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1. Introduction

For testing the equality of two distributions F and G on the basis of samples
Xi, - * *, Xm and Y1, * * *, Y. from these distributions, a number of procedures
are available. If the tests are to be powerful against shift alternatives given by
(1.1) G(y) = F(y - 0),
the most commonly proposed tests are

(a) Student's t test;
(b) Wilcoxon's two-sample test based on the sum s1 + * + s,, of ranks of

the Y's;
(c) The Normal scores test. This test has been proposed in two asymptotically

equivalent versions, the test statistic in both cases being of the form
(1.2) h(s1) + *-- + h(sn)
with large values significant against the alternatives 0 > 0.

(i) The function
(1.3) h(s) = E(W(81),
where W(1) < ... < W(-+n) are the order statistics of a sample of size m + n
from a standard normal distribution was introduced by Fisher and Yates in the
introduction to table XX of [3], who also gave a table of (1.3). These authors
propose replacing the variables Xi and Yj in the t-statistic by the function (1.3)
of their ranks and applying to these values the usual analysis of variance, which
amounts to using as critical value that appropriate to the t-test. The correspond-
ing rank test (in which the critical value is obtained from the distribution of
ranks rather than that of t), was proposed by Hoeffding [5] and discussed
further by Terry [8], who also gave a table of percentage points.

(ii) The closely related function

(1.4) h(s) = (m +

where c1 denotes the cumulative distribution function of the standard normal
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distribution, was proposed by van der Waerden [9]. Further discussion of
this test and tables of percentage points were given by van der Waerden and
Nievergelt [10]. The asymptotic equivalence of (i) and (ii) was established for a
wide class of cases by Chernoff and Savage [2].
A convenient method for making large-sample comparisons between two tests

was developed by Pitman [7], who defined the relative asymptotic efficiency of
two sequences of tests as the limiting inverse ratio of sample sizes necessary to
achieve the same power ,B against the same alternative at the same significance
level a and showed that for a large class of problems this efficiency is independent
of a and ,B. For details see section 2.

It was shown by Pitman that the relative asymptotic efficiency ew,t(F) of the
Wilcoxon to the t-test against the alternatives (1.1) is 3/7r -.955 when F is a
normal distribution, and in [4] that for all F (throughout the paper we shall
assume that all distributions F considered are continuous)
(1.5) ew,t(F) _ .864,

the lower bound being attained for a distribution with parabolic density.
The relative asymptotic efficiency eN,t(F) of the normal scores test to the t-test

against the alternatives (1.1) with F a normal distribution is well known to
equal 1. It was proved by Chernoff and Savage [2] that

(1.6) eN,t(F) > 1

for all F satisfying certain regularity conditions. The method used in [4] to
prove (1.5) can be extended in the present case to show that (1.6) holds in fact
for all F.
While then neither ew,t nor eN, t can ever be very small, it is easy to find dis-

tributions for which they are arbitrarily large or even infinite.
The above results suggest that on the basis of power, at least for large samples,

both the Wilcoxon and normal scores test are preferable to the t-test for general
use. The purpose of the present paper is to determine, on the same basis, which
of the two rank tests is preferable in various circumstances.

2. A basic limit formula

The comparison of two tests of a hypothesis 0 = 0 on the basis of Pitman's
asymptotic relative efficiency is usually made (see for example, Noether [6]) for
sequences of test statistics {SN}, {TN}, whose expectations
(2.1) A(O) = Ee(SN), V(@) = Ee(TN)

(or other appropriate norming constants) are assumed to have finite derivatives
j' (0), v'(0) at 0 = 0. For the comparison we wish to make here, such derivatives
do not always exist or may be infinite, and we begin therefore with a slight gen-
eralization of the usual approach.
LEMMA 1. Let {UN} be a sequence of test statistics, {aN} a sequence of positive
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numbers, and {flN} a sequence of real-valued functions such that, when ON is the true
parameter value,
(2.2) UN - 17N(ON)

aN

tends in law to the standard normal distribution for every sequence {ON} with ON - 0.
Consider any sequence of critical regions

(2.3) UN - N() > kN,
aN

where

(2.4) kN-k = -1(1 - a),
that is, any sequence (2.3) which asymptotically has significance level a. Let 1N(O)
denote the power of the Nth test of the sequence against the alternative 0 and let {ON}
be any sequence tending to 0.

Then

(2.5) 1N(ON) -

if and only if

(2.6) 77N(ON) - 7N(O) > C,aN

where

(2.7) $ k-c).
That the limiting distribution of (2.2) is normal is sufficient for the problem

to be considered here but clearly not necessary for the validity of the lemma,
which only requires a continuous limiting distribution.

PROOF.

(2.8) ONN(ON) = PO {U > kN}
aNv

= P6N {UN -7N(ON) > kN -7N(ON) -U(0)}.

Since [UN - qN(0N)]/aN has the continuous limit law 4, the convergence is uni-
form. If therefore [vN(ON) - 71N(O)]/aN --+ c, ON(ON) - 1 - 4(k - c). Conversely,
if [,7N(ON) - IN(O)]/aN does not converge, there exist two subsequences converg-
ing to different limits cl and c2. For these subsequences, 13N(ON) would converge
to different values ,1 and j2, which implies that 13N(ON) does not converge.

Consider now two sequences of tests. Let SN, TN be two test statistics based
on N observations, N = 1, 2, * - , and suppose that

(2.9) SN - PN(ON) and TN - VN(N)
bN CN

tend to N(O, 1) whenever ON -O 0. To compare the tests, fix 0 < a < 0 < 1 and
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find any sequence ON -- 0 such that the power #N(ON) of the test based on TN
tends to ,B. For each N, let an integer rN be determined so that SN performs about
as well as TN; more specifically, so that the power #N*(ON) of the test based on S,N
also tends to ,B. (Note that PN is based on rN rather than N observations.)
LEMMA 2. Under the above assumptions,

(2.10) JN (ON) - VN(O)br1 as N°°ArLN(ON) - Ai,lA0) N

PROOF. By assumption, 0,N(ON) -. Hence by lemma 1

(2.11) Vv(N(N)-VN(O) C = 4-1(1 - a) - ~(1 -/).
(2.11) CNV60- A) ca)~-(

Here 0 < c < - since 0 < a < < 1. The corresponding application of
lemma 1 with SrN playing the role of UN, shows that

(2.12) 1rV(6N) 9 X(°)br,
and the result follows.

In applications of the above lemma to the two-sample problem, the total
sample size N is the sum of the individual sample sizes

(2.13) N = mN +nN.

It turns out, however, that for the statistics to be considered the assumed limit-
ing distribution for SN is valid regardless how the total sample size N is divided
between mN and nN provided only mN/nN is bounded away from 0 and X as
N -÷ oo. Since the corresponding remark also applies to the division of rN into
its two components mN and nN1, lemma 2 remains valid with the only additional
restriction

(2.14) 0 <lmMN < F--- Tn1N 00 0 <1.fl-N<pijmN'<O.
mN m N mN.mN

3. Bounds for ew,N(F)
Equivalent to the Wilcoxon statistic is the statistic

(3.1) SN = m E EWXj,mn

where Wij is 1 or 0 as Xi < Yj or Xi > Y3. It was shown in [1] and [2] that
[SN - A(ON)]/bN tends to the standard normal distribution if ON -O0 where

(3.2) p(O) = P.(Xi < Y,) = f F(x + 0) dF(x)

and, if m/N - X,

(3.3) b2 N+ 1 1-v 12mm 12X(l - N
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For the Normal scores statistic TN given by (1.2) and (1.3), it was shown by
Chernoff and Savage that [TN - VN(O)]/CN tends to the standard normal dis-
tribution if ON -O 0, where

(3.4) vN(o) = f 4 ' F(x + )+ N F(x)} dF(x)
and

(3.5) cN = -

Substituting in (2.10), it follows that
(3.6)

f['j-1 {NF(x + ON) + n F(x)} --1{F(x)}] dF(x) _ 1.

f [F(x + ON) - F(x)] dF(x) A/12(rN)
As a first application of this formula, we shall exhibit a class of distributions F

for which

rN(3.7) ew,w(F) = limr= 0,
so that the asymptotic efficiency of the Normal scores test relative to the
Wilcoxon test is infinite. Consider a distribution F having a density f such that

(3.8) f(x) =0 for x < a

f(x) d> 0 as x-a+.
We shall show that for such a distribution,

(3.9) lim |f{4-[mF(x + 0) + n F(x)] - 1[F(x)]}dF(x) = 00.

From this and (3.6), (3.7) follows, provided only

(3.10) 1 [F(x + 0) - F(x)] dF(x)

is bounded away from x as 0 -- 0+, as is easy to check for example in the rec-
tangular and exponential case.
By Fatou's theorem, it will suffice to show that

(3.11) lim {- F(x + 0) +N F(x) - t-1[F(x)]} dF(x) = a).

Choose an interval (a, a + A) within which f(x) is positive. As the integrand
above is nonnegative, it will suffice to consider the integral over (a, a + A).
Write
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(312) { [F(x + ON) + N F(x)] -t-1[F(x)]}

- m-1N F(x + ON) + N F(x)] - -[F(x)] m [F(x + OAN) - F(x)]
[ F(x + ON) + N F(x) - F(x) ON

As N -+ oo, the first factor on the right, which is a difference quotient, tends to

(3.13) d -=(f) I
du LsF(x) Fx

while the second factor tends to Xf(x). We see that (3.9) is at least

(3.14) | 2(x)]} |f Xf(x) dy,

where 4D(y) = F(x). As y -+ oo, x -+ a+, and hence f(x) -+ d. The last displayed
integral is therefore infinite and (3.8) is proved.

It follows from these considerations that for a large class of distributions-
including the rectangular and exponential-the Normal scores test at least for
large samples is very much more efficient than the Wilcoxon test. This phe-
nomenon is made intuitive by realizing that the Normal scores test pays in the
limit infinitely more attention to the rankings at the extremes than does the
Wilcoxon test. When F has a density that drops discontinuously to zero at
either extreme, the rankings at that extreme will contain much more informa-
tion than those in the central part where f is positive. We do not know how
large n must be for the Normal scores test to be considerably better than the
Wilcoxon for such a distribution as the rectangular.
Can we similarly find distribution F for which ew,N(F) = oo, so that the

Wilcoxon test is very much more efficient than the Normal scores test? To
see that this is not possible, let us note that by the mean value theorem,
[4-1(v) - P-1(u)]/(v - u) is equal to 1/4[4r1(t)] for some intermediate t and
that therefore

(3.15) 4-1(v) - 4-1(u) > \1r(v - u) for all' u < v.

Applying this inequality to the numerator of the first fraction in (3.6), this
numerator is seen to be >_

(3.16) m -\/27r [F(x + ON)-F(x)] dF(x)

so that the first factor of (3.6) is at least mv7r/N. It therefore follows from
(3.6) that

- mV~~~ __ ~1/2(3.17) lim < 1
N-*oo NXV12 rN

and since m/XN -+ 1 that



NORMAL SCORES AND WILCOXON TESTS 313

(3.18) limN <: 12 = 6 1.91.
rNm- 2ir 7r

The relative asymptotic efficiency of the Wilcoxon to the Normal scores test
therefore satisfies

(3.19) ew,N(F) _ 6 , 1.91 for all F.

4. The range of ew,m(F)
In order to compute ew,N(F) for various distributions F, we need to obtain

the limit of the first factor in (3.6). Dividing numerator and denominator by ON,
and assuming that we can differentiate under the integral sign, (3.6) leads to
the result, essentially contained in the work of Chernoff and Savage, that

(4.1) ew,N(F) = 12 f2-I )d 2

where f is the density of F.
The following lemma gives conditions under which the limit passage under the

integral sign is permissible in the denominator and the numerator respectively.
LEMMA 3.
(a) Let F be a continuous cumulative distribution function, differentiable in each

of the open intervals (-00, aQ), (a,, a2), . . ., (a-,1, a.), (a8, 00). If the derivative f
of F is bounded in each of these intervals, then

(4.2) lim 1 [F(x + 0) - F(x)]f(x) dx = ff2(x) dx.

(b) If in addition to the assumptions made under (a), the function

is bounded as x -+ o, then

(4.3)

lim 1 f{1- [-N F(x + 0) + n F(x) ]- -1[F(x)]} dF(x) = f f2(x) dx

and the convergence is uniform in m, n, and N.
PROOF. (a) Consider first the case s 0, so that F is differentiable for all x

with a derivative f which is never greater than M. Then for any 0 > 0

F(x +0) - F(x) < M

by the mean value theorem. Any sequence of integrands

f(x) [F(x + ON) - F(x)]/ON
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is therefore bounded by the integrable function Mf(x), and the result follows
from the bounded convergence theorem. If s = 1, and the bound on f is M1 in
(-0, a,) and M2 in (a,, 00), we have that for any 0 > 0

rMl, x + 0 _ al,

(4.5) [F(x + 0) - F(x)] _ M2, x > al,
ax (Ml, M2), x < a < x +0.

Hence

(4.6) [F(x + 0) - F(x)]f(x) _ max (M1, M2)f(x)

for all x and 0 > 0, and the result follows as before. The proof clearly extends
to any s and to the case 0 < 0.

(b) Consider again first the case s = 0, and let

(4.7) g(0) = b-1 [NF(x +) + N

Then for any 0 > 0, g(0) < 1-r[F(x + 0)] and

g48()- g(°) < t-l[F(x + 0)] - 4-l[F(x)](4.8) 0 -0
By the mean value theorem, the right side of this inequality is equal to
f(x + t)/Ip{1-'[F(x + t)]} for some 0 < t < 0. This is bounded for x + t in
any finite interval since f is bounded, and near Ioo by assumption (b).
The extension to the case s > 0 is quite similar to that in (a). If for example

s = 1,thenforanyx < a < y

(4.9) 4 -[F(y)] t-'[F(x)]

< max { '[F(y)]- 4r[F(a)] l[F(a)]-

and the argument for s = 0 can be applied to each of the fractions under the
maximum sign.
When the regularity conditions of (a) and (b) are satisfied, we see-by dividing

the numerator and the denominator of the first fraction in (3.6) by ON-that
lim (N/rN) and hence ew,N(F) is given by (4.1).

Using this formula, we shall now show that all values in the open interval
(0, 6/7r) are taken on by ew,N(F) for suitable F. For this purpose consider the
following family of distributions

(4.10) Fa(x) (x), ° _
(y), x > Ie,

where y = e + a(x - e), and Fa,. is defined by symmetry for x _ 0. The as-
sociated density is
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(4.11) fa(X)f(x) =for lxl < e,
(a<p(y) for lxl > e.

To check the regularity conditions, we note that F satisfies condition (a) with
s = 1. Condition (b) is trivially satisfied since

(4.12) ~f(x) fP(X)/,P(X) =1 for lxl < E

(4.12) sop{¢-[F(x)]} = {a(y)/(y) a for lxi > e.
In order to obtain the efficiency ew,N(F), we compute

(4.13) f(x) dx = - + a[1- (e'/2)]}
and

(4.14) f s F (x)]d = [¢() -2] + a[1 -(e)],
to get

3 1P(e-\/2) 21- + a[l- >(e)]\(4.15) ew,N(Fa,e) = % (
7r

[¢(e)-2 + a[l1- (De)]
As a -* o, this tends to

(4.16) 3r (1-¢(e))
which tends to 0 as e -14. On the other hand, as a -*0, ew,N(Fa,,) tends to

cI)(,e\'2) - P2(4.17) 3

\ (e) -2 /

which tends to 6/7r as E -* 0. By continuity, all intermediate values are also
taken on.
The only question concerning the range of ew,N(F) that still remains in doubt

is whether the upper end point 6/7r is attained. We shall now show that this is
the case for all distributions F possessing an even density f such that

(4.18) limf(x) = 0o
x-O

and such that for all A > 0

(4.19) f(x) dx = oo, f2(x) dx < f°; {,-([F(x)d } < -

We have shown at the end of section 3 that the first factor of (3.6) is always at
least m/7r/N and from this deduced that ew,N(F) _ 6/7r. For a distribution F
satisfying the stated conditions we shall now prove that the first factor of (3.6)
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can be made less than (m/N)27r(1 + e) for any given e > 0 by choosing ON
sufficiently small. Together with the earlier inequality this shows that the first
factor tends to X\/2ir as N -X oo and hence that ew,N(F) = 6/7r.
To prove the desired inequality, let e > 0 and let A, 0 be positive numbers so

small that 0 _ x < x + 0 _ A implies

,-I [N F(x + 0) + N F(x)]-1- {F(x)}
(4.20) I + +

-
< (1 + -2) V .

N [F(x + 0) - F(x)]

This can be achieved since the left side by the mean value theorem is equal to
1/ o{4-1[F(Q)]} for some t between x and x + 0. The first factor of (3.6) with 0
instead of ON is then at most

(4.21) [N (1 + -2 Jr [F(x + 0) - F(x)] dF(x)

rx
+ f [--1{F(x + 0)} - 4-{F(x)}] dF(x)]

rA
J [F(x + 0) - F(x)] dF(x) + f [F(x + 0) - F(x)] dF(x)

As 0 0, we have by assumption that

(4.22) l J [F(x + 0) - F(x)] dF(x)

> flim - [F(x + 0) - F(x)] dF(x) = oo,

while the integrals from A to Xo in the numerator and the denominator remain
bounded. It follows that for 0 sufficiently small, the quantity (4.21) is less than
(m/N) (1 + e) x/27r, and hence that for N sufficiently large, the first factor of (3.6)
is also less than (m/N) (1 + e)\2rr, as was to be proved.

5. Choice between the tests

We conclude with an attempt to throw some light on the question of choice
between the two tests. Table I shows values of ew,N(F) for a number of well-
known distributions F.

TABLE I

F ew,N(F)

Rectangular 0
Exponential 0
Normal 3/ir -.955
Logistic w/3 1.05
Double exponential 37r/8 1.18
Cauchy 1.413
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Qualitatively we may venture to guess that the Normal scores test is prefer-
able when the distribution has an abrupt tail, like the rectangular; that they
are about equally good with a bell-shaped density with a thin tail; and that the
Wilcoxon test will perform relatively better when the tails are heavy so that
the information is mainly to be found in the central rankings. We note that the
sequence (4.10) used to give eWN -- 1.91 is one with very heavy tails.

These considerations suggest that a normal distribution contaminated with
gross errors might favor the Wilcoxon. To investigate this, let us consider an F,
obtained by mixing a standard normal with a small fraction p of a normal with
expectation 0 and standard deviation 3. By numerical integration we find the
values for p = .01 and p = .02, as shown in table II.

TABLE II

p ew,N(F,)

0 .955
.01 .979
.02 .997

It appears that the Wilcoxon test will be better in large samples if something
like one observation in forty is a "gross error" as defined above.
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