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1. Introduction and summary

The purposes of this paper are (1) to describe the coordinate-free approach
to Gauss-Markov (linear least squares) estimation in the context of Model I
analysis of variance and (2) to discuss, in coordinate-free language, the topics of
missing observations and extra observations.

It is curious that the coordinate-free approach to Gauss-Markov estimation,
although known to many statisticians, has infrequently been discussed in the
literature on least squares and analysis of variance. The major textbooks in these
areas do not use the coordinate-free approach, and I know of only a few journal
articles that deal with it ([2], plus some of the references in Dutch that it lists,
and, to some extent, [1], [3] and [7]). The coordinate-free viewpoint is implicit
in R. A. Fisher's geometrical approach to sampling problems.
The subject of missing observations in Model I analysis of variance is well

understood and often discussed. This paper presents no new results here, but it
does present a viewpoint different from that usually given. In contrast, the
topic of extra observations, although it was briefly considered by Gauss [5],
section 35 of Theoria Combinationis . . . , has elicited hardly any papers since.
(I know only of papers by R. L. Plackett [9] and K. D. Tocher [10].) The prob-
lem of extra observations is important in its own right and also in connection
with the treatment of so-called outliers. I shall discuss a method of treating extra
observations that bears some resemblance to that for missing observations. In
particular, it leads to possible methods for treating apparent outliers that I
described briefly in [8].

There are two major motivations for emphasizing the coordinate-free approach
to Gauss-Markov estimation. First, it permits a simpler, more general, more
elegant, and more direct treatment of the general theory of linear estimation
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than do its notational competitors, the matrix and scalar approaches. Second,
it is useful as an introduction to infinite-dimensional spaces, which are important,
for example, in the consideration of stochastic processes.
A related point is that more or less coordinate-free treatments of finite-di-

mensional vector spaces are now more common than they once were and are
being taught to students at an earlier stage. With such mathematical back-
ground, a student can learn the theoretical side of Model I analysis of variance
quickly and efficiently. The treatment in this paper will, however, be compact
and without the motivational material and the many examples that would be
pedagogically important.

Nonetheless, it may be useful to keep one concrete example before us. Ac-
cordingly, I shall illustrate the general theory in terms of a simple illustration,
two-way analysis of variance with one observation per cell.
The vector space viewpoint and notation will mostly be taken from P. R.

Halmos's text [6]. My own introduction to the coordinate-free approach came
from discussions with L. J. Savage and I acknowledge my great debt to him, a
debt of which coordinate freedom forms but a part.

2. Gauss-Markov estimation from a coordinate-free viewpoint

We consider a sample point, Y, that ranges over an n-dimensional real vector
space, V, on which an inner product, (, ), is given. (It would also be possible to
start without a given inner product and to define one in terms of the covariance
structure of Y.) Perhaps more basically, Y is a function from an underlying
probability space onto V such that all sets in the underlying space of form
{ej(x, Y(e)) 5 c}, where x E V and c is a real number, are measurable. Of
course, Y is the abstract entity usually corresponding, in a particular problem,
to the coordinate vector comprising the set of scalar observations; by not writing
in terms of coordinates, that is, by not requiring that a basis be specified, we are
able to present the general theory succinctly.

All first and second moments discussed will be assumed to exist without
further mention.

Clearly, E(x, Y) is a linear functional of x E V, and hence there exists a
unique member of V, say g, such that E(x, Y) = (x, u) for all x E V. Call p the
(vector) expectation of Y, EY; this quantity is easily articulated with the vector
expectation in coordinate form.

Similarly Cov [(x, Y), (z, Y)], where x, z E V, is clearly a quasi-inner product
(like an inner product but possibly nonnegative definite). Hence there exists a
unique linear transformation 2 on V such that

(2.1) Cov [(x, Y), (z, Y)] = (x, 2z), x, z E V.

It is easily seen that 2 is nonnegative definite and symmetrical with respect to
(, ); that is, (x, 2x) 2 0 and (x, 2z) = (2x, z) for all x, z E V. Naturally,
Var (x, Y) = (x, lx). Let us say that Y is weakly spherical if 2 is a (nonnegative)
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multiple of I, the identity transformation. Call 2 the covariance operator of Y
Cov Y; this quantity is easily articulated with the covariance matrix in coordi-
nate form, especially for an orthonormal basis.

It is easily checked that the definition of EY does not depend on the inner
product used, while the definition of Cov Y does depend on the inner product.
The usual manipulative rules are immediate. For example, E(AY) = A(EY),
where A is a linear transformation; Cov (AY) = A(Cov Y)A', where A' is
defined by (x, Az) = (A'x, z) for x, z E V.
The standard Gauss-Markov statistical model makes the following assump-

tions:
(i) Cov Y = a2I, where a2 > 0 is unknown, that is, Y is weakly spherical;
(ii) EY = , E Q, a given p-dimensional linear manifold.
About (i): first, it would be possible to assume Cov Y = a22:0, where Io is a

given linear transformation that is nonnegative definite and symmetric with
respect to (, ), for a linear transformation would then bring us back to the form
stated above; second, if a2 is known, the Gauss-Markov linear estimation theory,
relating to p, is virtually unchanged (Student distributions become normal and F
distributions become chi square).
About (ii): first, if p is assumed to lie, not in a linear manifold, but in a linear

manifold translated so that it does not include the origin, that is, in a p-dimen-
sional flat, a simple translation brings us back to the form stated above; second,
other kinds of presentations of Gauss-Markov estimation describe Q in various
specific ways. It is characteristic of the coordinate-free approach that it abstracts
from the various ways in which a linear manifold can be described.
In specific applications, Y is usually the coordinate vector of the sample

observations, the inner product (, ) is the "conventional" sum of cross-products
of corresponding coordinates, (ii) says that the coordinates are uncorrelated and
with equal variance, and (iii) says that the coordinate expectations are linearly
related in a given way, but otherwise unrestricted. A specific kind of example will
now be stated and subsequent developments will be applied to it. For clarity, the
illustrative material has been inset.

Let V consist of all I X J arrays {yi,} for i = 1, 2, ,I; j = 1, 2,
... , J. Both I and J must be 2 2. Scalar multiplication and vector addi-
tion are defined in the obvious ways: c{yi,} = {cyij} and {yij} + {zi,} =
{yi; + zi,}. Let (, ) be the conventional ({yi,}, {zij}) = E E yi,zij. The
sample point is {Yi,}. We suppose that Var Yi, = a2 and Cov (Yiq, Yi,) = 0
for (i, j) :-, (i', j').
Let EYij = 4j,. Then our Q is defined by the statement: all second dif-

ferences of the p,i are zero, that is,
(2.2) ,.0 - Jli'j - J.ij' + iIj' = 0

for all i, j, i', j'. Alternatively, one might describe Q as follows: there exist
numbers ,, ai, and ,j such that A,= + ai + ,Bj for i = 1, I; j
1, *-- ,J.
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It is often thought desirable to add side conditions so that p, the at, and
the f3j are uniquely determined by the gij (estimable, identifiable). A popular
set of side conditions is E2 ai = E ij = 0 for all i, j. Then it follows that
p = E E Ai./(IJ), that ai = (Ej pAi/J) - p, and that ,B = (i Ai,/I) - q.
What we have described is the model for two-way Model I analysis of

variance, with one observation per cell and no interaction. If, in addition,
we require joint normality of the Yij, then the Yij are independent.

A basic fact is that, under conditions (i) and (ii), the orthogonal projections,
PQY of Y on 02 and Y - PnY = QQY on the orthogonal complement of Q, are
uncorrelated and have weakly spherical distributions in their own subspaces with
(restricted) covariance transformations O2I, where .2 is the same as that for Y
itself. To say that AY and BY are uncorrelated is to say that Cov [(x, AY),
(z, BY)] = 0 for all x, z E V. This immediately extends to orthogonal decom-
positions of Y to more than two components. Since Po and Qo are orthogonal
projections, they are idempotent (for example, P0Pa = Po) and symmetric [for
example, PQ = Po or, equivalently, (x, Paz) = (Pox, z) for all x, z (E Q] with
respect to (,

If we require normality of Y, that is, if we require that (x, Y) be normal for
all x E V, then it is almost immediate that ilPoY - ;LI2/q2 and IIQUYI12/o2 have
independent chi-square distributions with p = dim Q and n - p = dim e2 de-
grees of freedom respectively. In any case, these quantities have expectations p
and n - p.
The vector Gauss-Markov estimator of p is PQY and the scalar Gauss-Markov

estimator of a linear functional (x, ,u) of IA is (x, PoY) = (Pax, Y). (Com-
mentary on the historical accuracy or inaccuracy of the designation "Gauss-
Markov" appears in the discussion of [10].) These Gauss-Markov estimators are
characterized by the following well-known properties. To avoid trivialities, we
assume that a2 > 0.

(a) PuY is the unique linear transformation of Y that is an unbiased estimator
of u and leads to minimum variance for all derived estimators of linear func-
tionals. In other words,

(a,) E(PQY) = , for all p E Q,
(a2) For all x, and for linear transformations D $ Po satisfying E(DY) =

all EC2, it follows that Var (x, PoY) < Var (x, DY).
(b) For all x, the unique minimum variance linear functional of Y that is un-

biased for (x, Iu) is (Pox, Y) = (x, PoY).
(c) For all x, the unique minimum variance linear functional of Y that has

bounded mean square error in A is (Pox, Y).
(d) The unique vector , in Q minimizing IIY -,112 is PnY. This is the least

squares characterization.
(e) For all x, the unique linear functional of Y whose "coefficient vector,"

when the functional is expressed in the form (z, Y), lies in a2 and which
estimates (x, p) unbiasedly is (Pax, Y); that is, for w C Q, (w, Y) is the Gauss-
Markov estimator of its expectation (w, A). This characterization often leads to
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an easy method of obtaining Gauss-Markov estimators when there is high sym-
metry or when Q is similar to another manifold onto which we know how to
project orthogonally. For if we guess (Pox, Y) by choosing a vector w E Q, we
need only compute (w, p) to see if our guess is right and, if it is nearly right, we
can often see immediately how it should be modified. A similar vector character-
ization for PnY is readily written down.

(f) When Y is normal, PQY and (x, PQY) are the maximum likelihood esti-
mators of u and (x, p) respectively. Further, (x, PnY) is the minimum variance
unbiased estimator of (x, p).
Various other characterizations and properties of PaY can be stated, for exam-

ple, in terms of invariance under relevant linear transformations. Note that
Gauss-Markov estimation is linear, that is, that a(x, PoY) + ,B(z, PnY) =
(ax + f3z, PQY), the Gauss-Markov estimator of (ax + ,z, A). Further, in terms
of a fixed basis, the coordinates of PQY are the Gauss-Markov estimators of the
respective coordinates of u. The conventional (unbiased) estimator of a2 is
IIQnYII2/(n - p).

Turn now to our example, with the description of Q in the form Ai, =
is + ai + fj, where Lcai = L fj = 0. Let a bar denote simple averaging
with respect to dotted subscripts and consider linear functionals of Y as
follows: Y.., Yr.- Y.., and Y.j- Y... Note that there are I of the second
kind and J of the third. The coefficient vectors of these functionals are
easily seen to be in R. Hence the functionals are the Gauss-Markov esti-
mators of their own expectations, Fl, as, and ,. Hence PQY is the coordinate
vector with (i,j) component Y.. + (Yi.- Y..) + (Y.3 - Y..) = Yri +

.j- V... There is a standard orthogonal decomposition of PaY into three
vectors corresponding to "over-all mean," "row effects," and "column
effects," which I do not discuss here. The dimension of Q2 is readily seen to
be I + J- 1.

If w is a q-dimensional linear manifold within Q2, then the standard F statistic
for the null hypothesis ,u E X against all alternatives is

p( q)'1( IQ.YI 2-- IQYI 12) (p -q)-1l IPQ__ Yl 2(2.3) -(n-p)-111QUYI12 (n -p)- Q YI 12

with large values critical. Here Qs,Y = Y - PY, and Q - w is the orthogonal
complement of w with respect to U. This test statistic has, under the null hy-
pothesis, the central F distribution with p - q and n - p degrees of freedom.
The geometrical interpretation of the F statistic is well known.
The purpose of this paper is to discuss estimation, not testing. Hence, except

for a few scattered remarks, we leave testing with the above brief paragraph. A
good bit of the standard literature on Gauss-Markov estimation and Model I
analysis of variance may be interpreted in terms of forming and combining
orthogonal projections, especially when Q is regarded as the direct sum of several
linear manifolds with interesting statistical meanings.
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3. Missing observations
Several topics within the general framework of Gauss-Markov estimation take

the following form. Suppose that we have an explicit expression for PnY (or its
components) in a specific problem; now suppose that the actual linear manifold
of interest is not Q, but another manifold nearly the same as a. Can we find an
explicit expression for the orthogonal projection onto the new manifold by using
our knowledge of PnY, and without considering the new problem ab initio?

In terms of systems of linear equations, like the normal equations that one
considers in a scalar approach to Gauss-Markov estimation, the kind of problem
considered here is: if we know explicitly how to solve a set of linear equations,
can we easily find the solution of a slightly modified set without treating it
ab initio? Naturally, one may also phrase this in terms of inverting slightly
modified matrices ([9], [10], and [12]).
The analysis of covariance may be regarded from this viewpoint, among others.

Here, V stays the same but the modified a is spanned by the vectors of the old Q,
plus (hopefully a few) new vectors not in the old Q.
Our present interest, however, is in another problem of the same general

nature, that of missing observations. Here both V and Q change.
We suppose that Y is incompletely observed in the following sense: write V

as the direct sum of two orthogonal linear manifolds, V1 and V2, that is, V =
V1 + V2. Let Yl = Pv,Y and Y2 = Pv,Y, where, as before, Pvi means orthog-
onal projection on Vi. The interpretation is that only Y' will be observed,
and the approach will primarily be useful when dim V2 is small.

Thus, if Y is a coordinate vector of scalar observations, and some of these
observations are missing, we are in the situation described above, with V, the
coordinate manifold corresponding to the nonmissing observations. The descrip-
tion, however, covers more general cases that may be called instances of mixed-up
observations. Suppose, for example, that Y is the coordinate vector of observa-
tions and that, although some observations are missing, their sum is known.
Then YP may be taken as the coordinate vector with each of the missing ob-
servations replaced by their mutual arithmetic average. In this case, V1 is
spanned by the coordinate axes for the known observations, together with the
equiangular diagonal for the remaining coordinate axes.

It is assumed that the marginal distribution of Y' is the same with and
without the missing or mixed-up observations. This is an important, but seldom
discussed, matter in applications for, in some experimental setups where observa-
tions are randomly missing, the conditional distribution of the remaining ob-
servations, given that some observations are missing, may depend on the missing
ones. For example, if the observations are weight gains in litters of baby pigs,
the accidental death of one pig may alter the amount of maternal milk available
to the others and hence may affect their weight gains.
A related point is that, in some cases, the probability that an observation will

be missing depends on the value it would have had if it were present. For exam-
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ple, the sickly piglet is probably more likely to die accidentally before the end
of the experiment than is his robust brother. In such a case we are dealing with a
complicated selection process.

I do not intend to discuss these important problems further here. Instead we
shall assume that the experimental design is for Y1 from the start and that,
if observations are missing by chance, it is meaningful to carry out statistical
analyses conditionally on the "observed" V,.
Some notation is needed. Let Qi = PvU for i = 1, 2. Let

(3.1) i = Pvjs = EYi, i = 1, 2,
so that %1 1 22 and A' 1 A2. In general, Q id Q1 + Q2, although QC Q1 + 22.
We make the basic assumption that

(3.2) dim Q = dim Q1,

and we ask how to find Pn1Y1, or its equivalent, in terms of Po, which we sup-
pose known explicitly. (In the following, I permit myself the customary ambi-
guity of using "u1," say, both to denote the unknown true A' = EY' and to
serve as a running variable over 01.) Since dim Q = dim Q12, to each gl E Q
there corresponds a unique u2 E Q2, say AMl', such that (I + A)A1 EQ,
Pp,(I + A)A1 = M', and P-,(I + A)A1 = AA1. In short, to each A', there corre-
sponds a unique uCE with Po,lA = A'; A,.I' is that A minus AI&. For completeness,
take Ax = 0 when x I Q, so that A is a well-defined transformation. It is
readily shown to be linear.

Instead of seeking Po,Y1 = al as such, it is equivalent and more convenient to
seek its analogue (I + A)PoY' =l in R. Note that, if we know 42 = APo,Y1,
we could easily obtain a since

(3.3) A=Pg(yl+42)
and since we know Po explicitly. The proof is simple, for
(3.4) Pa(Y' + 42) = PQ(Po1Yl + 42) + p0(Y'- PflYl)

= P0(Al + a2) = A,
where the last expression on the right of the first line is zero since Y' - PQY'
is obviously orthogonal to both &21 and % and hence to Q.
Next, note that 42 can be obtained via the following consistency condition

which amounts, in any specific case, to a set of simultaneous linear equations
in dim f2 scalar unknowns:

(3.5) 42 = PlhPa(yl + A2).
This condition has great intuitive appeal for it says that 42 is that element of 2
which, when added to Y', followed by orthogonal projection on a and then
on (Q2, gives us 42 back again. It is easy to see that (3.5) holds, for 42 = P%A,
and we need only substitute for a from (3.3). That 42 is determined uniquely
by (3.5) may be seen thus. Suppose that u and u* both are in Q and satisfy (3.5).
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Then u - = Ph2P12(u - ut). But IIu - u*1I > IIPho,1(u - u*)II unless both
u-u* zEl and PQ(u - u*) E Q2. Hence Pn(u - u*) is in both Q and Q2; it is
therefore zero and hence u = u*.
The use of (3.5) in practice is simple for the kind of application envisaged

since Pe is known explicitly and Po2, presents little difficulty if dim Q2 is small.
Let us turn to our example and suppose that YrJ is missing, that is, that

Y' has components like Y except that the (I, J) component is zero.
Further, p' has (i, j) components A + ai + 3j, as before, except that the
(I, J) component is zero; IA2 has all components zero except the (I, J) one
which is A + ar + 13j. It is readily checked that dim Q = dim QN = I +
J - 1.
To find ,22 is to find ari, which I shall call y for brevity. Then

P02P12[Y' + ,2] has all components zero but the (I, J) one, which we
know from the previous discussion is

(3.6) YIo + Y + YCJ +Y YOO+ Y,

where a circled dot subscript means summation over that subscript for all
possible nonmissing observations. The basic identity (3.5) here says that
the above displayed quantity is y. Hence, solving the resulting linear equa-
tion,

(3.7) = 11 1(YJ0+ yo
- 00o).(*) Y ~~I_ I J _ (J + I IJ

As a check, we may compute the expectation of this quantity, a + ar + 13g.
Having found y = ,Ai, by (3.3) we may use this value to "complete" Y'
and apply Po to the completion, thus getting ut, di, and O,. It is straight-
forward to write down explicit descriptions of these quantities.

Other methods of treating missing observations are (i) minimization of the
quadratic form IIQ,2[Y' + 122112 in 4A, which leads to (3.5) again, and (ii)
the use of traditional covariance analysis with dummy covariate vectors, each
having a coordinate one for the missing observation to which it corresponds and
zero coordinates elsewhere. (This last method requires caution and modification
if dim Q2 < dim V2, that is, if the expectations of the missing observations are
linearly related.) The covariance method is based on the easily shown identity
Po+1,2y1 = Po,Yy.
The major discussion of this section, in which the normal equations (3.5) for

42 are obtained directly, may be regarded as the coordinate-free analogue of a
paper by Wilkinson [11].

If we are concerned with F testing and want to use the approach of this sec-
tion toward missing observations, then we require dim X = dim Pv1co as well as
(3.2). Let w, = Pvco. Equation (3.5) must be worked out separately for 11Qg1YI12
and IQ=,YI12 in (2.3). A suggestion first made, I believe, by Yates is to approxi-
mate the F statistic by solving (3.5) for 42 under 01 only and using this quan-
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tity throughout the F statistic. The resulting I Q,YJJ2 is too large so that, if the
"Yates approximation" leads to an F value that is not statistically significant,
one can be sure that the correct F value would also not be statistically signif-
icant. The converse is certainly not true. In some problems the "Yates approxi-
mation" is very good and in others it is poor. I know of no general way of
deciding in advance.

4. Extra observations

Now, using the same notation, suppose it is Pn2,Y' that is known explicitly
and PQY or, equivalently, Po,PoY that is wanted. This might happen if we knew
the Gauss-Markov estimators explicitly for some experimental design, and
wanted to know the Gauss-Markov estimators for a design related to the prior
one by the addition of a few observations. Thus Y is observable and PnY is our
goal. We assume no change in the dimension of Q (3.2), and so to know Pg,PnY
is to know PnY. Often the former expression is more convenient.

It is useful to partition QiN into cosets. Recall that A takes lil into the cor-
responding element of Q2. Let U be the subspace of QU such that AU = 0 so
that U is the intersection of i1 and the null space of A. Let i1 - U be the
orthogonal complement of U with respect to Q1. Thus A represents a one to one
linear transformation between Di - U and Q2. We have partitioned Ql into cosets
of the form U + z for z E 1- U, where each coset contains those members of
$i1 going into a specific member of i22.

In concrete examples, 01- U is usually easy to describe explicitly. For
u (E f1 will usually be described parametrically and to say Au = 0 is to say
that dim 02 linear equations of form (xi, u) = 0 for i = 1, ,dimQ2=
dim (QP - U) hold. Thus the P1uxi will span Q1- U.

Since Q = U + (I + A) (Q1- U) and since the two summands are orthog-
onal,

(4.1) P,Y = PQY' + PQY2
= PUI + P(I+A)(21-U)Y' + PUY2 + P(I+A)(Q,_U)Y2.

Since U C V1 and VI I V2, Puy2 = 0. Using the relationship U + (A -U) =
and recombining, we have

(4.2) PnY = PUiY' - Pci-uYl + P(I+A)(ci-U)Y,
whence, finally,

(4.3) PQIPQY = PUiY' - PQI-UYl + PciP(I+A)(Qi-U)Y-

The first summand we already know explicitly, while the second and third
require orthogonal projection only onto manifolds of dimension dim Q2, which
is small in the envisaged applications. The first two summands together form
PuPl, but is typically easier to compute this in the subtractive form of (4.3).
An interpretation of (4.3) is the following: the first two terms on the right
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estimate Pu,u from Y', as it seems clear that y2 can tell us nothing about
Pru, while the last term estimates PQ, -uji from the full Y. Then the two vector
estimators of orthogonal quantities are added.

It is often easier to work in terms of estimating linear functionals (x, ji) of A
and, in many cases, x is already in Q1. Then the Gauss-Markov estimator of
(x,,u) is

(4.4) (x, P,PnY) = (Pnx, Y)
= (X, Y) - (P12,-ux, Y') + (P(I+A)(c0-U)X, Y),

for x E Q1.
If, in addition, dim Q2 = 1, then (4.4) may be simplified further, as follows.

Suppose that U, - U is spanned by z (and %2 is spanned by Az). Straightforward
computation gives

(4.5)
(x, PsnP%Y) - (x, Y') - (x, z)(z, Y') + (x, z)[(z, Y') + (Az, 12)]

(X, PRY1Y) = (X Y') ll )-11 l(+ IIA l12 +1l IAzll Z l)-A,F
(X,Y) x,z) F14AzJJ (z, Y') - (Az,Y2llz1l2 + IlAzl1II2 zI12

for x E Q1 and z spanning Q2 - U. In applications, z is usually obtained easily
as the coefficient vector of Y' for the Gauss-Markov estimator of the expecta-
tion of the single nonzero coordinate of ,u2, this for V1 and Q1, that is, for no
extra observation.

let us illustrate the use of (4.3) to (4.5) in our example, supposing that
there is an extra observation YIJ2 in the (I, J) cell. Now V1 is IJ-dimensional
and V is (IJ + l)-dimensional. Let Q1 have the same coordinates as before
except that the new (IJ + 1)st coordinate is zero. Let Q22 = V2 have all
coordinates zero except the (IJ + 1)st. Then Au for u E Q1 is that vector
in %2 whose (IJ + I)st coordinate is the same as the (I, J) coordinate of u.
Hence to say that Au = 0 is to say that p(u) + ai(u) + ,3j(u) = 0. (Here
I have kept u in the expression as an argument to emphasize that ,i, ar,
and /3J are functionals of u.) Hence U is defined by (x, u) = 0 where x has
all coordinates zero except that the (I, J) coordinate is one. Project x on Q2,
orthogonally to obtain the vector in Q1 with (i, j) coordinate

(4.6) J-lai + I-'&1J- (IJ)-1

where the 6's are Kronecker deltas. This vector z spans Q1- U, which is
one-dimensional. The transformation I + A, applied to z, takes it into
another vector, which is the same except that the (IJ + 1)st coordinate 0
of z becomes J-1 + I-' - (IJ)-1 = X, say, equal to the common (I, J)
coordinate. It is readily computed that 11zI12 = X and 11(I + A)zJ12 =
X(1 + X).
Note that z could also be obtained as follows: the Gauss-Markov esti-
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mator, with no extra observation, of p + al + flr is Y,. + F.J- Y... This
linear functional of Y' bas z as its coefficient vector.

Suppose that we want to find the Gauss-Markov estimator of a,. We
know that F1.- Y.. is that estimator if there were no extra observation,
hence we may conveniently write a1 as (x, IA), where x C 01 is the vector
with (i, j) coordinate J-'6il - (IJ)-1 and with (IJ + 1)st coordinate zero.
Compute directly that

(x, Y1) =Y1.-Y..,
(X, z) = - (IJ)1

41z112 + IIAzJI2 = I1(I + A)zJ12 = X(1 + X),
. IAzI 2 = x2

(Z, Y') = YI. + Y..J - Y..,
(Az, Y2) = XYLT2.

Hence the Gauss-Markov estimator of ca1 is

(4.8) F1. - .. + [(1 + X)IJ]-'[(F1. + Y.J- ..) -YIJ2]
Note that the last term in square brackets is the difference between the
Gauss-Markov estimators of p + ax + ,BJ from Y' and Y2 alone, respec-
tively. Call this quantity A and observe that EA = 0. Since (1 + X)IJ =
IJ + I + J - 1, we see that

(4.9) 1=, Y1.-Y + A

A simple interchange of indexes gives us &2, * *, c1-1; 3, * *,I I Simi-
lar computations provide dx, I4J, and ju. The final results may be summarized
as follows:

A

airi. ~ A(DI5r- 1)
IJ+ I +J-1

(4.10)

:~~~~Y. Wai(J8JJ-1))
p i .jY--I + I +J-

thus permitting explicit expression of PnlPnY as PaiYl plus a "correc-
tion" term.
Note an apparent lack of symmetry between YIJ and YIJ2 in the above

expressions. That this is only apparent may be seen by computing the co-
efficient of Yr., in ,A + &j + ,i,; it is the same as that of YLF2.

As with missing observations, the requisite manipulations should be carried
out twice for F testing purposes, once for each of the two basic sums of squares.
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Another approach to extra observations is that of combining APJ2,-uY'
and PhY' matrically with matrix weights given by their covariance struc-
tures [4].

5. Replications of a single original observation

The treatment of section 4 is quite general in that the natural coordinates of
y2 need not have expectations that are the same as any of those of the Y'
coordinates. As in the special case of the example, however, one might expect
some simplification when y2 resembles Y' in any of various senses. I want
now to treat one of those senses, that one in which there are in - 1 extra scalar
observations, each having the same expectation as the same one of the "original"
observations.

Here it is convenient to let V1 correspond to the original observations exclud-
ing the replicated one, and to let V2 correspond to the m-dimensional space of
the replicated observation. The situation is distinguished by the special nature
of Q2, which is one-dimensional regardless of m. Under the usual orthonormal
basis, in a specific case, 02 is the equiangular line in V2. In general, we may say
that Q2 is spanned by a nonzero vector s in V2.

It is also convenient to write V2 as the direct sum of two orthogonal subspaces,
V21 and V22. Let V21 be a one-dimensional subspace corresponding to a single
observation of the replicated set and let V22 be the orthogonal (m - 1)-dimen-
sional subspace corresponding to the rest of the replicated set. Let si = Pv,is so
that s = Sl + s2 and l11112 = IIs1ll2 + I1S2112. Further, let us write y1 +
y22= Y2; Q21 = V21, spanned by sl; Q22, spanned by S2; et cetera, with ob-
vious intent.
Let A1 be the transformation taking ju1 = EY' into A21 - EY21 and such that

Aix = 0 for x orthogonal to Qi. Let A2 be the corresponding transformation
taking /A into ,22 = EY22. Then A = Al + A2 and the A's are linear. Since
Q2, Q21, and 022 are all one-dimensional, we may write A,A' = (w, M')s and
A il = (w, MAI)si for i = 1, 2, and an appropriate w E 01.

The general, coordinate-free features of the present special case are the di-
mensionalities and orthogonalities described above, together with (5.2) below.
Suppose that we know explicitly how to find P(I+A)2,[Y1 + y21], for this

is the basic projection if there were exactly one of the replicated observations,
m = 1. We ask whether there is a y2' CE21 such that

(5.1) P(I+A,)Q1PQY = P(I+A,)QI[Y1 + y21],
that is, whether we can carry out our known projection on a new sample poiiit
in V1 + V21, where the whole set of replicated observations is replaced by
y21 021, and thus obtain the projection on (I + Ai)QI of PnY. We may
write y21 = bsi and seek b satisfying (5.1).
We assume that

(5.2) dim&1 = dim (I + AI)Ql = dim (I + A) 2.
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Note that P%1Y' is easily obtained by the missing observation technique, since
dim 21= 1. In fact, A1PoYl, the Gauss-Markov estimator from YP alone
of EY21, is (w, Y')sj since w £ 01 and E(w, Y') = (w, M1) = M21. Further,
Aiw = IlwII2si and Aw = IIwlI2s.

The relationship (w, x) = 0 for x C Q1 determines U. Hence, w spans the one-
dimensional UN - U. Also, (I + A)w = w + jjwll2s spans (I + A)(Q1- U).
Hence,

PQ1Y'= Pn1P(I+Ai)9,[Y' + (W, YP)sA],

(5.3) P-uY (= Y W,

P(I+A)(Q,-U)Y = (w, YI) + IIWI12( s4 Y2) WI 2;],H~wI12 +. 11 I1131 [w H-
and from (4.3) or (4.2)

(5.4) P(I+A,)1I%PUY = (I + A1)PS2,PQ1Y
= P(I+A1)Sh[Y' + (W, Y')S1]

(w Y1)- W112 [w + I!wlI2sd]
+(w, Y) + WIIw2(S, Y2) (W I I12S)+IW-2 IIWHIIsIIIS

since s I f1. Hence the desired y21 E Q21, if it exists, must satisfy
(s, Y2) - HIs1I2(W, Y') (W -I IIWII2Si).(5.5) P(I+A.)P1Y2' = (W, Y')P(I+A0)s,S1 + 1 + 11s11211WI12

Since y21 may be written bs1 and since (I + A1)Q4 may be regarded as the
direct sum of U and the manifold spanned by w + IWI 12S1, (5.5) may be written
as the following scalar equation, omitting the common vector w + IIw I2s,.

(5.6) b 1+ ll_1 (w, y1)1181112 + (s, Y2) - 1s 112(w, Y')
+ llwW12l1slI2 - 1 +- WII21lS112 1 + lIS1l2llwll2

or, simplifying,

(5.7) b -11H21 2(W, Yl) + flIS12(1 + flWjj2jsll2)[(, y2)/11S112]
11k1H2(1 + IWll2Il12)

Observe that this is a weighted average of (w, Y1), the si coordinate of the
missing observation vector estimator from Y', and (s, Y2)/I 1s112, the estimator
of the same quantity from Y2. The weights are proportional to -11s2II2 and
11s112(1 + IIwI1211si12) respectively.

In the usual applications, with coordinates for an orthonormal basis, II 2 = m
and Ist1112 = 1 so that the weights become, respectively,

(5.8) 1-m,WmI1+I2WI12.
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Further, llwli2 is l/l-2 times the variance of the replicated observation's expec-
tation, as estimated from Y'. So we may summarize the result as follows, for
the usual applications.

Let y be the Gauss-Markov estimator of the replicated observation's expecta-
tion from Y1 alone. Let Var y = 02o2.

Let y be the Gauss-Markov estimator of the same quantity from Y2 alone.
(It will be the arithmetic average of the replicated observations.)
Let y be the weighted average of yand y with weights proportional to (1 - m)

and m(l + 02) respectively. For Gauss-Markov estimation based on Y, treat y
as if it were a single observation replacing all the replicated ones. Note that this
is essentially a prescription for finding Gauss-Markov estimators when weak
symmetry does not hold but rather the following conditions hold:

(i) the observations are uncorrelated;
(ii) all the observations have variance o-2, except that one (y) has variance

a2/m where m is known.
In the special case m = 1 (original design), the weights are 0 and 1, as they

should be. In the special case m = 0, which, strictly speaking, is not covered by
the above analysis but can be handled by similar methods, the weights are 1
and 0, again as they should be.

Let us apply this to our example. Here, V may be expressed as the
(IJ + m -l)-dimensional space {Yi, for i = 1, * *, I; j = 1, *, J;
(i, j) . (I, J); Y1J1; YIJ2, * * *, YlJ,j}. The three groups of coordinates cor-
responding to V1, V21, and V22 are separated by semicolons. The U's are given
via EY ,j= p + aci +f3and EYIjj= , + XrI + oj for I = 1, *--, m. We
may take si as having all zero coordinates, except that the (I, J, 1) coordi-
nate is one; similarly, E2 has all zero coordinates, except that the last m - 1
coordinates are one.
Now w is given by the coefficient vector for y toward the end of section 3,

that is, w is the vector in Q1 with (i, j) coordinate, when (i, j) F6 (I, J),
[I(I - 1)][J/(J - 1) [J-'i5i + I-16,jJ - (IJ)-1]; of course, w has zero
(IJI) coordinates. Further, (w, Y'), the estimator of p + a, + #3T from
Y' alone, is [I/(I - 1)][J/(J - 1)][J-1YI0 + I-YoJ - (IJ)-1YoEa]-
Next, observe that (s, Y2)/11s112 = Elm Y1I/m = YI.
We compute that 11w112 = [I/(I - 1)][J/(J- 1)]X(1 - ) =

(I + J - 1)/[(I -1)(J - 1)] so that the weights are 1 - m and
mIJ/[(I - 1)(J -1)] respectively. Hence

(5.9) b = (1 m)IJrJ(1Y10 + I'JY0J - (IJ)'Y00] + IJ ElKuz(I - 1)(J - 1) +m(I+J- 1)
and we need only use this in place of all the YrJI and apply the symmetrical
explicit formulas of ordinary Gauss-Markov estimation to the resulting
IJ-fold balanced array.

It can be checked that, in the special case m = 2, this leads to the same
results as in the last section.
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Note further that correction type expressions, like those in section 4, are
readily obtained when there are m of the YIJI. In fact, the expressions
are just the same except that A = YvI. + Y.J- ..- 2 YrJI/(m- 1)
and that the IJ + I + J - 1 term in the denominators becomes here
[IJ/(m - 1)] + I + J - 1. As before, but with the present slightly
changed notation, YI. is interpreted as J-'[:J1l Y1j + YJ1].

These correction type expressions may be simpler for certain computa-
tions, but the approach in which b is substituted for all the YIJI is more
nearly in the direction we next take.

6. Extensions of the substitute-observation method

In this section I consider situations in which Y' of section 5 is replicated k
times, while Y2 stays the same as it was, corresponding to an m-fold replica-
tion of a single scalar observation. From now on, unless otherwise specified, we
interpret Y' as the k-fold replication of an "original" Y' like that considered
in section 5.

6.1. The case m _ k. This can be thrown back onto the work of section 5
quite simply. Let V, and Y' correspond to the k-fold replication of the original
Y', let V21 and Y2' correspond to k of the coordinates of y2 and let V22
and y22 correspond to the remaining m - k coordinates of P2. Then this
case falls squarely into the general discussion of section 5, except that, under
conventional orthonormal coordinates, 11 s112 = k.
The weights, therefore, become for conventional orthonormal coordinates,

a 1 -(m/k)
(6.1) a 1 +Mml WI 2

1-a= (m/k)(1 + kllwl 12)
1 + mI IWl 12

This can be reinterpreted as follows. Suppose that we have a design consisting
of the original Y' plus the original Y72, but where the coordinates of Y'
have common variance 2/k and the single nonzero coordinate of Y2' has
variance a2/m. (This amounts to working with the arithmetic average of each
group of observations having a common expectation.) Then the weights of (6.1)
are applicable to find a "substitute-observation" for the nonzero coordinate of
121. Since 11w112a2 = kl1wll2(o(/k), we consider kllwll2 as the variance of the
usual missing observation estimator, divided by 2/k, the common variance of
the reinterpreted coordinates of P7.

6.2. The case m < k. We obtain the same end result here, but the details
must be changed slightly. Let V, and Y' be the same as in the preceding case,
let V21 and YD' correspond to the m nonzero coordinates of the original Y2,
and let V22 be a (k - m)-dimensional subspace orthogonal to Vl + V21. This
means enlarging the space with which we started. Think of a (nonobservable)
y22 in V22 with expectation in {82}, the one-dimensional subspace of V22
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spanned by a single vector that is set up to correspond with si, that is, EY21 =
(w, ul)s1i and EY22 = (w, /A)S2.

If we could observe Yl + Y21 + Y22, orthogonal projection on its Q would
be easy for we would have a k-fold replication of a design for which we have the
Gauss-Markov estimators. Although we do not have Y22, we can ask whether
there is a y2 E Q2 such that

(6.2) P(I+Ai)n1PQ(Y1 + y2) = P(I+A.)n1(Y' + Y21)
where A1,.' = -P= (w, A')sl. In this case, with the orthonormal coordinates we
have in mind, 1Isi112 = m and 1IS112 = k.
The estimator of EY2 from YP alone is (w, Y')s and from Y21 alone it is

[(SI, Y2l)/l11siI12]S. We can write Q as the direct sum of orthogonal subspaces,
U + (I + A)(1- U), just as before and express y2 in the form bs. Carrying
out the operations indicated by (6.2), we obtain

(6.3) a = g1S2 12
(6.3) a = ~~~~~11s112(l + IIWI1211Si112)

Then, putting inlls 12 = m along with IS2l 12 = k -mandflS 112 = k, a legitimate
operation for orthonormal coordinates, we finally obtain exactly (6.1) again. The
final paragraph of the discussion of the case m _ k holds verbatim.

6.3. Summary of the preceding work of this section. We may summarize as
follows. Suppose that Po[Y' + Y2] is known explicitly, but that Y = yl + Y2
is not weakly spherical. Suppose further (i) that Y' ranges over an (n - 1)-
dimensional space and in that space has the covariance transformation .21, and
(ii) that Y2 ranges over a one-dimensional space orthogonal to that of Y' and in
that space has the covariance transformation r2VI, where r2 is known [and
rational].

Let y be the Gauss-Markov estimator, based on Y' alone, of the coordinate
of EY2 with respect to a unit vector t in the space of Y2. Let Var 9 = 02.2.

Let y be the coordinate of Y2 with respect to the same unit vector.
Let y be the weighted average of 9 and y with weights proportional to 1 - 2

and T-2(1 + 02) respectively.
Then P2[Yl + yt] is the Gauss-Markov estimator of EY.
The special cases 72 = 1 (original design) and '2 = oo (Y2 is missing)

work out as they should. The special case T2 = 0 (corresponding to m = 00 or
EY2 known a priori) may be useful in some circumstances. The bracketed
words, "and rational," above may be omitted by continuity of Gauss-Markov
estimation in I.
A related discussion is given by Gauss [5], section 36 of Theoria Combina-

tionis....

7. Application to apparent outliers
One approach to apparently outlying observations is to apply some criterion

and then either decide that the suspect observation is not an outlier and handle
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it in the usual way for analysis, or else decide that the observation is an outlier
and omit it completely from analysis.
One might, however, consider intermediate positions in which a suspect ob-

servation is treated with a lower weight than the rest, that is, has an imputed
variance higher than that of the other observations. To completely omit the
observation is, in effect, to give it an infinite variance, but why go that far?

If there is only one such suspect observation, the method described above
permits the relatively simple incorporation of the suspect observation into Gauss-
Markov estimation, provided that the ratio of its imputed variance to the
variance of the other observations is given.
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