answer involves a reformation of remark 3.2.2b in terms of
expected values on ceferis paribus clause B. “Given p.;, for what current price
p. will the expected demand equal the expected supply?”’ The answer is given by
the reduced form, taken without residuals,

(3.37) pe= —0.75pes.

Since the behavior relations of the primary form are unbiased predictors, we
obtain

(3.38) E(d;lﬁt) = —0.8 ﬁt = 0.6 Pi, E(stlp,,_l) = 0.6 Pi-1.

As required, the linear constraint (3.21) is identically satisfied by the conditional
expectations (3.38).

The general problem is in essence the same as for PCC systems, but the formu-
lation is somewhat more complicated than under (i): given the exogenous and
lagged endogenous variables 2, suppose we wish to find values ¢ for the current
endogenous variables y such that the corresponding expectations as given by the
behavior relations are compatible with the linear constraints of the primary form;
then 7 is obtainable from the reduced form, taken without residuals. That this
is so is seen if we seek § so as to satisfy
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(3.39) y* =H'§+ Bz, Lij(,2) =0,

and when solving for 3 this system gives the reduced form, residuals omitted.

3.3. On PCC, CCC and ID systems as stochastic processes. By the introduction
of stochastic residuals the theory of disturbance-free dynamic models becomes a
branch of the theory of stochastic processes. The analytical tools that thereby are
placed at our disposal are very useful for exploring the rationale of multirelation
models. It is primarily some chapters on stationary, Markovian and Gaussian
processes that come into play. For an orientation see [36], [66], [82]. The recent
treatise of Robinson [45], more advanced, places emphasis on regression, predic-
tion, and other aspects of central importance for the models under review. In the
following references, the results under 3.3.1 have the nature of general existence
theorems. Under 3.3.2 special processes serve as illustrations of general argu-
ments.

3.3.1. On the general scope of PCC systems. The specification of PCC systems
for unbiased prediction both in primary and reduced form involves two sets of
restrictive conditions, (3.5) and (3.7). In CCC and ID systems there is only one
set, of restrictions. At first sight this may give the impression that PCC systems
are very special and of narrow scope. The more general structure of CCC and ID
systems is however only apparent. The theorems under (i) to (iii) establish PCC
systems as a class of stochastic processes which in principle is of perfectly general
scope.

For references under (i), see [66], [7], [75]. Under (ii), see [66], theorem 7, for
predictive decomposition; for the corollary, see [73]. The theorem of predictive
decomposition has been deepened and generalized in several respects. For the
results under (iii), see [70] and [71]; the area is still in development [11], [22],
and [42].

For students who are not familiar with predictive decomposition it is instruc-
tive to carry out its application to (3.8) to (3.10) in detail, noting in particular
that in the substitutive deduction (3.12) to (3.15) of unbiased predictors with
increasingly higher lags the variables must be substituted in the specified order,
starting somewhere in the chain s, ps, di, si1, - - - and then proceeding in this
order. (Compare lemma 2.4.4.)

(i) For Gaussian processes, stationary or evolutive, PCC systems constitute a
straightforward generalization of processes of the autoregressive type, an exten-
sion from univariate to multivariate models.

(ii) The theorem known as predictive decomposition of stationary processes
has the following corollary: Any given stationary Gaussian process can be
approximated, to any prescribed accuracy, by a suitably chosen PCC system.
That is, all moments of first and second order of the given process will be approx-
imated by the corresponding moments of the process that is generated by the
PCC system. This existence theorem remains valid if the given moments are
generated not by a process but by a given set of observed time series.

(iii) The notion of PCC systems allows a straightforward generalization by
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not postulating (3.5) and (3.7) but instead that the relations of the primary and
reduced forms should be mean square predictors. Any stationary process with
finite variance can be approximated, to any prescribed accuracy in first and
second order moments, by a suitable PCC system of this more general type.

Similarly, the notions of CCC and ID systems can be generalized by the use of
mean square predictors.

3.3.2. Similarities and differences between CCC and ID systems. With reference
to the specifications (3.27) and (3.30) and the simple cobweb models in illustra-
tions 3.2.2 and 3.2.3 we note three points.

(i) Given an ID system it is always possible to construct a corresponding CCC
system with the same coefficient pattern. In general the two systems will differ in
the numerical coefficients and in the residuals. The ID system (3.19) to (3.21) is
particularly illuminating, inasmuch as it coincides with the corresponding CCC
system in illustration 3.2.2 except for the demand relation, where it differs in the
coefficient 3, and the residual »,.

By further specification of the ID and CCC systems of form (3.19) (o (3.21) it
is possible to arrange so that they define one and the same stochastic process and
generate one and the same set of artificial time series. As indicated under (3.26)
and (3.36) this can be achieved if we take
0.6
—_—

p

for the CCC and ID system, respectively. In view of the range of possible p
values (3.40) shows that great numerical differences may occur between CCC and
ID systems that refer to one and the same set of given time series.

(ii) The main point in our comparison between CCC and ID systems is that
their behavior relations do not have the same operative significance, are not
designed to answer the same type of question. This important fact, which belongs
under table II, is brought in relief by (3.40). The conclusion is inescapable since
the CCC and ID systems behind (3.40) generate the same time series, while they
differ in just one of the coefficients, [78].

Subsection 3.2.4 and remark 3.2.2b provide a comparison between the operative
significance of CCC versus ID systems. The salient point is that ceteris paribus
clause A enters in the interpretation of ID systems in the very posing of the
question of the operative use of the behavior relations. To paraphrase, the
passage back and forth from the primary to the reduced form has led the ID
approach into a “pitfall of stochastization” in the sense of 2.5.3(iii). The inesca-
pable conclusion is that on the more general clause B the behavior relations are
unbiased predictors in CCC systems, whereas they are not so in ID systems. Thus
on clause B in the case of logarithmic variables the price elasticity of demand is
0.8 in the CCC system behind the first part of (3.40), whereas the coefficient
(0.6)/p of the ID system behind the second part does not allow this interpreta-
tion.

It lies near at hand to conclude from the foregoing that the ID approach from

(3'40) Bl = 0‘8; Bl =
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its very beginning has run into a blind alley, inasmuch as the model is treated as
disturbance-free in the transformation back and forth from primary to reduced
form. The situation is related to, but not the same as, the unqualified reversal of
regression relations, and the numerical differences at issue are of the same order
of magnitude, as illustrated by (3.40) and (3.43) to (3.44). The reader who is
convinced by this argument may think that the entire ID approach is victim to
a pitfall of stochastization and should therefore be abandoned. There is however
also the question whether ID systems, granted that they are of no operative use
in primary form, may constitute a sound approach when it comes to the reduced
form. We shall come back to this question in subsection 5.3.2.

(iii) Subsection 3.2.4 and remark 3.2.2b further show that on ceteris paribus
clause B the reduced form does not have the same operative significance in CCC
and ID systems. In CCC systems the reduced form provides certain conditional
relations for the current endogenous variables, and these conditions have an
operative meaning on clause B. It will be noted that the conditional relations
may be exploited for a causal interpretation of the linear constraints. Thus in
illustration 3.2.3 the relation of instantaneous equilibrium (3.21) may be inter-
preted as a price mechanism that works to clear the market at period ¢, the
clearance referring to expected demand and supply for known price at period
t— 1.

3.4. An empirical illustration: PCC, CCC, and ID systems fitted to the same
statistical data. We quote the demand relations of four multirelation models
(each of which is a system of three relations) that have been designed for the
watermelon market in the United States from 1930 to 1951. Notations: X is
demand, P price, Y income, N population, F freight rate, L cost of living. The
variables are logarithmic, and the ratios are logarithms of the nonlogarithmic
ratios. (See the quoted papers for accounts of the complete models and for
comparative comments.)

Pure causal chain [77]

. X_ _ p Y _
(3.41) N= 0.206 i7 + 0.430 VL 1.088 + v.
Conditional casual chain [78]
X _ P Y _
(3.42) N= -0.315 T + 0.509 L 1.077 + w.
Conditional causal chain, second variant [78],
(3.43) % = —0417P + 0.776]% — 0.563F — 0.882 + w.

Interdependent system [52],

(3.44) X _ —0.901P + 1.378

N Y _ 0.614F — 0.126 + ».

N

Great differences show up in the numerical coefficients. This is not surprising
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after the preceding review, having seen that the behavior relations do not have
the same operative meaning in PCC and CCC systems on the one hand and ID
systems on the other. On the logic of the different approaches, (3.41) to (3.43)
are estimates of unbiased predictors, whereas (3.44) is not. Thus in the PCC
relation (3.41) the coefficient 0.206 is the price elasticity of watermelon demand
in the stochastic sense of ceteris paribus clause B of 2.5.2 (see also illustration
2.5.2a). The same interpretation applies, in principle, to the coefficients in the
CCC relations (3.42) and (3.43). The coefficient 0.901 in the ID relation (3.44),
however, is not a demand elasticity in the same stochastic sense.

4. Unbiased predictors and least squares regression

4.1. Introductory. Prediction versus coefficient estimation. Once an explanatory
model is specified with regard to its intended operative use for predictive and
other purposes, the statistical estimation of its coefficients and other parameters
is technical matter and therefore, in principle, a noncontroversial issue. In
accordance herewith, different estimation techniques are available for PCC and
CCC systems on the one hand and ID systems on the other. (See references at
the beginning of section 3.) Speaking generally, the techniques give consistent
parameter estimates when applied to the models for which they are designed.

This section is a brief excursus on least squares estimation as the principal
estimation technique for unbiased predictors. Lemma 4.2 shows that the ap-
proach is (a) unbiased under very general conditions, and (b) distribution-free
with regard to the residuals. The ensuing comments emphasize the flexibility and
wide scope of the approach. Its efficiency is discussed with reference to two
aspects of the estimation problem for a linear predictor (2.3): (i) prediction of y
in terms of the explanatory variables x;; (ii) estimation of the coeflicients 8..

The approach of least squares regression is primarily designed for problem
(1), and at the same time the procedure gives asymptotically consistent estimates
under (ii). In view of the robustness of the approach it would seem that the
classic principle of minimum residual variance under (i) acts like a balance
wheel to keep the coefficient estimates under (ii) consistent and not far from
optimal efficiency.

4.2. A companion to lemma 2.2.1.

LemMma 4.2. Considering the unbiased linear predictor (2.3) with (2.4), let a
. corresponding set of observations constitute the sample S. Suppose that the observed
means and second order moments of y, x1, -+ - , T tend to the corresponding theoreti-
cal means and second order moments as the sample size increases indefinitely; in
symbols,

(4.1) lim m; = pq lim mg = par, 4, k=0,1,---,h,

where the subscript 1 = 0 refers to y. Further, suppose that the theoretical distribution
of z1, * - -, Zn 18 not confined lo a linear subspace (that is, the positive semidefinite
matrix [pal, t, k = 1, - - -, h, should be definite). Let
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“4.2) Yy=by+bixrr+ -+ + burn + u

be the least squares regression of y on xy, - - - , 21 as observed in S. Then the observed
coefficients are ccnsistent in the sense of large samples, that is,

(4.3) Iim b; = B, 1=0,1,---,h

See [78] to [€0]. Relations (4.1) and (4.3) make a general frame within which
more accurate results can be obtained by suitable specialization. Thus under
supplementary and not very restrictive conditions the coefficients b; will be
asymptotically unbiased, have standard errors that tend to zero, and in the limit
be normally distributed ; see subsection 4.3.1. For a case where (4.3) is established
in the sense of stochastic convergence, see Hurwicz [27].

As always in estimation theory, S is to be regarded as generated from the
theoretical model by way of a random sample from a joint probability distribu-
tion or from a stochastic process, and the ensuing large sample limits in (4.3) are
valid in the same sense as in (4.1), stochastic convergence or convergence with
probability one as the case may be. Thus qualified, lemma 4.2 is an immediate
consequence of the facts that the observed coefficients b, are rational functions of
the h + 1 observed means and the A(h 4 1)/2 second order moments, and that
the theoretical coefficients 8; can be expressed as the same functions of the the-
oretical means and second order moments.

4.3. On the wide applicability of least squares regression. We shall refer to an
array of situations where assumption (4.1) is fulfilled and least squares regres-
sion, accordingly, gives coefficient estimates that are asymptotically consistent.
The survey does not aim at completeness; its purpose is to demonstrate the flexi-
bility and robustness of the regression approach by a varied set of illustrations.

4.3.1. Theoretical aspects.

(1) Nonstochastic versus stochastic variables as explanatory variables. The treat-
ment of these two general situations belongs to the fundamentals of regression
theory [10]. They are also known as specification by fixed numbers versus
random variables, or Gauss-Fisher versus Galton-Yule specification [82].

(ii) Ezxogenous versus lagged endogenous variables as explanatory variables. The
treatment under (i) usually refers to the case when the explanatory variables are
exogenous. The introduction of lagged endogenous variables carries over to the
theory of stochastic processes. In early applications of stochastic processes, more
or less intuitive procedures in line with lemma 4.2 are abundant (for example, see
[66], section 29, with discussion of pioneering work by Yule [88] and Walker
[62]). If nothing more than large sample consistency is aimed at, the principle of
ergodicity makes a general argument that assumption (4.1) is satisfied ([78],
compare also [66], section 12, with reference to Khinchin [28]). Mann and Wald
[40], applying maximum likelihood methods, were first to obtain standard errors
of the coefficient estimates, results that in recent years have been extended in
many directions [63], [64], [22].

(iii) Uni- versus mullirelation models. Lemma 4.2 applies to an unbiased
predictor, whether this is a unirelation model or forms part of a system of rela-
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tions. Specifically, the results under (ii) obtained by the use of the ergodicity
principle extend to multirelation models [78].

Hence for FCC and CCC systems, least squares regression as applied to the
primary form will under general conditions give consistent estimates for its co-
efficients. Coeflicient estimates for the reduced form can then be obtained by
formal transformation. For PCC systems this technique does not make explicit
use of the hypothesis (3.7) that the reduced form relations are unbiased esti-
mators. This information may instead be exploited to test the coefficient esti-
mates with regard to the validity of (3.7), that is, to explore whether (3.7) can
be accepted as an approximation.

(iv) Least squares regression and analysts of variance. The estimation aspects of
analysis of variance are covered by the regression approach (2.3), inasmuch as
one or more of the explanatory variables z; may be dummy 0 — 1 variables that
indicate control group versus treatment group, block effects, and so forth. This
is a typical case for the Gauss-Fisher approach of nonstochastic explanatory
variables. On the close relation between regression analysis and analysis of vari-
ance, see, for example, [65].

(v) Conditional regression. In this case one or more coefficients are known by
ancillary information. The device is simply to introduce these values into the
relation and estimate the remaining coefficients on the least squares principle
[67], [68], [82].

(vi) Mutually independent versus interdependent residuals. The classic results
under (i) require that the residuals are normal and mutually independent. Then,
as is well known, the coeffcient estimates are of optimal efficiency. It is only
recently that the empirical assessment of explanatory relations has been explored
with regard to least squares regression as an estimation technique that with
regard to the residuals is distribution free, and in particular parameter free with
regard to residual intercorrelation. The first results in this direction refer to time
series relations with autocorrelated residuals, unbiasedness, and generalized
standard errors Leing established in the case when all explanatory variables are
exogenous [72]. Corresponding results have been obtained by Zellner [89] for the
case of muitirelation models. Still more generally, Lyttkens [37] has derived
standard errors for the case when the explanatory variables may include lagged
endogenous variables. The question about the efficiency of this type of estimates
lies deeper and has been explored by the use of spectral analysis [20], [22], [63].
Under fairly general conditions the estimates of optimal efficiency have standard
errors that for large samples are proportional to those of the least squares esti-
mates. In some cases the proportional factor tends to the unit, showing that the
least squares coefficient estimates are of optimal efficiency in the large sample
sense. Notably, this is so in the search for hidden periodicities and in the fitting
of polynomial trends.

(vil) Homoscedastic versus heteroscedastic residuals. The classic results under (i)
further require that the residuals have the same variance for all values of the
explanatory variables. Theil [53] has established unbiasedness and given stand-
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ard errors for the least squares coefficient estimates in the case when the residuals
do not have constant variance.

4.3.2. Least squares regression in applied work. The wide range of theoretical
assumptions under 4.3.1(i) to (vil) meet the requirements of a variety of situa-
tions in applied work. We note:

(i) Experimental versus nonexperimental situations. There is a close affinity
between this dualism and that under 4.3.1(i). In controlled experiments an
explanatory variable—a typical case being the stimulus levels that the experi-
menter varies systematically—is usually treated as nonstochastic, in nonexperi-
mental models usually as a random variable. The special devices under 4.3.1(ii),
(v), (vi) mainly come to use in the treatment of nonexperimental data, while
those under 4.3.1(iii), (vii) are of relevance both in experimental and nonexperi-
mental situations.

(it) Cross section versus time series data. This distinction is primarily of rele-
vance in nonexperimental situations. The estimation technique for time series
data belong under the theory of stochastic processes, and there are the important
case distinctions under 4.3.1(ii) and (vi).

(i) Causal analysis versus model adaptation for strategic purposes. In PCC
systems the relations are autonomous in the sense that the behavior relation of
one or more decision taking units may be altered without this necessarily requir-
ing any change in the other behavior relations. Hence if the system has been
constructed by way of causal analysis of actual observations a behavior relation
may be replaced by a strategic relation, that is, a relation that refers to the future
and provides a planned scheme of behavior that serves some specified purpose,
for example, profit maximization. In the system so modified the relations that
have not been changed may still be estimated by least squares regression, whereas
the strategic relation wholly or partly is a theoretical construct. The mixed
system may be used for exploring how the postulated strategy would work in
practice, by calculating the expected future development from suitable sets of
initial conditions.

IrLustrATION 4.3.2. Inthe PCC system (3.8) to (3.10), the price mechanism
(3.10), which is designed for a market with free competition, may be replaced by
some specified monopolistic price strategy. Such a model seems to be of relevance
for the present agricultural situation in several countries. By marketing organiza-
tions and/or political pressure the price mechanism for agricultural products
has shifted in monopolistic direction. At the same time, owing to the large num-
ber of autonomous consumers and producers, the demand and supply functions
have not been much affectéd, with the result that market price is higher than
the equilibrium price, as shows up in the growing stocks of agricultural products.

This illustration is not given because of the subject matter conclusion, which
is quite plain. The emphasis is on the negative comment that although the argu-
ment is simple it is difficult to cover by a model of closed form. In situations like
this the approach of strategic relations comes to the fore as a theoretical supple-
ment to models where all relations are jointly theoretical-empirical constructs.
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5. Why econometrics?

It is a striking feature of the area under review that pioneering developments
have been made in econometric setting (as in 1.1 we refer to the two key issues of
“choice of regression” and “interdependent systems’”) whereas the ensuing
models are of much wider scope. Their field of potential applications extends all
over the socioeconomic sciences, and, still wider, over the entire realm of nonex-
perimental model building. In 5.1 we shall turn to these matters by way of two
slightly provocative questions. Then in 5.2 we shall adduce some comments on
the place of PCC, CCC and ID systems in scientific model construction in
general, and in 5.3 sum up towards a comparative appraisal of the models.

5.1. Stochastization in retrospect. First, how is it that econometrics, this modern
offspring of “the dismal science,” has been a melting pot for developments of
such fundamental nature and far-reaching scope?

Second, how is it that there has been so much obscurity around the key prob-
lems about choice of regression and interdependent systems, and how is it that
the debate has been such a long-drawn affair?

The first question is rhetorical. Economics is much more developed than other
behavioral sciences, whether we look at the current flow and accumulated stock
of statistical data, or at the advanced nature and the variety of theoretical
approaches, not to speak of the institutional, personal and material resources.
Hence it is no wonder that econometrics makes the playground hors concours for
innovations and spearheads advancements in the behavioral sciences.

As to the second question, several features have combined to obscure the
issues, and the debate has only gradually dug down to the root of the troubles.
For one thing, model construction was well developed in economics long before
the first attempts were made to exploit statistical data and techniques for the
purpose, and so the stochastization has been hampered by forces of inertia. For
another thing, a satisfactory treatment of stochastic models was hardly possible
before 1933 when Kolmogorov [32] strengthened the mathematical foundations
of probability theory. Third, the stochastization has led to genuine innovations
in the large arsenal of scientific models, innovations that have repercussions at
all stages of the model construction: the specification of basic hypotheses, the
statistical methods for parameter estimation and hypothesis testing, and the
various procedures for operative use of the model. At the same time the sto-
chastization has impacts on the subject matter theory that gives substance to
the model construction, and last, but not least in being bewildering, the theory
of knowledge comes to the fore in the causal aspects of the stochastization.

Tables I and II provide a unifying view of the situation, and locate the main
stumbling blocks to the stochastic treatment of models that in disturbance-free form
serve two different purposes. In the choice of regression the operative procedures
at issue are direct and reverse prediction; in multirelation models they are pre-
diction from the model in primary and reduced form. Hence there is rather just
one main stumbling block in the picture: the pitfall of stochastization to avoid
both in “choice of regression’” and ‘‘interdependent systems” lies in a symmetric
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treatment of explanatory variables and variables to be explained. To obtain
logical consistency in the model construction the stochastization forces us to
treat the explanatory relations as directed relations. The simplest way of doing
this is to specify the relations as unbiased predictors.

Let us recapitulate very briefly how the econometric developments have
brought clarification and progress in the general area of stochastic model con-
struction for explanatory purposes in nonexperimental situations.

As to the choice of regression in analyzing two variables z, y the formal symme-
try ketween the regression of y upon = and of x upon y was emphasized from the
very beginning of correlation theory. In demand analysis the argument about
symmetry and the ensuing indeterminacy of demand relations was voiced by
Mackeprang [39] as early as 1906. The argument was vigorously stressed by
Frisch [18]. In his standard work on demand analysis Schultz [48] as late
as 1938 has no general answer to the problem, and therefore calculates two sets
of demand relations, one being the (multiple) regression of demand on price
(and other variables), the second the regression of price on demand.

Benini [5] in 1907 is the first on record to have estimated demand relations
consistently by what today is the current technique, namely the regression of
demand on price. Benini used the asymmetric approach without discussing its
rationale. Tinbergen [58] gave the problem a more articulate treatment in the
late 1930’s, the asymmetry being based on a cause-effect interpretation of
demand relations and other explanatory relations. More recently the casual
argument has been further strengthened, under reference to the operative use
of explanatory relations [68], [82], [76], and with specification in terms of
unbiased predictors [78], [79], [80].

In the 1920’s and 1930’s part of the obscurity around the choice of regression
was due to a failure to distinguish between demand and supply as different
observables. The classic paper of E. J. Working [83] sheds light on the situation,
without however making full distinction between observed demand and supply.
A source of confusion in this connection is the cobweb theory for demand-supply
balance. As illustrated by (3.1), the cobweb approach is quasi-dynamic and
thereby of historical importance as a forerunner to completely dynamic systems,
but at the same time the approach made for undue persistency of the short cut
of dealing with demand and supply as the same observable.

As to multirelation models, the 1930’s brought several important develop-
ments. Yule [88] in 1927 introduced the autoregressive stochastic processes, a
unirelation model that is dynamic and stochastic. Yule’s fundamental innovation
entered econometrics with Frisch [17], and was further developed by Tinbergen
in his work with ¥ CC systems [57] to [60]. Tinbergen’s treatment of the ration-
ale for his completely dynamic approach was to some extent intuitive. For one
thing, this was so in his use of least squares regression for the parameter estima-
tion, for another in the substitutive inference from the behavior relations,
whereas their use for direct inference was supported by a causal interpretation.
(In retrospect, an intuition beyond praise!)
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The ID approach was introduced as a general device for the stochastization of
disturbance-free models. The basic illustrations in the early works included
cobweb models and systems of Keynesian type [23], [33], [19]. Haavelmo in 1943
opened up the approach with a wholesale dismissal of least squares regression for
the estimation of multirelation models [23]. PCC and ID systems were soon
taken up for comparative analysis [7], [71]; the difference in approach was
emphasized, and least squares regression was shown to be appropriate for the
estimation of a general class of PCC systems. In the next round the general
scope of PCC systems was established [70], [73], [75].

Perhaps it is in the casual aspects that the intrinsic differences in approach
have shown up at their sharpest. In PCC systems the behavior relations allow a
straightforward causal interpretation, with the (current) endogenous variables
for effects and the corresponding explanatory variables as causal factors, [82],
[74], [77]. In the ID approach, owing to the symmetric treatment of the current
endogenous variables, a causal interpretation of the behavior relations is avail-
able only in a highly attenuated sense, [49], [51], [77].

The differences in the causal interpretation, although highly relevant, do not
go to the bottom of the problem [78]. As we know from table II, the parting of
the ways between PCC and ID systems is at the basic level of how to design the
models for stochastic inference. The ensuing implications with regard to the ra-
tionale of the model construction are in agreement with the conclusions based on
causal arguments, and at the same time the conclusions are carried further. Three
points will be noted. (a) In designing the models in terms of unbiased predictors,
CCC systems enter as an alternative to ID systems. For one thing, this dualism
makes for a more balanced comparison since the operative use of PCC systems
combines the performances of CCC and ID systems. (b) The high parameter
values obtained in the ID approach have the nature of a bias, a pitfall of stochas-
tization due to a symmetric treatment of variables in the transformation from
the primary to the reduced form. Model (3.19) to (3.21) is a typical case: the
representation in the second part of (3.24) involves a reversal of relation (3.19),
and as we know from table I the reversal makes it impossible to specify both the
second part of (3.24) and (3.19) as unbiased predictors. As illustrated by (3.40)
and (3.43) to (3.44) the ensuing numerical differences are often quite striking. (c)
The 7dentification problem, this cumbersome feature of the ID approach, does not
arise in PCC and CCC systems. It is a normal and frequent situation that a
multirelation model involves more explanatory variables than variables to be
explained. The “conjugate’” theorem 3.2.4 shows that ID systems then are over-
identified. This awkward situation, I think, shows better than anything else that
the ID approach from the very beginning suffers from a fundamental construec-
tion error. If the alternative approach of CCC systems has not been discussed
earlier it is perhaps partly because it does not provide a basis for predictive infer-
ence from the reduced form, partly because the mutual independence between
lagged residuals involves a nontrivial technicality (the residuals in (3.19) are
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generated as moving averages of mutually independent random variables, aver-
ages where all autocorrelations come out as zero; see [78]).

5.2. On the place of PCC, CCC, and ID systems in scientific model construction
in general.

(1) The models under review are designed as explanatory approaches in nonezx-
pertmental situations.

With regard to ends and means we distinguish between four broad sectors of
applied statistics, according as the models are designed for descriptive versus
explanatory purposes, on the basis of controlled experiments versus nonexperi-
mental data [76]. Explanatory models involve directed relationships by way of
explicit or implicit systems; that is, the variables (or the variation in the vari-
ables) to be explained are expressed in terms of (the variations in) the explan-
atory variables.

(it) The stochastization of multirelation models has led to genuine innovations
in the general area of scientific model construction. Speaking generally, the
innovations bring in relief that a stochastic model is less flexible for purposes of
predictive inference than a corresponding disturbance-free model. This is in
particular so when it comes to the dualism between cross section inference and
time series inference.

It is instructive to compare with predictive inference from differential equa-
tion system. Let us consider one of first order,

(5.1) W _ fav),

where y is a vector of endogenous variables and z one of exogenous variables. An
equivalent form of the system is

(5.2) Yo = Yoot + fYi-ar, Te-ar) dt,

which gives the endogenous variables at ¢ explicitly in terms of lagged variables
(at ¢ — dt, and for systems of higher order at ¢t — 2dt, ¢t — 3dt, - - -). The point
of this comment is that system (5.2) involves no cross section relation between
the endogenous variables at time ¢. In this respect, quite apart from the stochas-
tization, the models under review are innovations in dynamic model construction,
and in particular so PCC systems.

The problems at issue thus can be avoided, in principle, by dealing with
time as a continuous variable [47], [44]. If however the empirical data foree us to
deal with time as a discrete variable, as they usually do in econometrics, this
device does not really meet the situation—the problems come back in equivalent
form by way of aggregation problems; see [7], [54]. For a treatment that empha-
sizes the causal aspects of aggregation see [68], [82].

Next, some general comments on stochastic models with regard to cross section
and/or time series prediction.

(a) PCC systems, as we know from table I1, are designed both for cross section
prediction (primary form) and time series prediction (reduced form). See also
figure 2.
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(b) If we are only interested in prediction in a literal sense, from the past and
present into the future, not in conditional cross section prediction (see 2.6), there
is no point in designing the model for inference from the primary form. In such
case, in other words, the cross section interrclations are a source of information
that can, at best, serve auxiliary purposes. This seems to be a main argument in
support of the ID approach [34], [26].

(¢) When the distances in time between different cross sections are infinitesi-
mal, as in (5.2), it does not bring any advantage to generalize the system by
introducing relations between the variables at ¢. The situation is different,
however, when the distances are genuine time spans, such as months, quarters,
or years, as they usually are in the statistical data of economics. The introduction
of cross section relations then makes it possible to squeeze more information
from the observed data. One way to put it is that in differential equations it is
assumed that the variables influence each other at the beginning of each (infini-
tesimal) period, the influences within the period being ignored, whereas the PCC
and CCC systems allow for influences also within a period. In this respect PCC
and CCC systems involve an approximation, inasmuch as it is ignored that cross
section influences require time. The rationale of this type of approximation is
that the influences within a cross section may be rapid relative to the influences
between variables that refer to consecutive time points. For example, the as-
sumption behind the cross section relation (3.8) is that the consumers in their
purchases react immediately upon the existing price, whereas the feedback of
demand on price takes place with a lag, price being adjusted according to
changes in stocks [7], [71], [77].

(iii) Table IT shows that PCC, CCC, and 1D systems arc a basic triad of
models, each covering one of the three possibilities that exist with regard to un-
biased prediction from the primary and/or the reduced form: prediction from
both forms (PCC systems), only from the primary form (CCC systems), and
only from the reduced form (ID systems).

Tables I and II have the irrevocable nature of theorems in probability theory,
and this is in particular so for the parting of the ways shown in table II. The
theorems make for a systematic coordination between the operative use of
explanatory models and their stochastic design. Specifically, the design in terms
of unbiased predictors involves a logical sharpening of the construction principles
for explanatory models in nonexperimental situations.

(iv) The stochastization of explanatory models by way of unbiased predictors
places the model builder under the onus of specifying the operative use of the
model in terms of directed relations, or, to paraphrase, he must specify whether
and in what direction the relations of the model, primary or derived, are designed
for purposes of prediction.

There are several different situations in which directed relations and unbiased
predictors enter in explanatory models. We note

(a) Stimulus-response relations in controlled experiments. Here the direction of
the relation is indicated by the very design of the experiment.
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(b) Behavior relations. Here the direction may be indicated by a causal inter-
pretation, the behavior to be explained being assumed to be influenced by a
catalogue of explanatory factors. A definition of causal relationships that covers
the hypotheses both under (a) and (b) is that causal relations are stimulus-re-
sponse relationships in real or fictitious experiments. (For a discussion of causal
concepts from the points of view of general theory of knowledge, see [81]; see
also [82], [74], [77].)

(¢) Lagged relationships. When a current variable is explained in terms of
lagged variables, the direction of the relation coincides with the flow of the time
variable.

One way to put the problems under review is that it may be desirable to make
operative use of relations both under (b) and (c), and that the requisite ‘“direct-
ionizing”’ may be in irrevocable conflict.

(v) To “‘directionize” ecxplanatory models makes a general development
program for subject matter work in the realm of nonexperimental sciences. As
regards economic theory, the present state of things leaves much to be desired in
this respect. A purely formal treatment of the models dominates the picture even
at the highest levels of economic literature, as witnessed by Tinbergen'’s recent
book on economic policy [61] or Allen’s advanced exposition of mathematical
economics [1]. At the same time the verbal parts of economic theory often
provide material that suffices to directionize the model, although such material
at present usually is left aside as not being essential for the model construction.
The ensuing stochastization may or may not necessitate formal changes in the
model. An approach where it lies close at hand to “directionize’ is the input-out-
put models of W. Leontief [35]. Here the stochastization gives a CCC system if
we take the final demands as the variables to be explained and the total inputs as
explanatory variables [80].

(vi) Errors in equations versus errors in variables. Perhaps the best known
device in the approach of errors in variables is Frisch’s bunch map analysis [18].
For a recent review of the area see [12]. For treatments that stress the casual
aspects of the situation, see [19], [82].

The crucial question about symmetric treatment of variables here comes up
in yet a different context. PCC, CCC, and ID systems belong under “errors in
equations”; more precisely, the residual disturbance of an explanatory relation
serves to cover the effect of influencing variables that have not been taken into
explicit account in the relation. In models that involve errors in variables the
typical hypothesis is that the variables, if their measurement errors were re-
moved, satisfy a disturbance-free relationship, that is, a relation that allows a
symmetric treatment of the variables. A few comments:

(a) From a formal point of view it makes no difference whether the residual v
of an explanatory relation (2.3) is specified as (1) a measurement error in the
variables y to be explained, or (b) as an error in the relation, an error due to
causal factors not explicitly taken into account. Specification (2) is however
much more general, as is clear from the fact that on assumption (1) the relation
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between y — vand 21, - - -, 24 may be operated with in the same way as a dis-
turbance-free relation, but not so on assumption (2).

The hypothesis of errors in equations versus errors in variables are comple-
mentary approaches, not competitive. To paraphrase, the models under review
are designed for situations where measurement errors are negligible relative to
the effect of disturbance variables. In situations where both types of errors are of
relevance, a synthesis of the two approaches is called for.

(b) The approach of errors in variables has a clear-cut raison d’élre in situa~
tions where ‘“the disturbance-free relation between the error-free variables’
constitutes a real phenomenon whose exact measurement in principle is a matter
of observation technique, and where “the variables’” are coordinates of measure-
ment in the space in which the phenomenon is observed. The coordinate axes can
then be placed arbitrarily and the coordinates should therefore allow a symmet-
ric treatment. Cases in point are (1) the position of a steel rod in a plane; (2) the
connecting line between the triangulation points in a system of geodetic measure-
ments; (3) astronomical data on the orbit of a planet or a sputnik. Such sit-
uations not only require a symmetric treatment of the variable coordinates;
estimation methods are called for that are invariant to linear transformations in
the variables-coordinates.

(¢) Behavior relations do not belong under (b). First, when representing the
relation in a graph the coordinates are the different scales of measurement of the
variables under analysis, so there is no arbitrariness in the choice of coordinates.
Second, there is no reason to believe that if the variables could be freed from
technical measurement errors the ensuing error-free variables would satisfy a
disturbance-free relation.

The literature on ID systems is sometimes ambivalent on the fundamental
question of whether the relations in primary form are to be interpreted as sub-
ject to measurement errors in the variables to be explained or to errors in the
relations. The review in subsection 3.2 deals with multirelation models as sub-
ject to errors in equations. This approach is adopted because it is so much more
general, and in the econometric area so much more natural. There are in particu-
lar two weak points in the approach of measurement errors. What is the rationale
for assuming that the current endogenous variables, if freed from measurement
errors, are subject to a disturbance-free relation? Second, what is the rationale
for assuming that there are measurement errors in those endogenous variables
that are explained by behavioral relations, but not in the remaining endogenous
variables, and not in the exogenous variables?

(vil) Sewall Wright's approach of path coefficients. The econometric models
under review have interesting parallels with the models of genetic linkage which
were developed by S. Wright in the 1920’s and 1930’s. The fundamental refer-
ences are [85] and [86]; see also [87] for references to recent work by J. Tukey
(1954) and M. E. Turner and C. D. Stevens (1959). Both approaches have
primarily been designed for a special field of applications and both are, in
point of principle, of general scope in nonexperimental situations. Wright’s
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models specify the flow of causation in a network of consecutive generations;
hence they are of more general form than the econometric models with their
emphasis on stationary processes in a grid of equidistant time points. The key
device in Wright’s approach is to assess genetic linkage by iterated substitutions
in a chain of regression relations, an elimination procedure that is analogous to
the substitutions that in PCC systems lead from the primary form to the reduced
form. In situations where the compound path coefficients are overidentified there
is a parting of the ways between “errors in equations’” and “errors in variables.”
Here as always Wright makes use of the approach of “errors in equations,” and
obtains unique estimates for the overidentified coefficients on the basis of supple-
mentary assumptions. Turner and Stevens (1959) deal with the overidentified
case by an adaptation of the approach of ‘“‘errors in variables,” under reference to
the statistical techniques of ID systems. '

Lemma 2.4.4 on substitutive inference lends itself for exploring the rationale of
the approach of path coefficients. The genetic models will be adaptations of (3.4),
(3.16), (3.27), (3.30), and (3.31); to this end we must reinterpret ¢ as referring to
consecutive generations, and each variable y; or z; will in general be subject to
several observations. In a broad class of models the ensuing results are in agree-
ment with Wright’s treatment of compound path coefficients. As likewise might
be expected it turns out that the approach of errors in variables give parameter
estimates that may be very different from those obtained by Wright’s approach.
This last result is parallel to the situation in ID versus CCC systems, an analogy
which however is of limited relevance, for according to genetic theory the linkage
is between nonobserved genotypes, not between observed phenotypes, and
therefore the approach of errors in variables is less farfetched than in the econo-
metricymodels.

5.3. Toward a comparative appraisal of PCC, CCC, and ID systems. In section
3.2 the three approaches are specified as stochastic model frames of a general
nature. In applied work the frames are filled in by subject matter content, and
the parameters are assessed on an empirical basis. The following comparison
focuses on the general framework as such. A comparison and appraisal of applied
work falls outside the scope of our review. Empirical results are referred to only
for illustration and to stress the need for more exploratory research.

5.3.1. PCC systems. The argument summed up in table IT and section 5.2
speaks strongly in favor of the PCC approach. PCC systems are designed for
unbiased prediction both in primary and reduced form, just as with disturbance-
free multirelation models, only that the predictions give expected instead of
exact values. Their twofold use does not involve any restriction in scope; in point
of principle, they are applicable to any set of observed data, [70], [73], [75].

From the point of view of static versus dynamic analysis PCC systems are
designed as completely dynamic models. The reduced form provides kinematic
inference in showing how the system develops from one period to the next,
while the behavior relations of the primary form specify the driving forces of the
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system, thereby supplementing the kinematic inference so as to make full-
fledged dynamies [16], [58], [82], [78], [81].

5.3.2. CCC versus ID systems. These models may perhaps best be mterpreted
as mixed static-dynamic approaches, which in principle cover the entire range
between purely static models at the one extreme and purely dynamic systems
at the other. Static elements in the form of equilibrium conditions and other
constraints being introduced in the primary form, this makes a formal generali-
zation relative to PCC systems, but the generalization is bought at the price of a
drastic cut in aspiration levels. It is no longer possible to make unbiased predic-
tion both from the primary form and the reduced form. CCC systems are de-
signed for prediction from the primary form, ID systems from the reduced form.
What can be said about the choice between the two approaches?

(i) ID systems aim at unbiased prediction from the reduced form, and re-
nounce from unbiased prediction on the basis of the primary form. The aim is a
natural extension of the quasi-dynamic approach of the disturbance-free models
of the cobweb theory around 1930, but in setting up this aim for the stochasti-
cized model the ID systems have run into a dilemma. When the reduced form is
specified as unbiased predictors, then as we know from table IT the primary form
cannot in general be used for unbiased prediction. But when the behavior rela-
tions of the primary form are not unbiased predictors, will then the ensuing
reduced form have any meaning at all?

As pointed out by several commentators, the reduced form of ID systems has
no obvious rationale. Thereby the entire approach is questioned. To begin with,
there is the question of whether the relations of the reduced form have the
appropriate catalogues of explanatory variables. The best that can be said, I -
think, is that if each behavior relation of the primary form has a realistic cata-
logue of explanatory variables, the catalogues of the reduced form should also be
realistic. This argument in favor of the approach is valid in disturbance-free
models, but it is open to doubt in a stochasticized model if the primary form, as
happens with ID systems, does not constitute an unbiased predictor. The ration-
ale of the approach is further blurred if the ID system is overidentified, which is
the usual situation in practice. In this case there are more relations than un-
knowns to determine the coefficients of the primary form when transforming
back from the reduced form. For overidentified systems the estimation techniques
of Theil [55] and Basmann [3] make combined use of the primary form and the
reduced form. In consequence, the ensuing parameter estimates give a system
where the relations neither in primary form nor in reduced form are unbiased
predictors.

(ii) CCC systems are designed for situations where a purely dynamic approach
for some reason or other is not feasible or desirable. They serve what may be
regarded as a minimum program for the operative use of the models under
review, namely, unbiased prediction from the behavior relations. The relations
are knit together with loose ties; the emphasis is more upon the separate relations
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than upon the relations as forming a system. Depending upon the design, CCC
systems in primary form may yield both cross section inference and time series
inference. In this connection arise estimation problems of new types that it
would carry too far to take up in this review.

5.3.3. The empirical outlook. On the applied side much more experience is
needed about the reach and limitation of the models under review, but the out-
look on the existing material is in accordance with the theoretical argument
summed up in 5.3.1 and 5.3.2. The applied work with ID systems has given
poor predictions and is on the whole disappointing, to quote from a recent
authoritative address of the initiator of the approach [24]. For PCC and CCC
systems the need for more empirical work is particularly urgent. After Tin-
bergen’s pioneering applications of PCC systems in the 1930’s no further applied
work with this type of model was reported for a long while, the scene being
dominated by the ID approach. The applications of causal chain systems re-
cently reported are promising, and give increased weight to the need for con-
tinued work in this direction. (At least a partial dismissal of the ID approach is
embodied in the first macroeconomic model to be in continuous use as a fore-
casting instrument, see C. Clark’s contribution to the discussion on ‘“The present
position of econometrics” [46], pp. 287-288. See also [9] and [77].)

6. Can causal relations and their direction be assessed by purely
statistical devices?

The question may sound heretic. It is a contention of old standing that the
specification of causal hypotheses belongs to subject matter theory, and is not
a matter of statistical technique. The traditional argument refers on the one
hand to the asymmetry between cause and effect in causal hypotheses, on the
other to the symmetry between the variables in scatter diagrams, in correlation
coefficients, in pairs of regression lines. Presence of a flaw in this argument was
initially revealed by Holbrook Working [84] in an empirical statistical study of
the causal connection between two variables.

The flaw of the argument is that while there is perfect statistical symmetry in
correlation coefficients and the like when only two variables z, y enter the picture,
the introduction of a third variable z may give rise to asymmetries between «
and y relative to z, asymmetries that under favorable circumstances may give a
clue to causal inference. In subsections 6.1.1 and 6.1.2 we shall consider two
situations of this type that arise in uni- and multirelation models, respectively.
Section 6.3 gives an empirical illustration, and comments upon the rationale of
the approach.

We note in advance that the formal aspects of the following arguments are
quite simple. The intricacies and the open questions lie in what causal conclu-
sions can be drawn, questions that partly cross the border to philosophy and the
theory of knowledge.
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6.1. Two theorems with bearing upon causal directions. We shall discern be-
tween three hypotheses,

6.1) x — Yy, x < Yy, neither £ — y nor x <y,

where the two first read: z influences y; y influences x. Cases under the third are,
for example, that z and y influence each other mutually, or that z and y do not
influence each other but are both influenced by a third variable z; in symbols,

(6.2) TOY T—2z2>7Y.

Our theorems deal with situations where the three cases (6.1) give rise to
statistical asymmetries. Hypotheses (6.1) and (6.2) being a matter of model
specification, we shall disregard sampling aspects and formulate the theorems
in population parlance so as to apply to large samples.

6.1.1. A unirelation theorem. The idea behind the following simple theorem is
that if the regression of  on « turns out to have a stable slope when the observed
sample is broken up in subsamples according to some stratifying variable z,
while the regression of z on y has varying slope in the subsamples, this is an
indication in favor of the first hypothesis in (6.1).

THEOREM 6.1.1. Let

(6.3) y=a-+px+v
be an unbiased predictor in a population P. Let
(6.4) Yy = a; + Bx + v, =1k,

be unbiased predictors in subpopulations P; oblained by stratifying P after some
variable z. Let

(6.5) T = of + By + of, t=1,--k

be the least squares regression of x on y in the subpopulations P, Finally, let
p: = pi(x, y) denote the correlation coefficient of x, y in Pi. Then in order that we
should have

(6.6) Bt = -+ =Bk
it s necessary and sufficient that
(6.7) pL= - = p

The proof is immediate, for in obvious notation we have
6.8 L) SR 41C)
( ) B O'i(.'E) 14 Bi 0'1'(?/) p
which gives

2

(6.9) gr =2, i=1,--- L

Theorem 6.1.1 is an adaptation of a device due to H. Working [84]. Considering
two causal hypotheses about price features of wheat, namely y — z; and y — 22,
where 2, and z, are current prices for delivery of wheat in May (old crop) and
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July (new crop) respectively, and y = x; — z; is the price spread, Working
formed the regressions of x; upon y and of x, upon y on the basis of weekly data,
stratified into monthly subsamples, and diseriminated between the two hypoth-
eses by comparing the stability of the two regressions in the subsamples. In the
first part of his study Working discussed the results of the same device as applied
to two hypotheses of type x2 — x1 — &y and 2y — 22 — a1

The fact that Working’s device was presented more than 25 years ago and
since then has been unnoticed in spite of its eminent potential importance is a
striking illustration of how causal arguments have been pushed to the side in the
1940’s and 1950’s. Independently of Working’s approach, statistical methods for
the analysis of causal patterns have come to the fore in recent years (see [13]).
I am greatly indebted to Dr. Working for showing me his device in 1957 and for
the ensuing exchange of thoughts by correspondence and discussions.

Theorem 6.1.1 can be varied and extended in several ways. For example, we
may replace models (6.3) and (6.4) by

(6.10) y=oa+Bx+ v+, y=oa +Bx+vz-+ v, =1, L,

assuming

(6.11) av) = -+ = o)

and letting

(6.12) v = of + Bfy + v + ol t=1, ok,
denote the least squares regression of x on y and z in Py, ---, I’.. Then
B¥ = .-+ = gFif and only if

(6.13) "= = Y

6.1.2. A theorcm on PCC systems. The theorem refers to systems of a very
simple type where there are only two relations, and, accordingly, only two possi-
bilities (6.1) for the causal ordering of the current endogenous variables. The
difference in causal ordering implies the statistical asymmetry (6.16) relative
to the third variable in play.

THEOREM 6.1.2. Let two PCC systems be defined in accordance with 3.2.1,

(6.14) r=ap+ Bz + 4, y=o + v+ o,
(6.15) y = ay+ Bz + v, r=a + vy + o,

thus letting x, y denote current endogenous variables and z an exogenous or lagged
endogenous variable. Then in the model (6.14) the correlation between x, z is numert-
cally greater than the correlation between y, z; and conversely in the model (6.15).
In symbols,

(6.16) lo(x, 2)] > lo(y, ), oz, 2)| < lo(y, 2)!.

From the construction principles of PCC systems (see section 3.2.1) we know
that both relations of system (6.14) are unbiased predictors, and that the rela-
tions form a chain where each relation specifies the relevant variables. Hence
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system (6.14) implies E(z|z) = ay + Bz and E(yl|z, 2) = a; + vz, and similarly
for system (6.15). These relations make it possible to apply the substitution
lemma 2.4 4.

To prove the first part of (6.16), we may without loss of generality take the
variables to have zero mean and unit variance. Then, on substitution in system
(6.14), we obtain

(6.17) y=Bvz+ w4+
with E(ylz) = Byz, and
(618) g = P(I’ Z)) Y= p(l, y), By = P(y, Z))

which implies the first part of (6.16). For the second part the proof is similar.

6.2. Empirical illustration. Comments.

6.2.1. The following illustration has the limited purpose of serving as back-
ground for the subsequent comments.

Tlustration of theorem 6.1.1. The calculations reported in table 111 are based on
a fraction of the sample survey of family expenditures in Sweden 1913-1914.
The data refer to 141 families, each with husband, wife, and two children. The
notations are asin (6.3) and (6.4), with a shift to Roman letters to denote sample
values. The variables of the regressions are x = log expenditure on clothing, and
y = log ¢ncome. The stratification is regional, the subsamples referring to the
three cities specified in the first column.

TABLE I1I

REGRESSION VARIABILITY OF FaMILY EXPENDITURE

City n b, bt 7 1/v%
Uppsala 45 1.103 0.464 0.691 2.155
Eskilstuna 44 1.110 0.339 0.601 2.950
Hilsingborg 52 1.267 0.258 0.572 3.868
Aggregate 141 1.152 0.327 0.704 3.058

On the logic of the approach we want to compare the variability of by, b, bs
relative to by, b%, b%. A simple device for the purpose is to compare the Charlier
coefficients of variability. In customary symbols, this gives
(6.19) = 9.3%, %
The percentages differ in the expected direction, for it is a basic hypothesis in
cconomic theory that consumer demand is causally influenced by consumer in-
come, not—or not so much—the other way around, and according to theorem
6.1.1 this should make the variability smaller in the column of b; than in the
column of b¥.

6.2.2. Comments. We have seen that the causal hypotheses in 6.1.1 and 6.1.2
give rise to statistical asymmetries, namely the stability versus instability of the

= 23.47.
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regression slopes in (6.4) and (6.5) and the two inequalities in (6.16). Hence the
asymmetries can serve as statistical tests for discriminating between the hypoth-
eses at issue.

Thus far everything is in line with current procedures of hypothesis testing.
The causal directions are part of the model, with implications that are liable to
empirical tests just as an y other part of the hypothetical setup. The question we
have posed, however, goes farther: the question is whether the statistical asym-
metries can serve as indep endent vehicles in the search for causal relations, and in
particular for the assessment of causal directions. This aspect of the matter was
keenly debated at the Berkeley Symposium. Specifically, I am indebted to
Professor J. Tukey for his constructive comments. Insofar as any divergencies
came up in the debate, it is my understanding that these partly lie on the plane
of causal terminology, partly refer to questions which essentially depend upon
future experie nce about the reach and limitation of the purely statistical devices
and which therefore at the present stage must be kept open.

(i) The devices at issue are subject to several limitations. For one thing, they
require that the correlations in play must not be too small, nor too large. This is
clearly so for t he correlations between z, y in both theorems. Further we note that
the stratifying variable z in (6.4) and (6.5) must not be too strongly correlated
with z or y. If strongly correlated with z, in fact, the stratification will be nearly
equivalent with stratification after z, and so the regression (6.4) will automati-
cally be more stable than (6.5), and conversely if z is strongly correlated with y.
In neither case can the regression variability give a basis for conclusions about
causal direction.

(ii) The approaches of theorems 6.1.1 and 6.1.2 refer to situations with errors
in equations, not to situations with errors in variables. In models with errors in
variables, in fact, the underlying hypothesis is that the error-free variables sat-
isfy a disturbance-free equation, and this hypothesis leads to quite other consider-
ations. For example, if relation (6.4) were disturbance free (and the variables
error free) it would be the inverse of (6.5), and so the two regressions would both
be either stable or unstable in the subsamples. Similarly, if models (6.14) and
(6.15) were disturbance and error free, (6.16) would be equalities of inequalities.

(iii) On the logic of the approach in subsection 6.1.1 the stratification after z
explores whether predictors like (6.3) or the left of (6.10) with constant 8 are
applicable in the subsamples, that is, applicable under circumstances that differ
along with the stratification variable. Hence by repeating the procedure by the
use of other stratification variables, say z, 2., ---, we may hope to extend
gradually the field of operative use of the predictors. This makes sense when
specifying (6.3) and the left of (6.10) as unbiased predictors, quite irrespective of
the ca usal interpretation of the first of (6.1). This being so, is it possible, or even
meaningful, to interpret such a statistical analysis and the ensuing conclusions
about variability as referring to the causal hypotheses in the first or second of
(6.1)? The following comments on this question refer to statistical approaches in
general, not only to the situation in subsection 6.1.1.
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(a) Certainly it is meaningful to pose causal hypotheses like the first or the
second of (6.1). This is everyday routine in experimental laboratories, although
their cause-effect hypotheses often go under the name of stimulus-response
relations [77], [81]. The terminology is irrelevant. If however the causal terms
were cut out, the terminology about hypotheses like (6.1) would depend upon
whether or not they could be tested and verified by way of controlled experi-
ments. And it would be very confusing indeed if the terminology of a hypothesis
were to depend upon current procedures for its verification—the terminology
would then have to be changed as the research front moves between nonexperi-
mental and experimental positions.

(b) It is my understanding that the discrimination between causal hypotheses
(6.1) is not a matter for hypothesis testing by way of significance tests of the
conventional stochastic type. Such tests might under favorable circumstances be
applied to the statistical asymmetries in play, such as the coefficients of variabil-
ity (6.19), but in point of principle they make no basis for inference about the
causal hypothesis as such.

Even if we limit our attention to the statistical aspects of the asymmetries, the
stochastic tests of significance are of restricted relevance in the present situation,
since we are dealing with nonexperimental data. The stochastic tests of signifi-
cance are designed to cover sampling errors, but in model building on the basis of
nonexperimental data specification errors often dominate over sampling errors,
and the specification errors in point of principle are not covered by the signifi-
cance tests [76].

(¢) As always, scientific model building is governed by Mach’s principle of
economy of thought [38]. The best we can hope for is that the statistical tech-
niques discussed may sometimes serve as a vehicle for such economy. In (6.3), for
example, the causal model in the first of (6.1) makes use of only one parameter to
measure the influence of  upon y, whereas in (6.4) the reverse model in the
second of (6.1) makes use of one parameter for each of the substrata. Hence in
situations where the statistical asymmetry (6.3) and (6.4) shows up in the
observations, the causal hypothesis in the first of (6.1) is supported by the
Machian principle.

I do not wish to stress the reference to Mach’s principle. Whether or not the
approach of statistical asymmetries will prove useful for establishing the direc-
tion of causal relationships can only be shown by experience. The situation is
very different from the routine technique of experimental statistics. As I see it,
the search for causal relations by the approach of statistical asymmetries is like
following the scent in a hunt. The flows of causation reveal themselves in various
statistical asymmetries that under favorable circumstances form a scent that
may be pursued by statistical methods and lead to causal conclusions. And it
might even be possible that such clues will provide material for fresh causal
hypotheses and conclusions, hypotheses that under still more favorable circum-
stances might be taken up and tested by controlled-experiments.
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