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1. Summary
The aim of this paper is twofold: first, to contribute to the subject in question;

second, in so doing to illustrate some general features and techniques of the
Bayesian (or neo-Bayesian) subjectivistic approach to problems of statistics.
What may be said about the "true value" X of a quantity after observations

have yielded measurements xi, . .. , xn? The variable X or "unknown param-
eter" X, as the usual terminology calls it, is in fact a random number in the
subjectivistic probability theory. For in this theory, probability is nothing else
than the expression of beliefs about unknown facts; for example, this may be
the probability that X is greater than some given value x. We need then merely
to show how our final probability distribution for X, after the observations,
comes from the initial one and from the conditional distributions of the measure-
ments xi, ... , Xf given X = x, according to Bayes' theorem. No estimation
problem per se is acknowledged to exist from such a viewpoint. X has a final
distribution, and if such an expression as "estimated value" is used at all, it
should be conceived of as a measure of location of the final distribution, suitably
chosen for some practical purpose.

Everything is embodied in this over-all formulation. A rational answer to the
question of how and why to attach less or no "confidence" to some "outlying"
observations can arise from nothing else.
To fill the gap between such an abstract (or, as some might perhaps say,

"philosophical") formulation, and a realistic detailed analysis of practical situa-
tions, we need only consider some set of more or less "reasonable" and interesting
hypotheses about our opinions concerning the process of taking observations.

Three cases, all concerning an "error distribution," will be studied: (a) the
errors are independent; (b) the errors are exchangeable; (c) the errors are
partially exchangeable.

(a) Independence mneans "independence with known error distribution"; if
the distribution is not normal, the combination of the observations is no longer
so simple, and particular problems arise for "outlying" observations. This case
has been considered by Poincar6 [5] and others. More recently, in a paper of
mine [1] at the 1957 Meeting of the Societa Italiana di Statistica, the case of
mixtures of normal centered distributions has been particularly stressed.

(b) Exchangeability translates "independence with unknown error distribu-
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tion" into language consistent with the subjectivistic theory, and means "mix-
tures of independence schemes (in the sense of the first. case)." The problems
becomesomewhat more complex. Now,:thehscatter of the observed measurements
reacts on the initial opinion about the possible error distribution itself, and the
notion of "outlying" depends on that opinion. The interest in applying to this
problem the notion of exchangeability (or "equivalence" or "symmetry":
de Finetti, Khinchin, Fr6chet, ,Hewitt and Savage) was pointed out by W. H.
Kruskal in the discussion of the lecture in--which I reported the results of my
above-mentioned paper at the University of Chicago (1957).

(c) Partial exchangeability translates, for the same reason and in a similar
fashion, "independence with an unknown conditional error related to visible
features of the individual observations" (for example, the observer, the instru-
ment, the temperature). The information given by the observations may then
suggest a dependence of the error distribution, and hence of outlying measure-
ments, upon the said features. The notion of partial exchangeability (or partial
equivalence) presented in a communication of mine at the "Colloque de Genbve"
in 1937, has been restated and developed in [2].

In each of these cases, as in all other problems of inference, it is not assumed,
by the subjectivistic theory, that exactly this or that initial distribution ought
to be selected as corresponding to the real opinion of a given person. It is main-
tained, nevertheless, that an initial distribution and Bayes' theorem give a good
portrayal of inference, even though, in practical cases, as in all practical ap-
plications of mathematics, we must rely on initial, conditional and final distribu-
tions that are only vaguely specified. Again, any analysis of different attitudes
to6wArd a situation like the rejection of outliers consists only in recognizing
corresponding differences in the initial opinions or in hypotheses and features
concerning them. This is illustrated by cases (a), (b), and (c) or by even more
complex possibilities.

2. Introduction

First, let us write down the formula expressing, for our general problem, the
Bayesian approach, in order to fix the notation and to explain how the formula
will be applied to the three particular cases to be considered (independence,
exchangeability, partial exchangeability). To avoid complications irrelevant to
the present discussion, we shall confine attention to the case where all distribu-
tions admit of a density.
The Bayesian principle may be written
Final distribution oa initial distribution X likelihood, and it will here be used

in the form
Final density oc initial density X likelihood, where the initial and final distribu-

tions are those of X (the "true value") as evaluated by someone in his state of
information before and after knowledge of the result of the set of observations
considered. That is,
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(1) f.(xlxl, x2, *, x.) = Kfo(x)f(x1, x2, - , XnIX),
where fn(xl.. ) is the density of the probability distribution of X after the n
observations have given the values xl, x2, * , x"; K is the normalization con-
stant; fo(x) is the density of the initial probability distribution of X, that is,
before the said observations; f(... jx) is the density of the (n-dimensional)
probability distribution of the set of observed values X,, X2, * * *, Xn (or of the
"errors" Yi = X- X, * , Yn = Xn- X) under the condition X x; that
is the likelihood.
Although the extension to the case where X (and hence the Xh and the errors

Yh) is a vector would require but obvious formal changes, it seems preferable
here to consider only the one-dimensional case (X is a scalar), becatise it is
sufficient and more suitable for our explanatory purposes.
When speaking of "errors" it is generally understood that their distribution

is independent of the "true value" (each Yh = Xh- X is independent of X).
More precisely, the validity of the following translation property will be postu-
lated,

(2) f(xI, x2,**,XnIX) = f(xi- x, X2 - x, **,x, -xIO)
= f(yl Y2, * * ynjO).

This condition is satisfied by each of the three cases which we shall consider.
All that is required is the specification of the appropriate form of the likelihood
function in (1), namely,

(a) in the case of independence,
(3) f(xl, x2, ,xjx),= f(xl - x)f(x2 - x) . f(x. - x),
where f(y) is the density of the probability distribution of each of the mutually
independent errors Yh-

(b) In the case of exchangeability,

(4) f(xl, x2, * X**, ) = f fe(xl - x)fO(x2 - x) * fe(xn - x) XD(@).
We have here a mixture of distributions of the kind (3) of case (a). Its meaning

is immediate if there really exists a random number T that is an objectively
definable but at present unknown quantity, such that conditionally on each
possible value 0 of T the errors become independent with distribution density
fe(y). Then $(0) is the distribution function of T. The same holds if T is a random
element in any abstract space e. Here this extension is essential, because only
if e is such that all distributions f(y) belong to the selt {fe(y): 0 E e} will the
mixtures give all, not merely some, of the possible cases of exchangeability.
This problem is studied under general conditions in Hewitt and Savage [3].
However, it is by no means necessary that such an interpretation by a random

element T hold in any given problem. It is only essential to know that exchange-
ability implies the mixture formula (4), and it may be useful to remember that
all further developments hold as if the interpretation based on "the unknown
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element T" applies (no matter whether that is true or not). This remark, often
referred to later on, is more thoroughly discussed elsewhere, as in [2], sections
5(3) and 7.

Before considering the last case, (c) partial exchangeability, some preliminary
statement is necessary and some exemplification may be useful.
The meaning of (1) must be interpreted, in this case, in a wider sense; it

must be understood that the likelihoodfmay depend also on other circumstances
concerning the observations, or, to make it explicit, it is better to write

(5) - f(xl, X2* , xn|x; Xl, X2, **, n)
where Xh summarizes the whole of the circumstances, relating to the hth observa-
tion, which are supposedly able to influence it. A particular case (conditional
independence given the X) is that where

(6) f( ..* x; ...) f(xlx; XI)f(X21X; X2) ***f(Xn!X; WAn-
In order to make clear by examples what kind of circumstances are meant to

be considered and represented by X, the X may give information about
(1) the person having taken the observation (set X = 1, 2, * , r according

as the person was I,, I2, * * *, I,);
(2) the instrument used for the observation (again X = 1, 2, * ,
(3) the pair person-instrument [then X = (h, k), the pairs with h = 1, 2, * , r

andk = 1,2, ..- ,s];
(4) the temperature t at which the observation has been taken (set X =

tl _ t . t2);
(5) a complex of m values (integers or real numbers or both) such as person-

instrument-temperature [X = (h, k, t), with h = 1, 2, * - *, r; k = 1, 2, . .. , s;
ti _ t _ t2] or with other or more data such as pressure, dampness, or illumina-
tion);

(6) the shape of the temperature variation during the experiment (in cases
when the observation requires a rather long time). In this case X is a point in a
function space, in fact X _ X(-), if t = X(T), with 0 rT 1, is the function
giving the temperature t at the time r from the beginning (r = 0) to the end
(r = 1) of the observation; and so on.
Here too it would be inappropriate to confine attention to the most elementary

and easy cases, such as examples (1) to (4), although they are obviously the
most practical for a first explanation.
The change in the expression of the likelihood f from the preceding case of

exchangeability in formula (4) to the present one, lies in the fact that the value
of the parameter 0 (which is unique in the former case) may now vary from
observation to observation, according to the circumstances summarized by X.
The distribution thus no longer concerns a single element 9 of 0 but, in the most
general case, a complex of n elements 0i, 02, * * *, an in the product space en.
To avoid too abstract a generality, let us specify separately the expression

of f in the two simplest cases: that of X admitting a finite number of values, as
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in examples (1), (2), (3), and that of X being a continuous variable as in exam-
ple 4; similarly for two or more continuous variables.
In the finite case, let us suppose for clarity that the possible values are only

X = 1, 2, 3. That is, that the set of n observations Xh may be partitioned into
three groups of ni + n2 + n3 = n (say) observations with the conditions X = 1,
X = 2, and X = 3 respectively. With obvious conventions we shall have

(7) f( l) * * f); X(2) . .. ( (2); X(3) ..* (3)lX

= f foe(xI() - x) * * fol(xn, - x)fe(xi2' - x) ... fo,(x', - x)

f 1(x3 X-X) ... f0,(x()- X) d4)(01, 02, 0(3)-

Here 4(01, 02, 03) is a distribution in 03; it is 0 = 01 for all observations taken
in the condition X = 1, and similarly for 0 = 02 and 0 = Os.

Exchangeability arises as the particular case in which the distribution 4 is
concentrated on the diagonal 01 = 02 = Os; if it is concentrated in a point, we
have conditional independence or independence (the latter if the point belongs
to the diagonal). For the continuous case we may write

(8) f(xi, * - *, x.; Xi, * * *, X.)

= f fe1(xl- X)fe,(X2 - X) ... fo,(x. - x) dl4(01, 02, * n*X1,X2, . n),

which may be interpreted as a limiting case of the former [see (7)] when the
space A is subdivided into an indefinitely increasing number of parts.

3. The problem of the outliers from the Bayesian point of view

According to the Bayesian point of view, there exist no observations to be rejected.
In fact, the Bayesian solution shows in all cases the final distribution determined
on the ground of all the observations taken. In such cases and under those hypoth-
eses where usually the procedure of "rejecting some observations" is adopted
and justified, the Bayesian method leads automatically to the similar (but exact)
result in which the influence of those observations on the final distribution is
weak or practically negligible.

Nevertheless, it may be worth while to investigate which observations should
have little weight, and why, both for theoretical and practical reasons. Theo-
retically, in order to have a better insight about the effective meaning of the
(luestion and about the role of different hypotheses on the results; practically,
in order to find easier procedures, if there are any, for the rejection of some
observations. Of course, that could be justified only as an approximation to the
exact Bayesian rule (under well-specified hypotheses), but never by empirical
ad hoc reasoning.
An example of a procedure, leading to an outliers rejection rule approaching

an exact one, is the following. Consider an "estimated value" £, which, on the
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basis of the exact (Bayesian) method, is expressed as a weighted average of the
observed values,
(9) =plXl +P2x2 + * + Pnxn.-

If the weights Ph depend in too complicated a way on the observations xi ...x.,
but there exists a simpler rule giving x approximately on the basis of equal
weights for all Xh except for some small weights which are set equal to 0, we
could say that the corresponding observations are outliers in regard to this
method. It is clear however that such a notion is vague and rather arbitrary.
In order to avoid ambiguity and to deal with a handy expression, we shall in
the sequel confine ourselves to the estimate given by the expectation of the
final distribution,

(10) t = E{Xlxl, x2, ***X x,1} = f xfn(xIx1, x2, * * xn) dx.

A further simplification occurs on considering the particular case of a "constant"
initial density fo(x). That, of course, is no reason for giving credit to any a priori
argument for a constant initial density, but we are often justified in taking it
constant in so far as we suppose the distribution to be diffuse in the interval
under consideration and the conclusions to be sufficiently well determined by
such a hypothesis. A way to give this notion of diffuseness a precise and suitable
meaning is indicated by Savage in [6], section 5.
Even dealing only with the example of the £ = expectation and with fo(x)

constant, there is no unambiguous principle for giving a meaning to the concept
which we tried to suggest by calling it the "weight" of each observation Xh in
determining x. To seek for a direct method, several ideas, like the following two,
could give rise to some significant investigation: (i) to compare the x resulting
from all observations with that resulting from all but Xh, (ii) to explore how x
varies with &h. In the latter case the partial derivatives

( l l ) ~~~~Ph=-S
are, in a sense, meaningful. Moreover, their sum is one [provided the translative
property (2) holds, and fo(x) = constant]. Nevertheless, they are not a system
of "weights" in the sense of (9).
To arrive at a system of weights in this sense, indirect methods seem more

successful, although their validity is limited to special classes of error distribu-
tions f(y) and their significance is tied to a particular interpretation of such f(y)
as mixtures of distributions of some simple kind.
As a first example, let us consider the mixtures of rectangular centered distri-

butions, say those with constant density 1/2y in (- -y, +-y). The mixtures are ob-
viously all the distributions with decreasing symmetrical density from 0 to -t-,

f +00 1 r(12) f(y) = J a(y) 2- dy, a.(y) = -2yf'(y), J a(y) dy = 1.

The case we will work out is that of the mixtures of normal centered distributions,
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(13) f(y) a(Jya(-) e1/2y2dy, J a(-y) dy = 1,

including the limiting case of a sum or series,

(14) f(y) = E ai (2y, e-1/2yiziy2 Ea = 1.

As an example of a distribution of the form (13), let us remark that the Cauchy
distribution appears on putting a(zy) = a(27ry)-1/2 exp (-a2-y/2); as an exam-
ample of (14), the simplest case (with two values for y, -y = 1 and y = l/k2) is
(27r)-/2[(1- a) exp (-y2/2) + (a/k) exp (-y2/2k2)]. Something more about
these cases is in [1]; the latter has been considered by Poincare [5].
The transformation from a to f is nothing but a modified Laplace transforma-

tion. It is thus easy to write the inverse transformation from f to a, and to
formulate the condition for f(y) to be such a mixture (the derivatives glhl (t) of
f(x/t) = g(t), say, must be _ 0 or _ 0 for 0 < t _ oo, according as h is even
or odd).
The interpretation of f(y) as a mixture may have real significance or not, and,

consequently, the conclusion based on it may be itself significant or simply
formally valid. Formula (13) has real significance if, for instance, we know that
each observation is taken using an instrument with normal error, but each time
chosen at random from a collection of instruments of different precisions, the
distribution of the precisions being that indicated by a(-y). The same hypothesis,
but taking the error distribution to be rectangular (as is the case with some
rounding-off error), leads to an effective interpretation of formula (12).

4. The case of independence

The case of independence is the starting point for the other cases too. If the
f(y) assumes the form (13), the likelihood (3) takes the form

(15) f(xI, x2, * , x.Jx)
= K f ... f a(71)a(Cy2) ... a(QY.)( yi-2 y.- 1)1I2

exp [ h Yh(Xh - X)2] d-y dy2 d..

= K Ci,**(_Y1)C'('Y2) a(Y.) Y77 n

exp {-h [ YXh - h( Xh)2

,Y exp 2 -Y - E 'YhXh) ] d7y1 dY2 ... dY

'7= l + 72 + +7Yn-
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If we suppose that fo(y) is approximately constant, the final distribution (1)
fn(X|;- *) itself is identical with (15). In order to compute the expectation (10)
we need only to multiply (15) by x and integrate over -oo < x < +X0. The
only factor in (15) depending on x is the last one,

(16) y1/2 exp -2 [x - E YhXh

and its integral is simply the weighted average of the Xh with weights yh,

(17) -L YhXh.
Y h

The constant (2wr) I2 is neglected because it is absorbed by normalization. The
integral of (15) multiplied by x dx, that is, the expectation x, is then x = ,h phXh,
with

(18) Ph= K ff * f|YThT(y'i, 72, ...*, y) dy, dY2 ... dy.,

where T( ... ) indicates all factors remaining in the last form of (15).
T(... ) is a function of the Ay as explicitly indicated and of the observations Xh,

which are in a given problem constant parameters. It is interesting to remark
that there is a dependence on the Xh only through the function

(19) z= E Thh - ( yhXh)2,
h h

which is precisely, for our purposes, a quadratic form in the Yh with coefficients
which are quadratic functions of the Xh. In a better form it is

(20) Z = (E -Yi)(F Yhh) - (Fj -Yixi)(Y -Yhxh) = E YizY(4h - XiXh),
i h i h ih

or, interchanging i and h and taking the half sum,

(21) z = 1 7i-h(Xi - Xh)2 = E 'Yi-Yh(Xi - Xh)2.2 ih i<h

The dependence of T on the Xh consists in having as a factor

(22) e-x/2y

that is, the penultimate factor in the last form of (15), where, however, the Xh
are present in the last factor also.
Our formula (18) is too complex to give directly an insight into interesting

qualitative conclusions, although the form (21) for the z of factor (19) seems
suitable for computations. I had hoped to present here the results of some in-
vestigations and computations on a number of examples, possibly giving some
rough notion about the qualitative behavior of our problem according tot dif-
ferent circumstances. Unfortunately, there was a delay in installing the computer
at the Institute. A few tests seem to confirm that the program is promising but
it would be reckless and premature to anticipate any probable feature.

Let us mention only the very obvious and usual case of a single observation
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at great distance from all others. All the really interesting problems are thus
left out, in order to illustrate on this very simple example how the notions con-
sidered do work in the Bayesian approach, at least inasmuch as we take seriously
the interpretation of formula (13) or (14). If each observation is taken with an
instrument with normal error but unknown precision, the weight ph of the hth
observation is proportional to a suitable mean value of the unknown weight Xh
which would belong to it if the precision of the instrument chosen and used on
this occasion were known. This mean value is based on the information after the
observations ("a posteriori" in the old terminology). That is, the probability
distribution of the precision of the instrument used in taking a given observa-
tion is evaluated on the basis of the whole set of observations. It is clear that a
value far from the others is likely to be produced by an instrument of low preci-
sion and will therefore be given a low weight. If one seeks a rough rule, such an
observation may be neglected and called an outlier. In order to specify the con-
ditions and the sense in which a practical rule of this kind is justified, it is
necessary to work out, by the above method or one similar to it, some conclu-
sions about the Ph-

5. The case of exchangeability

To begin with, let us illustrate this case with reference to a very particular
example, namely, the case where 0 is just a scaling parameter. That is, we con-
sider only one error distribution with density f(y), supposing however that the
scale is "unknown," so that we may have any distribution fe(y) = 1/0f(y/O).
The parameter 0 may be any number (0 < 0 < +oo) with probability density
k(0). The real meaning of all that, from a consistently subjective point of view
(for which the framework of unknown parameters is meaningless unless it comes
out of a realistic description), is again that the error distribution is a mixture of
the fe, but, unlike the mixtures over y, the parameter is the same for all the
observations, that is, the likelihood is no longer a product of mixtures but a
mixture of products.

Precisely, the likelihood (4) is given by

(23) f(x... KJ f( )f( x) f (xc-x)o 9n5(o)do,

and, if we suppose fo(x) = constant, the same holds for the final distribution.
If f(y) is the normal distribution, this is nothing but the Bayesian approach

to the classical problem of a normal distribution with unknown mean and vari-
ance. For such an approach, see [6], section 7(3). In the normal case, as is well
known, no phenomenon of the kind of the outlier appears. It appears however
fSr all other distributions f, so that we need only, as an example and in order to
make use of our result so far, consider again for f(y) a mixture of normal dis-
tributions of the form (13).

In this case, formula (23) may be developed in the same way as (13). Every-
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thing follows the same lines, with only one more factor in the exponents, namely
1/02, and one more integration, in dO (the factor Ofn is split for convenience into
0n-10),
( ) K |~~~~~~~~~~~~~~~~~~0)dO f;***j aQy') . .. aQyn) (t***e)

(24) K J- 10w'
a

yJy )1/

exp {- 2 [ YhX'h - (E YhXh) }

y1exp L02x- E YhXh ) ] d *y, dyn.

With the same integration used to obtain (18) from (15), we arrive at a similar ex-
pression for the expectation £ (of the final distribution, supposing the initial one
to have constant density). The last factor of (24) gives as before (1/'y) E2 YhXh,
so that £ too is still the weighted mean (9) of the Xh with suitable weights ph.
These weights are again averages of the Yh as in (18) with only one more inte-
gration in do,

(25) Ph= K f)n f .f..A a(y)

. . . a/(^Yn) ( .. 1/2) &Yexp ( 2z ) dy, ... dYn

= K ja(yi)

( Y) Y^1*** t)1 'Yh dy . .. doYn jo oexp (2 Zo) d

= K f Yh'1'n [ z(Y1* -Yn)]TOa(y)

... (Yn) (^r rYn) dye . .. dYn

where z is the quadratic form of (20) or (21), and the Tn are the transforms of 0
defined by

(26) I'(u) = f 0 1-ne-u/20k(O) do.

The result is not much more complex than in the case of independence. It
shows how even on the present hypotheses the dependence on the observations
occurs through the same form zJ (20) or (21). The meaning too, qualitatively,
is still clear, and essentially the same as the case of independence with only
one change, but an important one. To judge whether an observed value is far
from the other values and should be considered an outlier, the distance is
measured on a fixed scale in the case of independence, because the precision is
that of the f(y) assumed. In the case of exchangeability, on the other hand, we
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use a relative scale. The scale is relative to the distances between the observed
values, in so far as the range of the distribution o(0) allows. With a narrow
range there is a very little alteration from a hypothesis of independence; the
relativity becomes almost absolute for distributions approaching the degenerate
cases of Jeffreys [4].

Of course in such conclusions the features essentially concerning the case of
exchangeability are intermixed with those concerning only the particular exam-
ple of a scaling parameter. In order to see what happens in a far more general
case, a few remarks are sufficient, and the case we shall consider is indeed the
most general one to which the notions used here are applicable, that is, the case
where all functions fo are mixtures of normal distributions, of the form (13)
or (14). Assuming they are of the form (13), we need only consider the functions
a(-y, 0) corresponding to fe and write down formulas (15) and (18) simply replac-
ing the a(4yi) ... a('yn) with a('yi, 0) ...a(*yn, 6), multiplying by k(0) do and in-
tegrating over 0 (a one- or many-dimensional field, or any abstract space).
Note that even now the dependence through the z only still holds. The particular
case of (18) is the new one with a('y, 0) = ae(y) = 02a((y2).

6. The case of partial exchangeability

Let us give a very simple illustration, namely the case of formula (7) with the
further simplifying assumptions that 0 is simply a scaling parameter as in (23),
and f(y) is a mixture of normal distributions of the form (13). The situation is
thus as follows, if we agree to explain it in terms of unknown parameters despite
the unfitness of this interpretation from the subjective point of view. We
distinguish three types of observations, such as those taken by three different
persons, supposing that there might be some difference between the types.
Precisely, we suppose that a parameter 0 may have different values, 01, 02, and O3,
for the three persons; the joint (initial) probability distribution has a density
4(0i, 02, 03); if the values 0i were known, the error distribution would be fi(y) =
(1/0i)f(y/0i), where f(y) is a given function for the observations of type i, and
all errors of any kind would be independent.
The expression corresponding to (23) for this case, under the same assumption

that fo(x) is nearly constant, becomes

(27) f(xl...)=Kff<f"lXf(Xl%'-x)... f (X''> x) f(X(2) _ X)
(X0, )!X -z) f ('\0- ) 0(01, 02, 03)0n'02'03dn dO2dA3.

Let us note two trivial cases. If the Oi are independent,
(/10, 02, 03) = 01(01)02(02)03(03),

the multiple integral is simply the product of the simple integrals, and the
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influence of the three groups of observations are independent. If the whole dis-
tribution is concentrated on the diagonal 01 = 02 = 03, we are back to the case
of exchangeability. What is worthy of remark is that the really interesting cases
of partial exchangeability are chiefly those close to such a degenerate case.

In fact the practical situation for which partial exchangeability offers a satis-
factory model is chiefly that arising when a little improvement of the model of
exchangeability seems desirable in order to take into account some weak doubts
about the possible differentiation between observations taken in different cir-
cumstances. The peculiar facts concern just the case of a weak doubt, because
it is interesting to investigate the correct form of reasoning which must guide
us in the evolution of our judgment about significance of differences in the
frequency when there is a large number of possible classifications.

7. Conclusions

This paper provides no conclusions in the form of formulas for direct and gen-
eral application. Rather, it purports to show that no conclusions of this nature
are possible. The whole problem, in fact, depends not only on the different types
of hypotheses but, within each hypothesis, on the particular form of the distri-
bution of errors. The author is confident that further research along the lines
of this paper, while throwing more light on the differences arising from the
several possible cases, would not find some compromise solution acceptable in
all circumstances.

It may happen, however, that a few particular instances provide a practically
satisfactory model for a wider class of cases of interest; if such simplified or
standardized forms of conclusions exist, it would certainly be worthwhile to find
them and to investigate their properties thoroughly. An analogy may be the
fact that we often consider it reasonable to employ a normal distribution (or a
rectangular, or an exponential distribution) even though its similarity to the
actual distribution is only qualitative or is accepted for the sake of simplicity.

REFERENCES

[1] B. DE FINETTI, "Sulla combinazione di osservazioni," Atti XVII Riunione Soc. Ital.
Statist. (1957), Rome, 1958.

[2] , "La probabilita e la statistica nei rapporti con l'induzione, secondo i diversi
punti di vista," Induzione e Statistica (C.I.M.E., Varenna), Rome, Cremonese, 1959.

[3] E. HEWITT and L. J. SAVAGE, "Symmetric measures on Cartesian products," Trans.
Amer. Math. Soc., Vol. 80 (1955), pp. 470-501.

[4] H. JEFFBEYs, Theory of Probability, Oxford, Clarendon Press, 1948 (2nd ed.).
[5] H. POINCARf, Calcul des Probabilites, Paris, Gauthier-Villars, 1912 (2nd ed.).
[6] L. J. SAVAGE, "La probabilita soggettiva nei problemi pratici della statistica," Induzione e

Statistica (C.I.M.E., Varenna), Rome, Cremonese, 1959.


