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1. Introduction

The aims of this paper are two-fold: to make clear that certain problems of
interpretation which arise in estimating power spectra of stationary time series
are entirely analogous to problems of interpretation which arise in carrying out
two very elementary and classical statistical procedures, and to develop new
concepts of estimation which clarify the interpretation of all three instances.
En route, we shall have to give some attention to relation of asymptotic results
to practical application.

The nature of the argument with which we are concerned is such that it
seems best to begin with two of the most classical situations of statistics, un-
restricted regression and the construction of histograms, and to develop the
necessary new concepts and attitudes as we progress step by step, rather than
to introduce the new formal concepts before motivation and illustration are
available.

These concepts are stated, and the nature of the results obtained outlined, in
the last section.

2. Regression

A simple regression problem may be described as (i) an attempt to “predict”
a y from one or more of the z as well as possible, (ii) an attempt to estimate
ave {y|z} as well as possible, or (iii) an attempt to estimate some other condi-
tional typical value, such as the conditional median, as a function of z. The dif-
ferences between these three alternatives are far less significant than the dis-
tinction between three other alternatives which cut across the first three:

(1) the functional form to be used is simple, and is prescribed in advance,

(2) the functional form to be used is to be simple, but is not preseribed;

(3) the functional form is not prescribed, and need not be simple, though it is
presumably continuous.
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It is with the last of these, which arises most usually in connection with (ii)
or (iii) that we shall be concerned. It is well called unrestricted regression, and
has been a familiar statistical problem since the early days of Karl Pearson.

3. Regressograms; the first instance

All statisticians who handle data know how to attack the simple case of this
situation where y and x are both single real numbers. The z-axis is to be divided
into suitable intervals, the mean of all the y-values corresponding to z-values
falling in each given interval is to be found, the results are then to be plotted,
either as points, each located above the center of the corresponding z-interval,
or better as horizontal bars, each extending over the corresponding z-interval.
(The heights of the points or bars are of course the corresponding y-means.)
We may call the results of plotting bars a regressogram.

This is what to do, but why was it done? Can a reasonable aim be made
precise enough so that mathematical statistics can study the relative effectiv-
ness of different choices? What is a suitable division of the z-axis into intervals?
How does it depend on the number of (z, y) pairs available? These questions
deserve some attention.

4. The sampled case

Little has been said about the probability structure which is supposed to give
rise to the pairs (z, y). So long as the y follow a definite conditional distribution
for each z, the problem makes sense no matter how the x have arisen, whether
they are fixed, are a random sample from some distribution, or were picked up
from the street.

In the special case where the x are a random sample, one possible description
of the aim of the regressogram can be given in terms of classical estimation.
The mean of the y associated with a given interval may clearly be taken as
estimating the mean over that interval, of the conditional average ave {y|z}.
This description is easily seen to be unsatisfactory as a description of an aim.
(Although it is often a very satisfactory description of what has been accom-
plished in the construction of a particular regressogram.) The interval averages
“to be estimated” depend on how the z-axis was divided up, yet one of our prob-
lems was to compare the results of various ways of dividing up the z-axis. And
if any practitioner who has made a regressogram is then given many more (z, y)
pairs, perhaps 10 or 100 times as many, he will almost surely subdivide the
z-axis more finely for the analysis of the more extensive body of data. If the
problem is described as estimating interval means of conditional averages or of
other conditional typical values, the problem changes far too easily when only
the amount of data available is changed. No relatively constant aim has been
identified, the problem is not in good shape for formal asymptotic treatment.

If we were to treat the regressogram the way that some treat the estimation
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of power spectra, we should attempt to escape by talking about estimates of
ave {y|z} for individual zo, and calling the difference between the value of
ave {y|z} at xo and its mean over the interval containing z, “bias.” Few prac-
ticing statisticians would regard the estimation of ave {y|zo} for a single isolated
zo as at all a reasonable problem, so long as x has some continuous distribution.
Such a choice isolates an aim, but it is poorly chosen.

There is a need for something better.

6. Some formalities

A small amount of notation is now desirable. Let us set g(z) = ave {y|z},
I' = the curve described by (xz, g(x)), Iy = the kth interval into which the
z-axis is divided, 7, = mean of the y observed with z in I;, then the bars which
make up the regressogram are the sets

1) Cr, =1y X () = {(z,y) withzin I, and y = 7).

The formal approach we are about to make needs no assumption that the =
are in any way a sample. Thus it is desirable to work conditionally on a specific
set of z-values. Let us set

2 yforzinl,
2) ™ = humber of z in I,

and agree to understand, through section 7, that either “ave” or ‘“average”
refers to an average conditional on the given z. Then ave Jr = n, and the bar
which is the average of the possible bars C; (each of which lies over the interval
I,) is

(3) Ty = ave {Ci} = I X (ave i) = Ik X (m).

6. Average bars; touch estimation
What ecan be said about the relation of the average bars Ty to I'? Trivially
(4) min {g(z)|z in I;} < n < max {g(z)|z in I;}.

Since g(x) is continuous in I;, and so must take on all intermediate values there,
there is some z’ in I for which g(z’) = .. Expressed geometrically, the average
bar T must have one or more points in common with the curve T'.

While it might be more precise to say that Ty meets or intersects I', we shall
say that T touches ' when we mean that they have a common point or points.
(There will be no implication of tangency when this is said.) We do this because
“meet estimation’” and “intersection estimation’ are much less pleasant terms
than “touch estimation.”

It is thus natural to say that an individual bar C; is an unbiased (in mean)
touch estimate of the curve T'. The classical procedure of dealing with unspecified
regression leads to unbiased touch estimates. And there are few if any other
properties of the classical procedure which hold in general.
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7. Confidence procedures

It is natural to go farther and calculate limits, say, 7i == ts; associated with
the kth interval, where these limits are presumably to be calculated as if the y
with z in I were a sample from a single distribution. The interval from 7, — ts;
to 7x + tse will be an approximate confidence interval for .. Moreover, its
true confidence will exceed its nominal confidence in almost all circumstances.

If we were concerned with the conditional median of y rather than with its
conditional average, we would have replaced 7 by the median of those ¥ whose
z fall in I;. And if we had applied the sign test to those same y, we should have
obtained a confidence interval which would surely have had at least the nominal
confidence of containing at least one point of the interval from min {y|z in I} to
max {y|zin I}, and hence have had at least the nominal confidence of containing
a value of g(z) for some z in I;.

Let us write J; for an interval for which there is nominal confidence that it
contains values of g(x) for z in I;. In practice, this nominal confidence is almost
certain to be exceeded by the actual confidence, which depends upon the z and
g(x), though this need not always be so when dealing with conditional averages.
It is now natural to introduce the blocks

(6) D, =1, X Ji = {(x,y)|zrin I, y in J4},

for which we have the same confidence that D, touches T, as we have that J,
touches g(I;) since either is equivalent to J; containing a value of g(x) for
inf ke

Whenever this confidence is not merely nominal, it is natural to call Dy
a block touch estimate with the corresponding confidence. Notice carefully
that D, is not supposed to surround or contain T, but only to touch it. If g(x)
should oscillate wildly, as well it may under our assumptions, its extremes for x
in I; may lie far above or below D; for almost every sample.

8. Histograms; the second instance

The “estimation” of a probability distribution by the construction of a histo-
gram is an even more ancient and elementary statistical procedure than un-
restricted regression. Many histograms are drawn daily. They are thought to
tell us about the probability density functions of the sampled populations.
These probability density functions are thought of as smooth (though they may
not be so in reality). How is the “estimation’ of a continuous probability density
function by a histogram, or by something easily developed from a histogram,
best described precisely and formally?

The upper margin of each histogram is a bar, which is an unbiased touch
estimate of the probability density curve in the sense just made precise. Here
the histogram is exactly like the regressogram.

If the actual counted (sample) fraction associated with each histogram interval
is replaced by appropriate binomial confidence limits for the population fraction,
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each bar can be replaced by a corresponding block. And there will be at least
the nominal confidence that each block, separately, touches the probability
density curve. Thus we may replace the histogram by a set of block touch esti-
mates with prescribed (or greater) confidence if we desire to do so.

Again, if the probability density curve oscillates wildly, as well it may, there
will be no reason for the blocks to contain or surround the probability density
curve. They will, in general, be no more or less than touch estimates. The situa-
tion is exactly the same as for unrestricted regression.

9. Histograms with bounded errors in x; the third instance

Suppose now that we are trying to study, by histogram methods, the prob-
ability density of £, where what is observed is ¢ = ¢ + ¢, and where e, though
unknown for each individual z, is surely known to satisfy |e| < 6. How can we
construct something close to a conventional histogram, and state clearly what
properties are thus obtained?

We have selected this example because of the analogy with the instance we
shall discuss next. Nevertheless, it includes as a special case a situation that
could arise in practice, when originally continuous data has been lightly grouped
into intervals of length 25, and where the grouping intervals are not appropriate
histogram intervals.

Let us set

I, = kth basc interval of the histogram = (o, Bx),
(6) fi# = observed fraction of the x with oy — 86 < 2 = B + 3,

[ = observed fraction of the x with ey, +6 £ = 8, — §,

for which

I

(7) avefi £ P{¢in I} £ avefi,
so that the block estimates

®) D=L X Ji, Ji= [—f‘— —f’"+—~}

Br — ax B — ax
have an average (block) which surely covers the bar T, = I, X (), where

_P{inLy 1 #

Br — o Br — ar Jau

1) d,

(9) i3

where f(¢) dt is the probability element of £ By the mean value theorem and
the continuity of f(¢), we have 7y = f(&) for some & in Ix. Hence T'x touches the
probability density curve, and D; is an unbiased touch estimate of this curve.

Notice that, while in simpler problems it sufficed to use bars to obtain an
unbiased touch estimate, in this instance it was already necessary to use a
block.
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10. Extension to confidence

If we now turn to one-sided binomial confidence limits, we can replace fi by
a one-sided upper confidence limit fif * for the corresponding true probability,
and replace fi by a corresponding lower confidence limit fz ~. The blocks

(10) 1. X [ I _ﬂ]

Br — o Br — ox

will then be block touch estimates of the probability density curve of ¢ with
at least the chosen confidence.

11. The two sources of uncertainty

There are two sources of uncertainty in this example. One comes from the
observation of only a finite number of x; the other comes from the lack of definite-
ness of the relation between x and . In a typical practical instance we should be
quite willing to treat the first source of uncertainty asymptotically; but it is
quite unlikely that we should want to do this with the second. Either the loose
linkage between x and £ is to be faced up to, or it is to be neglected; asymptotic
treatment is not good enough.

The existence of the second source of uncertainty is reflected in a variety of
ways. These include:

(1) Our unwillingness to be asymptotic about all sources of uncertainty.

(2) The need to use a block, not just a bar, in obtaining an unbiased touch
estimate.

(3) The need to form the blocks of confidence touch estimates by expanding
the bar corresponding to the observations in two steps.

(4) Failure of these blocks to shrink to bars when an infinite number of oberva-
tions are available.

12. Estimating continuous spectral densities; the fourth instance

If we are concerned with the spectrum of a stationary time series which we
may assume to have a spectral density s(w) dw with a continuous density func-
tion s(w), we are facing a situation which clearly resembles the previous situations
in very essential respects, especially when the available data consists of a finite
number of observations at discrete times. In each of the three cases we have a
finite number of observations, and we seek to estimate a curve, about which we
are only willing to assume that it is continuous. An infinite number of parameters
would be required to specify the curve exactly, while only a finite number of
observations are available. Thus direct estimation of each separate parameter
cannot be expected. It should not cause surprise if the appropriate ways to treat
the four situations should show much similarity, even if the relationship of
observations to natural parameters is apparently less direct in the new situation.
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13. Set-up and structure

If we have a stretch {y.} of observations at equally spaced times from one
realization of the stationary time series, and if we take the equal spacing to be
the time unit and the origin of ¥ to be at the mean, then, for all relevant times

avey, = 0,
(11) ave YlYirh = fof cos hw s(w) dw,

where “ave’” indicates an average across the ensemble of possible realizations.

If ¢(w) is an arbitrary polynomial in cos « of degree not greater than the length
of the data (not greater than one less than the number of observations inthe
given stretch), then there will exist a quadratic function, @ of the observations
for which

(12) ave {Q} = [ () s(w) do.

If the time series (stochastic process) is Gaussian, approximations, whose ac-
curacy is usually quite adequate, can be given for the variance of @, for an
equivalent number of (chi-square) degrees of freedom for Q, and hence for
confidence limits (individually proportional to Q) for ave {Q}.

Even if the time series is not Gaussian, several equivalent stretches of data
may be available, so that a value of  can be calculated for each. The resulting
sample of Q-values can then be used to set approximate empirical confidence
intervals for ave {Q}.

In many situations, indeed, it is realistic to consider that the length of the
available stretches is much more severely limited than the number of such
stretches, which can be increased at the cost of money or routine effort.

14. Estimation
If three functions ¢(w), ¢ (), and ¢*(w) are such that, for 0 £ w < ,
() ¢ (@) = g(v) = ¢*(w)
(i) 0 = g(w)
(i) [ ¢(w) dw = 1
(iv) g(w) = 0 outside a subinterval I of (0, «)

(v) ¢~ () and ¢*(w) are polynomials in cos w of degree less than the length of
the data,

and if @ and Q* are particular quadratic functions of the observations cor-
responding to ¢~(w) and g*(w), then

(13) ave {Q-} = [ 7 (@)s(w) do < [ g(w)8(w) do < / 7+H(w)s(w) dw = ave {@*}
and the block I X [@~, @+] has an average which covers the bar
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w)s(w) dw
(14) IXGB =IX ;( ()s)(d) -
g(w) dw

By a standard mean value theorem, this bar touches the curve I' = w, s(w).

Thus we have constructed an unbiased touch estimator of the spectral density
curve.

In addition to this description, it may well be important to think of the interval
[Q~, @*] as estimating the length of I multiplied by the average of s(w) over I,
where the averaging is according to q(w). If this is not at all necessary, or if the
importance is quite heuristic (as is usually the case) so that we can allow a
blurred image of the behavior of ¢—(w) and ¢*(w) over I to serve as a substitute
for g(w), then we may drop g(w) from our structure.

The essentials of the argument above, suitably modified, show that if, for
0Zw=m,

(i) ¢(w)is Z 0for win I and = 0 for w not in /
') [,q(w)do <1
(i) qt(w) is = 0 everywhere

(iii"") [Iq+(w) do = 1
(v) ¢~ (w) and g*(w) are polynomials in cos w of degree less than the length
of the data,

and if @ and Q* are quadratic functions of the data corresponding to ¢—(w)
and ¢+(w) respectively, then I X [@—, @*] is an unbiased touch estimate of the
spectral density curve.

15. Extension to confidence

If we know how to construct an upper confidence limit @*+ for ave {@+} and a
lower confidence limit @—— for ave {@}, then the block I X [@——, @**] will
be a block touch estimate of the spectral density curve with corresponding
confidence. This will be possible in at least the two kinds of circumstances
mentioned at the close of section 13. The two-step process of attaining a confi-
dence touch estimate in this situation is strikingly similar to that discussed in
section 10 above.

The choice of ¢~(w) and ¢*(w) will of course now need to be made so as to
obtain the best compromise between a small average value for @+ — @ and
highly stable values for ¢~ and Q+.

16. Again two sources of uncertainty

In this instance, just as in the previous one, there are two sources of uncer-
tainty with quite different properties. One comes from the observation of only a
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finite total length of all realizations combined; the other comes from the ob-
servation of stretches whose lengths are all less than some bound. So long as we
observe only stretches of bounded length, even if we observe enough (infinitely
many) of them to determine the ensemble of realizations of this length precisely,
the corresponding spectrum is not precisely determined.

If, for example, we know the ensemble of realizations of length 1000 precisely,
we cannot show that the spectrum is not concentrated at any 1000 angular fre-
quencies w; that may be chosen, so long as cos w; # cos w; for 7 # j. Analogous
results undoubtedly hold for spectra with continuous spectral densities. The
uncertainty associated with finite length of stretch is not removed by gathering
an infinite amount of data. And reluctance to treat the stretch length as as-
ymptotically infinite is as appropriate in this instance as reluctance to treat the
bound on the error as asymptotically zero in the previous instance.

Again, the existence of this second source of uncertainty is reflected in a
variety of ways, including all four of those listed at the close of section 11 above.

17. Practical implications

How does the construction of touch estimates of the spectral density curve
differ from present practices? If Qo is one of the quadratic functions usually

associated with the interval I, and if ave {Qo} = f go(w)s(w) dw with / go(w) dw

= 1, it has been the practice to take the interval from (1 — ¢)@ to (1 + d)Qo
as an approximate confidence interval for “a weighted average of the spectral
density in I"’ where ¢ and d depend suitably on the number of equivalent degrees
of freedom assigned to @o. The proposed procedure is to take the interval from
Q= (1 —c)@ to@tt = (1 + d)Q* as defining the vertical extent of a block
touch estimate for the spectral density curve. The result of either procedure can
be portrayed by a block in the (v, ) plane.

When a logarithmic scale is used for s(w), the heights of the blocks found by
the older approach will be equal to one another. The new blocks will tend to be
somewhat less stringent than the old blocks, to extend both somewhat higher
and somewhat lower. This increase in uncertainty will become more and more
marked as we move to the I whose contribution to the total power is smaller
and smaller, reflecting the increased effect upon spectral estimates for such in-
tervals of “leakage,” of contributions from s(w) dw for the w outside of I.

In the case of the old blocks g(w) must be a cosine polynomial of bounded
degree, consequently it cannot vanish outside I, and w outside I can contribute
to both the average and the variability of Q. To date such possibilities have
usually been taken account of by mental comparison of the estimated spectrum
with g(w). The use of either an unbiased block touch estimate or a confidence
touch estimate makes specific allowance for ‘“leakage’” and should provide
answers of greater practical utility.

By introducing the concept of a touch estimate, it has been possible to
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formulate what is being done with the new blocks in a way that is consistent
with what is almost sure to happen if a sufficiently larger body of data is re-
analyzed, namely a reduction in the width of the w-intervals for which estimates
are made. This makes it possible to subject the whole process to effective formal
study, without the assumption, often quite doubtful in practice, that the spectral
density curve is not only continuous, but quite smooth in the small.

While we have improved our capabilities for spectral estimation both in
practice and in theory, in that

(1) We can provide estimates which include explicit allowance for leakage as
well as for Gaussian variability, and

(2) we can describe what we are doing in a general framework compatible with
an arbitrary amount of data,

we have not decreased either the great value of the recognition that the aver-
age value of any quadratic spectral estimate is the integral of an appropriate
kernel against the spectrum, or the great value of knowing the kernel, or ker-
nels, involved in whatever specific estimate, or estimates, we are using. Nor
have we eliminated the problem of wisely choosing both what to try to esti-
mate and what means to use to do this. Once a set of intervals {I} have been
chosen as the intervals above each of which we desire to have a block estimate,
there will still remain the question of choosing the procedures intended to cal-
culate these blocks. This question has become more ramified. Instead of choos-
ing a go(w), and then choosing @ so as to be both easy to compute and almost
as stable as possible, we now have the opportunity of choosing any ¢ (w) and
gt(w) which meet the requirements of section 14 and then choosing @~ and
Qt according to the same principles that we used to choose Q. All the fa-
miliar considerations will still have to be balanced.

18. Fine structure

The basic complication which estimation of curves must face is fine structure.
This probably arises more frequently in the estimation of spectral density curves
than in the estimation of regression curves or probability density curves. For-
tunately the statistical estimation of spectral density curves has an older
brother; physicists have looked at spectra ever since Isaac Newton, and have
taken pictures since the time that photography became feasible.

In the optical spectra of physics, spectral lines have fine structure, and hyper-
fine structure, yet when only a low resolution spectrum can be obtained, one may
be fortunate to resolve the individual lines, to say nothing of the fine structure.
In numerical spectral analysis, limitations of avilable data always limit resolu-
tion, often severely. In many of its applications we may doubt the existence of
significant fine structure, but we are not likely to be sure that fine structure is
absent. To talk of estimating s(wo) for a particular wp is quite impractical in any
such situation.
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If there were practical situations where there was a real interest in estimating
s(wo), as contrasted to learning what one can about the general run of the spectral
density curve, the methodological problem would be severe. Fortunately, and
reasonably enough, there seem to be no such situations. The fact that ‘“fine
structure” may cause s(wo) to oscillate quite wildly in narrow intervals can,
fortunately, be neglected in most practical situations, so long as ‘“narrow inter-
val” is interpreted sufficiently strictly.

19. Common features of the instances

The most important common features of the various instances, regressograms,
histograms, and spectrograms, are like the two faces of a coin. On the one side
is the absence of specified form for the curve and the consequent need of an
infinite number of scalar parameters for its complete description, on the other
the well-recognized practice of the analyst of data to use finer intervals when he
is furnished more data. The body of the coin is the fact of limited resolution: a
finite amount of data can tell us only so much, it is unwise to ask it to speak
on too many questions.

As statisticians we are used to living with this fact, but not to admitting it.
The analysis of variance emphasizes main effects. One reason for this is pre-
cisely that there are times when one may learn more by asking a given body of
observations fewer questions. But we rarely come out boldly and say “these are
the estimated main effects, it is almost certain that there are smaller but mean-
ingful effects in this situation, but with only this much data it is wisest to over-
look them.” Yet this is very often the position.

In dealing with a curve that may have fine structure, but which it is unwise
to force into a few-parameter mold, it is harder to do that which should be done
without admitting that one is doing it. If the price of doing right is that right-
doing must be admitted, this price should be paid. In every case where we need
to estimate a continuous curve which should not be restricted to some few-
parameter form, we are going to need, I believe, to use touch estimation, and
admit that this is what we are doing.

20. Asymptotic theory

When grasping a difficult problem, all of us find asymptotic theory easier,
and it is natural that it should be much used. So far as a particular difficult
problem is concerned, asymptotic theory is only useful (i) if it provides a useful
approximation to an answer for, at least, certain of the amounts of data that
arise in practice, or (ii) it provides useful guidance as to how one would deal
with one aspect of a problem if all the other aspects were to be made negligible,
perhaps because of the existence of large quantities of data. (Such guidance
can of course only be partial, what is actually to be done will have to be chosen
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on the basis of guidance drawn from various sources and related to various
aspects.)

But if the guidance is to be at all relevant, it must be correctly related to the
one aspect. There may be situations where quite unrealistic asymptotic situa-
tions give useful guidance, but it will generally be necessary for the asymptotic
situation to be realistic for the guidance to be useful. Asymptotic treatments of
means for dealing with outliers and other striking values, for example, are likely
to be of little use if they do not recognize the inevitable modification of such
techniques as the sample size increases and more knowledge becomes available
about the nonextreme portions of the distribution. For in such instances the
eventual consequence of more and more knowledge is a qualitative change in
the technique of analysis. In other situations, the changes introduced by more
knowledge need only be quantitative. Perhaps the simplest and clearest instance
is Mann and Wald’s treatment [1] of the optimum number of intervals for a
chi-square goodness of fit test. Touch estimation may in due course prove to be
another.

21. Alternatives

We have discussed the estimation of regression curves, probability density
curves, and spectral density curves under the sole assumption that the curve
considered is continuous. It is natural for many to respond with the reaction:
“Isn’t this assuming too little, surely in each particular situation it is appropriate
to assume somewhat more, the exact nature and amount depending very much
upon the situation. By assuming more you will be able to estimate the curves
much more precisely.” Such a response contains much truth, much temptation,
and much danger.

It is certainly true, in each of the general situations discussed, that there is a
place for estimating coefficients in a few-coefficient description of regression,
distribution, or spectrum, that there are specific situations where the few-
coefficient approaches are the best ones to take. But it is important to be clear
about the natures of these specific situations. Some of them arise in relatively
well-studied areas, where much experience has taught us which few-coefficient
models will give satisfactory results. Others might arise where there is so little
data that nothing else is reasonable. (These latter instances I believe to be not
nearly as frequent as might appear.) In none of these specific situations, however,
is it wise to restrict oneself permanently to few-constant fits. When an unusually
large amount of unusually good data becomes available, or when a new theoret-
ical suggestion produces a re-examination of accumulated data, it is likely to be
appropriate to include an unrestricted examination as well as one or more
restricted ones.

The temptation is to confine oneself to the relatively precise estimation of
possibly irrelevant coefficients, and thereby to lose sight of the data, and of
what they might show.
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The danger is the loss of the most valuable information that the data might
provide, which is most likely to be qualitative information, in the search for
quantitative characteristics of the data which can be estimated with high
precision. ,

There is surely a place for the few-coefficient analysis, an important place as
measured in terms of frequency of use or in terms of contribution to routine
measurement. (And these are important terms.) But there is also a place for
unrestricted analysis, a place important in terms of new insights or in terms of
new qualitative knowledge. We cannot do without either.

22. A terminological solution?

The logical unfortunateness of “touch’” and the unsatisfactory sounds and
appearances of its logically preferable substitutes were noted above. One pos-
sible solution deserves mention. If it turns out, after consideration and use by
enough statisticians, that the concepts here discussed under the rubric of “touch
estimation” are broadly useful and generally acceptable, then it might be pos-
sible to merely delete the word ‘““touch” and speak only of ‘“‘estimation.” For
the usual uses of estimation, as applied to one or a few parameters are merely
special (if you like, degenerate) cases.

The only change in current usage that would be required would be the need
to use some term more specific than “interval estimate”” when describing confi-
dence estimation. Even in the simplest cases, it is sometimes necessary to use
intervals to carefully estimate (in the point-estimate sense) a single parameter.
Thus if a survey using a probability sample yields the results: 659 ‘“yes,”
329, “no,” 3% no response, the interval “65%, to 68%,"" is the simplest expression
of the results which we are sure is unbiased. (This interval is precisely an unbiased
touch estimate.) This is “interval estimation” but with no prescribed confi-
dence.

23. Summary of fundamentals of touch estimation

If a curve in a plane is to be estimated, if it is wise to assume the curve con-
tinuous, but unwise to restrict it to some few-parameter form, then estimation
is best done using the data to determine the size, shape, and location of certain
sets in the plane, which are regarded as trying to touch (that is, meet, intersect,
overlap), not enclose, the curve. In the particular instances discussed here, the
sets are most naturally bars (that is, horizontal line segments) or blocks (that is,
rectangles with horizontal and vertical sides), but other shapes may be appropri-
ate in other circumstances.

When the sets are such that average sets (averaged over repetitions on new
data) can be easily defined, as is certainly the case for bars or blocks with pre-
seribed horizontal extent, it may be possible to arrange that each average set
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will surely touch the curve. In this event the original sets are called unbiased
touch estimators of the curve.

- In other situations, it may be possible to arrange that there will be at least
a certain confidence that a given set will touch the unknown curve. If this is so,
the set is called a confidence touch estimator.

Unbiased touch estimators and (often approximate) confidence touch esti-
mators are provided for four situations:

(1) Observations (z, y) with definite unknown conditional distributions of y
given z whose typical values (means, medians) define the regression curve to be
estimated.

(2) Observations z drawn at random from an unknown distribution, whose
probability density curve is to be estimated.

(8) Observations z, where = = £ + ¢, |e| < § given, and the probability
density curve of £ is to be estimated.

(4) Observations y, made on a stationary time series at equally spaced times,
where the corresponding power spectral density curve is to be estimated.

The question of criteria for comparing one touch estimate with another is
not discussed, and offers a fertile field for suggestions and trials.
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