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1. Introduction

1.1. Suppose that n given observations, y1, ¥z, * * * , ¥», are claimed to be inde-
pendent determinations, having equal weight, of means u;, us, « -+ , un, such that
(1) B = Z airor,

r

where A = (a;,) is a matrix of given coefficients and (6,) is a vector of unknown
parameters. In this paper the suffix 7 (and later the suffixes j, k, 1) will always
run over the values 1, 2, - - - , n, and the suffix » will run from 1 up to the num-
ber of parameters (0,)

Let (#,) denote estimates of (6,) obtamed by the method of least squares,
let (Y,) denote the fitted values,

. (2) Yi = Z airér,
and let (2;) denote the residuals,
3) zi=y;— Y.

If A stands for the linear space spanned by (a.), (aw), - -+, that is, by the
columns of A, and if 4 is the complement of A, consisting of all n-component
vectors orthogonal to A, then (Y,) is the projection of (y;) on A and (z;) is the
projection of (y;) on 4. Let Q = (gi;) be the idempotent positive-semidefinite
symmetric matrix taking (y;) into (2;), that is,

4) 2 = Z qiiY;-

If A has dimension n — » (where » > 0), 4 is of dimension » and Q has rank ».
Given A, we can choose a parameter set (6,), where r = 1,2, --+ ,n — », such
that the columns of A are linearly independent, and then if V-1 = A’A and
if I stands for the n X n identity matrix (3;;), we have

5) Q =1I-AvA
The trace of Q is
(6) Z qii = v.

Research carried out at Princeton University and in part at the Department of Statistics,
University of Chicago, under sponsorship of the Logistics and Mathematical Statistics Branch,
Office of Naval Research.

1
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The least-squares method of estimating the parameters (6,) is unquestionably
satisfactory under the following

Ideal statistical conditions. The (y;) are realizations of independent chance vari-
ables, such that the (y; — ui) have a common normal distribution with zero mean.

That is to say, given the ideal conditions, the least-squares estimates of the
parameters, together with the residual sum of squares, constitute a set of suf-
ficient statistics, and all statements or decisions resulting from the analysis will
properly depend on them. They may also depend on a prior probability or loss
system, and estimates eventually quoted may therefore differ from the least-
squares estimates, as C. M. Stein has shown.

We shall refer to the differences (y; — u;) by the conventional name of ‘“‘er-
rors,” and denote the variance of the error distribution by ¢2. Under the ideal
conditions, Qg2 is the variance matrix of the residuals (z;), which have a multi-
variate normal chance distribution over 4. We shall denote by s? the residual
mean square, (3_:2%) /v, which under the ideal conditions is an unbiased estimate
of o2.

1.2. The object of this paper is to present some methods of examining the
observed residuals (2;), in order to obtain information on how close the ideal
conditions come to being satisfied. We shall first (section 2) consider the residuals
in aggregate, that is, their empirical distribution, and then (section 3) consider
the dependence of the residuals on the fitted values, that is, the regression rela-
tions of the pairs (Y, 2;). In each connection we shall propose two statistics,
which can be taken as measures of departure from the ideal conditions and can
be used as criteria for conventional-type significance tests, the ideal conditions
being regarded as a composite null hypothesis. Section 4 will be concerned with
justifying the statistics proposed, and section 5 with examples of their use.

The problem of examining how closely the ideal conditions are satisfied is very
broad. Despite the immense use of the least-squares methods for well over a
century, the problem has received no comprehensive treatment. Particular as-
pects have been considered by many authors, usually on a practical rather than
theoretical level. This paper, too, is concerned with particular aspects, except for
a little general discussion in section 6. The reader will appreciate that it is not
always appropriate to base an investigation of departures from the ideal condi-
tions on an examination of residuals. This will be illustrated below (section 5.5).
And if residuals are examined, many other types of examination are possible
besides those presented here. For example, when the observations have been
made serially in time, and time is not among the parameters (6,), interesting
information may possibly be obtained by plotting the residuals against time, as
Terry [17] has pointed out. There are circumstances in which the error variance
may be expected to be different for different levels of some factor, as for exam-
ple in a plant-breeding experiment when the lines compared differ markedly in
genetic purity. The ways in which the ideal conditions can fail to obtain are of
course countless.

The material of this paper has been developed from”two sources: first, some
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unpublished work relating primarily to the analysis of data in a row-column
cross-classification, done jointly with John W. Tukey [1], [4]—to him is due
the idea of considering simple functions of the residuals, of the type here pre-
sented, as test criteria; second, a study of correlations between residuals, in
connection with an investigation of rejection rules for outliers [3]. Familiarity
with the latter is not assumed, but overlap has been kept to a minimum, with
the thought that a reader interested in this paper will read [3] also.

1.3. The methods developed below appear not to have any sweeping optimum
properties. They are easiest to apply, and possibly more particularly appropri-
ate, if the following two conditions are satisfied.

Design condition 1. A contains the unit vector, or (in other words) the param-
eter set (0,) can be so chosen that one parameter is a general mean and the correspond-
ing column of A consists entirely of 1’s.

Destgn condition 2. The diagonal elements of Q are all equal, thus qi; = v/n
(for all 7).

These are labeled “design conditions’ because they are conditions on A. If the
observations come from a factorial experiment, A depends on the design of the
experiment, in the usual sense, and also on the choice of effects (interactions,
and so forth) to be estimated, so the name is not entirely happy, but will be
used nevertheless.

Condition 1 is, one supposes, almost always satisfied in practice. If it were not,
and if the residuals were to be examined, the first idea that would occur would
be to examine the mean of the residuals, and that would be equivalent to intro-
ducing the general mean as an extra parameter, after which condition 1 would
be satisfied. So this condition is not much of a restriction. A consequence of the
condition is that every row (or column) of Q sums to zero, thatis, }_;q;; = 0 for
each 7. Hence if 5 denotes the average correlation coefficient between all pairs
(zs, 2;), where 7 # j, we have

@) 1+ (m—1p=0.

The residuals themselves sum to zero, and so their average z = 0.

Condition 2 is satisfied for a broad class of factorial and other randomized
experimental designs, provided that the effects estimated do not depend for their
definition on any quantitative relation between the levels of the factors. In
other circumstances we shall expect condition 2 not to be satisfied exactly. A
consequence of condition 2 and the idempotency of Q is that the sum of squares
. of entries in any row (or column) of Q is the same, namely

(8) >; (¢:9)? = qis = ’;’;

Hence if p? is the average squared correlation coefficient between all pairs (z, 2;)
where 7 # 7, we have

) L+ @m— 1 ="
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Condition 2 was imposed in the study of outliers [3], in order to avoid any ques-
tion as to the correct weighting of the residuals. Ferguson [10] has considered
outliers when condition 2 is not satisfied.

In the next two sections we shall proceed first without reference to conditions
1 and 2, and then we shall see how the expressions obtained reduce when condi-
tions 1 and 2 are introduced.

2. Empirical distribution of residuals

2.1. Skewness. Let us suppose that-the ideal statistical conditions obtain, as

in the above enunciation, I@xce t_that we delete the y_v_qg‘_d:_‘zq_éii_ﬁi_ﬂ'n Let 71
and v; be the first two scale-invariant shape coetficients (supposed finite) of the
error distribution, measuring skewness and kurtosis, defined as

1 1
(10) n= FE[(y; —w)®l, = p El(y: — pa)*] — 3a%}.

We shall study estimates g; and g» of v, and 7., based on the statistics s?, 3%,
3" 2%, analogous to Fisher’s statistics [13] for a simple homogeneous sample.

Since we suppose the errors (y; — p;) to be independent with zero means, we
have at once

(11) E(X 2) = Z (g:4)*na®.
1 7
Provided 3_:j(g:;)® # 0, we can define g; by
PIEL
(12)

g1 = E (g:7)’s®
ij

We now consider the sampling distribution of ¢ under the full ideal condi-
tions, so that 4; = 0. The distribution of (z;) has spherical symmetry in 4, and
the radius vector s is independent of the direction. Hence g1, being a homogeneous
function of (2;) of degree zero, is independent of s, and we have

E[(X %)%
[ @) TEG)
It is well known that E(s®) = (v + 2)(v + 4)¢®/»%. As for the numerator, we

have E[(X#%)?] = 3..;E(2%3). Now, whether ¢ and j are the same or different, 2;
and z; have a joint normal distribution with variance matrix

Qs qij
(14) a»( )
Q5 UEY)
It follows that E(z32%) is the coefficient of 3t3/(3!)? in the expansion of the

moment-generating function exp [(1/2)0%(g::} + 2¢:itit2 + ¢;it3)]. We obtain
easily .

(13) E(g) =0, Var(g) =
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(15) E(z32}) = {6(g:j)® + 99ijq:i0si} o°.
Hence

(6 Z (g:)*+ 9 Z 14953 }v*
[Z (g:)*1%( + 2) (v+4)

(16) Var (g,) =

Because Q is positive-semidefinite, the expression Y :;g:j¢::¢;; is nonnegative.
It vanishes under design conditions 1 and 2, or (more generally) if the vector
(gis) lies in A. Then (16) reduces to

6v?
a7 Var @) = 020 + 9 = @)

If p® denotes the average cubed correlation coefficient between pairs (2, z;),
where 7 # j, (17) can be expressed under condition 2 as

6n® .
v +2)(v + 49 {1 + (n — 1)p%
Under condition 2 g, itself can be expressed as
n? 3y 2%
1+ 0= DAe T

(18) Var (g1) =

(19) N =

For the simple homogeneous sample, » =n — 1 and p® = —1/»3, and (18)
reduces to Fisher’s result,
6n(n — 1) .
(n —2)(n+ 1)(n +3)
For a row-column cross-classification with k& rows and ! columns, n = kI and
v=(k—1)( — 1), and we find

(20) Var (1) =

(21) 14 (n— 1p? = n(k — 2)(1 — 2)

V2
Hence (18) gives, provided k and [ both exceed 2,

6ny
v+ +Hk—-2)(1—-2)

If n and v are both large, it is commonly (but not invariably) the case that
1 + (n — 1)p® is very close to 1, and then the right side of (18) is roughly
6n2/v%, about the same as the variance of g; for a homogeneous sample of size
v(v/n)2.

In principle it is possible by the same method to find higher moments of the
sampling distribution of g;, under the full ideal conditions. It is easy to see that
the odd moments vanish. The fourth moment is as follows.

(22) Var (g1) =
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108y°

@) B = e T o0 160 90 F 0% Go T {[%3 (@)?}?

+ 18 3 (9:) (k1) ?qargin + 12 3 @iiqagingingsngut
15kl i3kl
+ 36 1%:1 ii95#951(qx1) 2qs + 18 ”Zk:l qq51(q1) 2944055

+ 6 'Zk:l Qi19i19x19::Q5iqre + 3 2 0iiiidii % (grn)?
J ]

9
+ 1 > qiﬂ]iiqjj)z}'
L%

Under conditions 1 and 2 the last five of the eight terms inside the braces vanish,
leaving only the first three. Unfortunately the second and third terms are for-
midable to evaluate, in general. By way of considering a relatively simple
special case, let us impose the further design condition that all the off-diagonal
elements of Q are equal, barring sign. (Such designs are illustrated below in
section 5.4; they include the simple homogeneous sample.) Then if we write ¢
for v/n, the elements in every row of Q consist of ¢ in the diagonal and
+[e(l — ¢)/(n — 1)]V2 everywhere else, the number of minus signs exceeding
the number of plus signs (in these off-diagonal elements) by [¢(n — 1)/(1 — ¢)]V2,
which must of course be an integer. Writing C for ¢2 — ¢(1 — ¢)/(n — 1), we
find easily that

(24) %: (g:3)* = »C,
and because _:(gx1)%¢;1 = Cg;r we have also
(25) i%:z (945)*(qr1)2qagin = C % (g:5)® = vC2

I have been unable to evaluate completely the third term, Z:1i9:jquqi1qirgsx1,
except for the simple sample, having » =n — 1 and C = (n — 2)/n, when it
can easily be shown to be (n — 1)(n — 2)(n — 3)/n% On substitution into (23)
we then verify Fisher’s formula for E(g}) ([12], p. 22). For other designs having
equal-magnitude correlations, we can say that

4vci(1 —
(26) 2 Giqagagingiger = ve® — be¥l — o)
ikl n—1
3ve(1 — )2 6v(n — 2)c*(1 — ¢)?
R— m—1nr Tk

where the successive terms on the right side are the contributions to the total
sum from sets of suffixes (¢, 7, k, 1) that are (respectively) all equal, all but one
equal, equal in two different pairs, different except for one pair, and finally
R stands for the balance from sets of wholly unequal suffixes. R consists of
the sum of n(n — 1)(n — 2)(n — 3) terms each equal to +=[c(1 — ¢)/(n — 1)]3.
Now if n is large and ¢ not very close to 0 or 1, positive and negative values are
roughly equally frequent among the elements of Q, and it seems highly plausible
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that the terms of R almost cancel each other, so that B = o(n). Assuming this,
we find, for n large and ¢ constant, .

108 12(1 6 6
@ Ba)~ue{t -2 @ ~S{-8
Hence the kurtosis coefficient of the distribution of g¢; is asymptotically 36/n,
the same as for the simple sample of size n. Thus although the variance of ¢,
exceeds that for a simple sample of the same size n by a factor of (n/»)3 roughly,
the shape of the distribution is apparently roughly the same. It is tempting to
surmise that the similarity of shape may hold true fairly generaily for complex
designs such that all the off-diagonal elements of Q are small.

2.2. Kurtosis. Consider now the estimation of the kurtosis coefficient . of
the error distribution, as posed at the outset of section 2. We find easily

(28) EX 29 = % (¢i) *r20* + 3 ; (g:i)*a*,
(29) vE(s!) = E[(Z‘; 27 = 2 (gii)*meet + (v + 2)ot.

We can therefore define g, by the following expression, provided the divisor D
does not vanish,

z‘; Z% 3v ; (q;;)z
(30) ge = o - 2 D*l’
where
' \ 3[2', (gi)?]?
@D D= %: (g)* — W

~ Under the full ideal statistical conditions, we have E(gs) = 0 and

&Z@wy E[(T #)]

(32) D*Var (g) + ( v‘ T2 E(s%

Proceeding as before we find
(33)
E[(; 2] = % E(z%5) = {24 § (g:)* + 72 12] (9i3)%qiigis + 9[21: (g:)%]%} o®

and hence

(24D + T2F)y?
39 Var @) = DG+ 26 + 96 + 6
where
(35) F = %: (9i)%qiiis — l’"[‘; (g:9)?]%

Under condition 2, F vanishes and we have

(36) = — 2 pb2 T% 3]
BTt -8 v A w
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24n?
e +2){l + (n — 1)p% — 3n](» + 4)(» + 6)
For the simple sample we obtain Fisher’s result,
24n(n — 1)?2 .
(n —3)(n — 2)(n + 3)(n + 5)
For the cross-classification with k¥ rows and I columns we have
24n%? .
[(v +2)(k* — 3k + 3)(1* — 8l + 3) — 3»2](v» + 4)(v + 6)
If n and » are both large and 1 + (n — 1)p* is close to 1, the right side of (37)
is roughly 24n3/v, about the same as the variance of g, for a simple sample of
size v(v/n)3.
It is possible to write down a general expression for E(g3), under the ideal con-
ditions. We quote here only the reduced form under condition 2.

I3 (@) e — Lo t8 6
1728y {% (@0)*(@0)*@0)” — 256, 3 2) ~ aG +2) 2.

v+2)¢p+ 9@+ 6)(» + 8)(» + 10)D?
For a design with equal-magnitude correlations, we find easily

2 (947 *(ga)2(gin)? = nc® + Sncl — o | n(n — 2 — o),
17k

37 Var (g:) =

(38) Var () =

(39) Var (g2) =

(40)  E(g) =

n—1 + (n —1)2

ne*(l —c)? 3w’
n—1 v+ 2
When n is large, that is, as n — «, with ¢ > a positive bound, these give

1728
nes

(41)

D = nc* +

24
(42) E@)~ 5 Var(e) ~2
and the skewness coefficient of the distribution of g. is asymptotically 6(6/n)"2,
the same as for a simple sample of size n.

3. Relation of residuals with fitted values

3.1. Heteroscedasticity. Let us suppose that a weakened form of the ideal
statistical conditions obtains, namely: the (y;) are realizations of independent
chance variables, such that y; — p;has @irmal distribution with zero mean and
variance proportional to exp (xus), where'x is a constant. Denoting the variance
of y; by ¢%, we suppose that ¢% & exp (xu.), so that E(y; — p;)? has a regression
on u;. If x is small, the regression is nearly linear. We shall study an estimate A
of x, for x assumed small, based on the statistics s? and (>23Y;, thatis, onan
empirical linear regression of (z%) on (Y,).

Let ¥ = v 1YY, and let (r:;) be the matrix taking (y:) into (¥; — ¥),
that is,
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(43) Y,— Y= ; T, o= 05 — Qi — v g — % QikQir)-

1t is easy to show that Y_r:g;x = O for all 7 and k. Under the assumed conditions,
z; and Y. =¥ (for any 1) have a bivariate normal distribution, and
(44)
E(@) =0, E[z(Y;=7Y)] =YX qryo} = Var(Yi—7Y) =3 (r;)%"
2 7

Now suppose that x is small, so that

(45) 0% = o1 + x(u: — 5) + 0(x?],
where g = v 'Y .q;u:. Then
(46) E[z(Y; - V)] = ; giirsi(e; — B)xo? + O(x?).

Thus (except in the degenerate case when r;; = 0 for all j) the regression co-
efficient of z; on Y. — Y is O(x). Hence the (quadratic) regression coefficient
of z3on Y; — Y is O(x?), that is,

(47 E@Y; - Y) = E@) + 0(x?).

It follows that

48) BT AY.— V)] = X EGHEY: - V) + 0(x)
= § (9:)%%(ns — B) + 0(x?)
= ; {giio® + 5; (9:3)*(u; — B)x0?%} (i — B) + O(x?
= % (gi)* (s — B) (i — B)xa? + O(x?).

This result suggests the estimate h of x,

TAY.-7)
h = t = =
%_: (gi)*(Yi — Y)(Y; — Y)s?

(49)

Naturally, if the matrix ((g:;)?) is such that the denominator of (49) vanishes
identically, or if all the (Y) are equal, we must consider that & does not exist.
Failing that, the estimate & has a large-sample bias towards 0, since the denom-
inator tends to be too large. In fact, when x is small, s? is almost independent of
the rest of the denominator, and we have

(50) E[‘Zj: (@)Y — V)(Y; — Y)s?] = %: (9i5)*(ui — B)(u; — B)o?
+ 12 (9:7)? Cov (Y — ¥, Y; — V)o? + O(x?),
and Y

(61) % (9:)?Cov (Y, - Y,Y; - F) = EIQ (gii)?rarie® + O(x)

14

_ I:v -1 Z’: (g:)? — § (g:)* + % ; q"ﬂ.'eq:'j] o* + O(x),
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as we see after some reduction. Thus the following might be regarded as a more
satisfactory estimate of x:

Z Zt(Y - 7)
[§ (@)Y = T)(Y; - 7) - Z (gs5)?rarins? ]32

Actually we shall consider % rather than h*, because it is simpler. The difference
between h and h* is likely to be negligible whenever there is enough dispersion
among the (Y,) to permit good estimation of x.

We now consider the sampling distribution of & under the full ideal conditions,
so that x = 0. The (z;) and (Y,) are completely independent. Let us consider
the conditional distribution of A, given (Y,). We find E[k|(Y.)] = 0 and

Z E[Z(Y: — V)(Y; — D)|(Y))]
[Z (gi)¥(Y: — Y)(Y - Y)]2E(54)

(52) k* =

(53) Var [A|(Y,)]

2v :
T w42 % (@a)* (Vi = I)(Y; — Y)

8y ']Z QﬂqukQJk(Y - V)(Y - 7)(Yk - ?)
60 BT = e T @0 = D, = DT

Let us see how these results simplify under special design conditions. Under
conditions 1 and 2 we have ¥ = 7, the simple average of the observations; and
apropos of A*, we have

(55) > prarn = » {5 = (2) 10+ 0 - D71}

n

or roughly »e(1 — ¢). Usually 3 .i(¢:;)*(Y: — #)(Y; — ) can be expressed in
terms of the sums of squares appearing in an analysis of variance table, for
which we use the notation SS( ). For example, for data in a one-way classifica-
tion, I sets of k observations each, with a separate mean estimated for each set,
so that n = kl, v = (k — 1)I, we find

(56) 2 (gu)*(Ys — (s - 7 = 21 88(means),

where SS(means) stands for the sum of squares for differences between means,
namely k3_,(§j, — 7)?, where §, is the mean of the rth set. For a cross-classification
having k rows and I columns, n = kl,» = (k — 1)(I — 1), we find

(57) %ﬁ (@i (Yi = Y — )
= W SS(rows) 4+ Qc_—_l%l;?l SS(columns).

For a k X k Latin square, with n = k2,» = (k — 1)(k — 2), we find
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(58) Z; (@)Y — 9(Y; — 9)
e 2nk =3 SS(rows, columns, and letters).

For a design having equal-magnitude correlations between the residuals, we find

(59) T @Y= (Y = §) = S T (Ve - g
)

If n and » are large and the correlations are close to being equal in magnitude,
we may expect that as v decreases with n fixed Var [h|(Y,)] will increase roughly
in proportion to »—2, provided 3 .(Y; — §)?stays nearly constant—a more modest
rate of increase than those of Var (g:) and Var (g.).

As for the third moment of A, the right side of (54) is an odd function of (Y),
and is some measure of asymmetry of the set of fitted values. For a design
satisfying conditions 1 and 2 and having equal-magnitude correlations, we find

(60) ”Z,:‘ ¢iiqagn(Y: — 9)(Y; — 9) (Y — 9)
-[e-EF s mi-ar+ R,

where R is the contribution to the sum from wholly unequal suffixes (¢, j, k),
consisting of n(n — 1)(n — 2) terms each of which has the following form:
el —¢)/(n — DY; — H(Y; — 5)(Yr — 7). On the plausible assumption
that R is unimportant when n is large, we find that the skewness coefficient of
the conditional distribution of h is approximately

2V2 Y (Y — §)°
[Z (Ye = 9] '

(61)

and this will be small if the fitted values have a large spread and/or a third
moment close to 0. This qualitative finding is no doubt true fairly generally.

If the evidence points to a value of x somewhat different from 0, we may con-
sider transforming the observations to reduce the heteroscedasticity. If all the
observations are positive, a simple power transformation, say the pth power,
coi;\lk*uwd'%ﬁnd that the variance of 7 is roughly p%3®~? Var (y.), and
this is roughly constant if p = 1 — x#/2. So an estimate of the power required
to make the error variance constant is

. 1.
(62) p=1-— 2h,Y. 5
The zeroth power, p = 0, is to be interpreted as the logarithmic transformation.
(See Tukey [20] for a general discussion of such transformations.)

3.2. Nonadditivity. Tukey [18], [16], [19] has proposed a test which he has
called “one degree of freedom for nonadditivity,” designed to detect the follow-
ing sort of departure from the ideal statistical conditions: the observed variable y
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is a function of another variable z, such that the ideal conditions apply to (z.).
If we can determine what function y is of z, then by taking the inverse function
of the observations (y;) we shall obtain transformed readings satisfying the ideal
conditions.

What functions shall we consider? If y were just a (nonzero constant) multi-
ple of z, then in the absence of prior knowledge concerning the values of the
parameters (8,) and the error variance o? it would be impossible to say that the
goodness of fit of the (z;) to the hypothetical ideal conditions was any different
from that of the untransformed (y:). The same would be true if y differed from z
only by an added constant, provided design condition 1 was satisfied; and if it
were not, the effect of changing the origin of the y-scale could be investigated
by introducing a general mean among the parameters (6,), after which condi-
tion 1 would be satisfied.

Supposing then condition 1 to be satisfied, we see that if y is a linear function
of x, the (y;) satisfy the ideal conditions as well as the (z;). Only a nonlinear
function is of any interest, and so let us suppose that y = z 4+ o(x — uo)?,
where ¢ is a constant close to zero and o is some convenient central value. We
are going to assume that the (z;) are realizations of independent chance vari-
ables, such that z; has the normal distribution N (u;, 0%), where u; = 2_,a:9,, the
matrix A being given.

Let Q be defined as before in terms of A, and let (2;) denote, as before, the
residuals when the least-squares method is applied to (y;), as though ¢ were
zero. We have

(63) 2= Qi =2 ¢%i+ o ; :i(x; — po)*
J 2
Hence, remembering condition 1, we have

(64) E@)=¢ ; Qi (5 — no)? + 0%] = ¢ ; Qi

Provided Q is not such that the right side vanishes identically, we can say that
the (2;) have a linear regression on (3;qi;u?), and we shall therefore study the
statistic

(65) Z Z.'q,'jY3 = Z Z,’Y%.
k¥ 13
Let
A= Z qii(x; — mo), B; = ; qi5(x; — mo)?,
7

(66)
Ci = X pij(x; —m), Di= ,Z Dii(x; — po)?
7

where p;; = 8;; — ¢i;. Then
(67) T aYi=3 2(Y: — p)? =2 (Ai + ¢B)(C: + ¢D))?

= X [A:C% + ¢(24.C:D; + B.CY)] + O(e?).
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The moment-generating function of the joint distribution of A;, B;, C;, D; can
be written down without difficulty, in view of the independent normality of the
(x; — uo). We find E(4,C%) = 0,
(68) E(AC:Dy) = 24* ; 0:i(pin)? + 20%: 2 qiiPiitti,
and an expression for E(B;C?% which leads to
(69) E(Z 2Y9) = ‘P[z gl + o? Z Qiﬂ?ﬁ#? + 8¢ ZJ QiDsjthibe;

[ 7] 1] 1

+ 60* %: 2:i(P:)?] + O(e?).

Provided always that Q does not annihilate the vector (u%), the first term inside
the brackets is more important than the others when the (u;) are substantially
different from each other. (The second term vanishes under condition 2.) The
following rough estimate of ¢ is therefore suggested:

Z 2;Y]
70 = = —vavs
(70) f %: 4 Y3
It would be possible to define an estimate f* with modified denominator,
analogous to the 2* defined by (52), but we refrain.
Given an estimate f of ¢, if all the observations are positive, we might con-
sider transforming the (y;) by taking their pth powers, in order to approach
closer to the ideal conditions. The power required would be estimated roughly at

(71) =1 - 2f7.
Formulas (62) and (71) should be regarded as no more than an aid to appi'oxi-
mation. If we are lucky, both will point in the same direction.

In order to make a significance test of the deviation of f from 0, it is only
necessary to note that, when ¢ = 0, (2;) is independent of (Y,;) and so of
(3,4:;Y%). The latter is a vector in 4, and, provided it is not null, we may project
(2:) onto it. We see that

' . (‘Z z.-Y2,)2
(72) %: :;Y3Y3
can be taken out of the residual sum of squares, 3 .23, as a one-degree-of-freedom
component, leaving an independent remainder of » — 1 degrees of freedom, with
which it can be compared. This is Tukey’s exact test for nonadditivity.

Computation of the denominator of (70) or (72) does not offer special dif-
ficulty, since it is just the residual sum of squares that is obtained by the usual

analysis of variance procedure when the observations (y;) are replaced by (Y3%).
For the row-column cross-classification we find

(73) > Y= kgl 2_ 2; (row total)(column total),
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meaning that each residual is multiplied by the total of the row and the total of
the column in which it occurs in the cross-classification, and

(74) 3> 45¥1¥} = - 85(rows) 88(columns).
. 3

4. Justification of the criteria

4.1. The sample moments or k-statistics of a simple homogeneous sample are
uniquely determined by the conditions that they are symmetric functions of
the observations (demonstrably a desirable property) and are unbiased estimates
for arbitrary parent distributions. No such simple argument seems to be avail-
able for the statistics proposed above.

Consider the estimation of the skewness coefficient v,, or of the third moment
Y163, of the error distribution (assumed common). Why should we take the
unweighted sum of cubes, " .2%, as our basic statistic, rather than some other
homogeneous cubic polynomial in (z;)? If it happens that condition 2 is satisfied
and in addition every row of Q is a permutation of every other row, the residuals
are all equally informative concerning the shape of the error distribution, and a
considerable amount of symmetry may be expected to appear in an optimum
test criterion. Otherwise, it is not obvious that much symmetry can be expected.

Consider the following example, in which conditions 1 and 2 are not satisfied:
n=3,v=2, E(y;) = (¢ — 1)8, and the errors are independently and iden-
tically distributed with zero means. We have

1 0 0
(75) ; Q=|o0 0.8 —04
0 -04 0.2

We find that z; has mean 0, variance o2, skewness coefficient v;; while 2z
is independent of 2z and has mean 0, variance ¢%/5 and skewness coefficient
—(7/V125)71; and 2z = —2z; identically. If we restrict attention to unbiased
estimates of v,63 of the form Y_av.2%, and choose the constants (w;) so as to mini-
mize the variance for the case of a normal error distribution, we obtain the
estimate - ' ' :

125

(76) 174 (28 — 723) or equivalently

But if to this estimate the quantity

125 5,
174 5 e

25
(77) m2123(721 — 252;)

is added, the mean is unchanged, because 2, and z; are independent and have zero
means, but the variance under normality is multiplied by the factor 4/5. Thus
3" 2% is not the best cubic polynomial in (z;) to use. (That adding terms in z3z;
and 2,25 can reduce the variance I find astonishing.) '
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If we modify the example by adding a fourth observation, so that n = 4,

= 3, and we still have E(y;) = (¢ — 1)8, we obtain the following results. The
unbiased estimate of the third moment of the error distribution, based on the
unweighted sum Y23, is (approximately) 0.4933" .23, of which the variance if the
error distribution is normal is 6.59¢%. The variance under normality of an un-
biased estimate of the form }_w;2% is minimized for the estimate

(78) 0.3652% + 0.57323 + 1.01523 + 2.40423,

of which the variance if the error distribution is normal is 5.48¢%. I have not
determined the cubic polynomial estimate with minimum variance.

Consider now data having a one-way classification, that is, consisting of several
homogeneous samples of possibly unequal size, from each of which we estimate a
mean. Condition 1 is satisfied but not condition 2, in general. Let the rth sample
be of size n,, 8o that >, = n and Y .(n, — 1) = ». Let 3_;( denote a summa-
tion over the values of 7 for the rth sample. From each sample separately we
can estimate v,02 by the sample moment

n Z(:) 4
(7

(79) = D(m = 2)

of which the variance under normality is 6n%®/(n, — 1)(n, — 2). The linear
combination of these estimates that has minimum variance under normality is
immediately seen to be a constant multiplied by the unweighted sum 3" .2%, which
is thus the best estimate of the form Y .w.2%, and is indeed the best cubic poly-
nomial estimate (as can be shown without difficulty).

More generally, it is easy to show that the unweighted sum Y23 is the best
statistic (in the above sense of minimum variance) from the class of weighted
sums Y_.w;z3, provided that the vector (¢;;) lies in A, which it does when condi-
tions 1 and 2 hold.

The statistic =23 can be derived by a likelihood function argument, as follows.
Express the common error distribution by a Gram-Charlier-Edgeworth expan-
sion, differentiate the logarithm of the likelihood function with respect to v,
and then set v; and all other shape coefficients zero, and replace the parameters
(6,) and ¢2 by their maximum likelihood estimates. The resulting expression con-
tains >_.z3%, as well as the lower moments 3" .z; and ¥ ;2% Thus Y :2% is suggested
as a suitable criterion for testing whether v, = 0. But the suggestion does not
carry much weight unless the likelihood function is closely proportional to a
normal density function, which may be expected to be the case only when there
is a large amount of information about every parameter 8,, so that »/n is close
to 1 and g.; is close to 6;; for all 7 and j. The residuals then have nearly equal
variance and are nearly uncorrelated.

4.2. Tt is_not true that all possible information about the shape of the error
distribution is contained in the residuals. This is illustrated by the case of a row-
column cross-classification with k(>2) rows and only 2 columns. The distribu-
tion of each residual is symmetrical, the sum of cubes of residuals vanishes
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identically, and it would seem that no estimate of v, can be obtained from the
residuals. Let the observations be denoted by y.,, where v = 1,2, ... | k, and
v = 1, 2. Then the following expression

(80)
k
37(70—__12—)(10—_25 %: I:(yul =)+ (Yue — %) — i‘(yul + Yu2 — G — .172)3]’

where §, = k'3 4Yu», is an unbiased estimate of v,0® whose variance depends on
the differences between row means. It is analogous to the variance estimates
given by Grubbs [15] and Ehrenberg [8], for the assumption that the errors are
normally distributed with unequal variances in the two columns.

4.3. By analogy with a simple homogeneous sample, one might expect that an
easier test of skewness than the g, statistic could be obtained by comparing the
number of positive and negative signs among the residuals. But the following
argument suggests that such a test would be ineffectual. For typical factorial
designs, if n is large and » somewhat less than n, it seems that the numbers of
positive and negative coefficients in any column of Q are roughly equal, whereas
for a homogeneous sample they are extremely unequal. A particular and im-
portant case of skewness occurs when one error is very much larger in magnitude
than all the others. For the factorial experiment this state of affairs will not be
revealed by a sharp inequality in the number of positive and negative signs of
the residuals.

4.4. The above discussion has concentrated on skewness and the g, statistic,
because that topic is conceptually easiest. For the one-way classification, as
defined above, we can establish the optimality of a fictitious statistic close to A,
as an estimate of the heteroscedasticity parameter x. From each sample the
variance is best estimated by X i73/(n. — 1), and if we assume that this has a
linear regression on (u, — f)o?, fictitiously supposed known, it is easy to show
that the minimum variance estimate of x is

Sw-nEd
T (n — Ve — B2?

r

(81)

and we obtain & when we replace the quantities that are in fact unknown in this
expression by their obvious estimates. For the one-way classification, the g,
statistic is more difficult to investigate than the ¢, statistic, and the f statistic
for nonadditivity is not defined.

5. Examples

5.1. A typical factorial experiment. Yates [21] illustrated the procedure of
analysis of variance by analyzing some observations from a factorial experiment
on sugar beet. All combinations of three sowing dates (D), three spacings of
rows (S) and three levels of application of sulphate of ammonia (N) were tested
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in two replications. The plots were arranged in six randomized blocks, a part of
the three-factor interaction being partially confounded. The design and yields
of sugar (in cwt. per acre) are shown in table I, except that the arrangement
within blocks has been derandomized. (Yates gives the original plan.) Blocks
1 to 3 form one replication, blocks 4 to 6 the other; n = 54.

If we are to examine the residuals from such an experiment to check on the
appropriateness of the least-squares analysis, we must decide how many effects
to estimate. From Yates’ analysis, it appears that the largest effect present is the
differences between blocks. All three factors, D, S, N, have ‘“significant’’ main
effects, but their interactions appear to be small. The gross mean square of all
the observations about their mean is 56.19. If just the six block means are
estimated, we have » = 48 and the residual mean square = 21.43. When the
main effects of the factors are estimated in addition to the block means, we
have » = 42 and the residual mean square = 16.08. If all the two-factor inter-
actions are also estimated, we have » = 30 and the residual square = 14.46.
When, finally, the three-factor interaction is also estimated, we obtain v = 22
and the residual mean square = 13.42, this being the mean square used by
Yates for gauging the estimated treatment effects.

Suppose we stop short at estimating the block means and the treatment main
effects. Then any nonzero interaction effects that occur will contaminate the
residuals. One may surmise that such contamination, if small, will have little
effect on outliers and less still on the g1, g: and h statistics, and because of the
sharp drop in informativeness of the residuals when » is decreased it would be
wise to err on the side of estimating few rather than many treatment effects.
A very “‘objective” method of deciding what effects to estimate for the purpose
of calculating residuals would be to decide the matter on the basis of prior
expectation, before any analysis of the data. Another method would be to per-
form a full conventional analysis of variance, as Yates does, and then select only
those effects whose estimates were substantially larger than the residual mean
square, for example, those that were “significant’”’ at the 5 per cent level.
Whether this is a good rule I do not know, but it appears not unreasonable.
Perhaps for the simpler factorial designs, not highly fractionated or “saturated,”
a good compromise procedure would be to estimate the block means and treat-
ment main effects in any case, and in addition any substantial or “significant”
interactions revealed by the usual analysis of variance.

In table I are shown fitted values and residuals for two analyses: (a) only
block means estimated, (b) block means and main effects estimated. For (b)
these are also shown graphically in figure 1. Analysis (b) is what is indicated
by the above compromise procedure. Consideration is also given below to a
third analysis: (¢) block means, main effects and two-factor interactions esti-
mated. But it has not seemed worthwhile to calculate the residuals for (¢). For
analysis (a), the residuals are contaminated by the main effects of the treat-
ments, which seem to be appreciable, and it is noteworthy that the largest
residual, —12.1 in block 1, shrinks to the much less conspicuous value —5.9
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TABLE I

YisLps AND REsIDUALS OF A FACTORIAL EXPERIMENT

Analysis (a) Analysis (b)
Fitted Fitted
Block Treatments Yield Value Residual Value Residual
D 8 N ) Y: —79) (2:) (Yi—79) (2:)
1 0 0 2 50.5 7.3 3.2 10.8 —-0.3
1 0 0 47.8 0.5 6.5 1.2
2 0 1 46.0 —1.3 7.5 —-1.5
0 1 0 44.6 —2.7 7.1 —2.6
1 1 1 52.7 54 9.9 2.7
2 1 2 52.2 4.9 7.7 4.4
0 2 1 51.4 4.1 7.5 3.8
1 2 2 45.4 —1.9 7.2 —1.8
2 2 0 35.2 —12.1 1.1 -59
2 0 0 0 47.8 8.8 -1.1 8.7 -1.0
1 0 1 52.5 3.6 11.5 1.0
2 0 2 44.1 —4.8 9.3 —-5.2
0 1 1 49.7 0.8 12.1 —-24
1 1 2 49.3 04 11.7 —2.5
2 1 0 47.1 —-1.8 5.6 14
0 2 2 56.0 7.1 94 6.6
1 2 0 47.2 -1.7 5.1 2.1
2 2 1 46.2 -2.7 6.1 0.1
3 0 0 1 45.7 -0.2 5.8 3.1 25
1 0 2 43.0 3.1 2.8 0.2
2 0 0 38.0 -1.9 —-3.3 1.3
0 1 2 50.9 11.0 3.4 7.5
1 1 0 37.1 —2.8 -0.9 -2.0
2 1 1 38.2 -1.7 0.1 —-19
0 2 0 35.4 —4.5 -3.3 —14
1 2 1 36.5 —-3.4 —-0.5 -3.1
2 2 2 34.2 —-5.7 -2.7 -3.2
4 0 0 1 39.4 —6.1 5.5 -2.8 2.2
1 0 0 36.4 2.5 —6.8 3.2
2 0 2 29.9 —-4.0 -5.6 —4.5
0 1 0 33.3 -0.6 —6.2 -0.5
1 1 2 33.6 -0.3 -3.2 -33
2 1 1 35.3 14 -5.9 1.1
0 2 2 31.9 -2.0 —5.6 —2.6
1 2 1 34.4 0.5 —~6.4 0.8
2 2 0 31.3 —2.6 -123 3.5
5 0 0 2 33.6 -5.1 -13 -16 —4.8
1 0 1 41.8 6.9 —2.5 4.2
2 0 0 33.2 -1.7 —83 1.5
0 1 1 36.6 1.7 -18 —1.6
1 1 0 33.0 —-1.9 -59 —-1.2
2 1 2 414 6.5 —4.7 6.0
0 2 0 25.7 -9.2 —8.2 —6.1
1 2 2 31.4 -3.5 —5.2 —-34
2 2 1 37.6 2.7 -7.9 5.5
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Analysis (a) Analysis (b)
Fitted Fitted
Block Treatments Yield Value Residual Value Residual
N ) (Y: - 7) () ¥: -9 (2)

6 0 0 0 39.4 —4.7 4.1 —49 4.2
1 0 2 43.1 7.8 —-1.8 4.9
2 0 1 26.6 —8.7 —4.5 —8.9
0 1 2 36.0 0.7 -1.2 —2.8
1 1 1 34.2 —1.1 —-2.1 -3.8
2 1 0 33.5 —1.8 -7.9 1.4
0 2 1 34.9 —0.4 —4.5 —~0.7
1 2 0 32.4 —2.9 —85 0.8
2 2 2 37.7 2.4 -7.3 49

under analysis (b). The second largest residual under analysis (a), 11.0 in block 3,
becomes the second largest residual, 7.5, under analysis (b). Had there been a
gross error in one of the observations, it would have been expected to appear as
an outlier in both analyses.

Outlier rejection criteria can be calculated from the approximate formula
(11.3) of [3], which expresses the premium charged by the rule. For a 2 per cent
premium and no prior information about ¢, we obtain for analysis (a) the follow-
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Figure 1

Fitted values and residuals from table I, analysis (b).
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ing critical value for max; |z;|: 2.86s = 13.2. For analysis (b) the critical value
is 2.69s = 10.8. No rejections are indicated. ,

In order to calculate the formulas given in sections 2 and 3, we begin by
determining Q. Conditions 1 and 2 are satisfied, and the rows of Q are permu-
tations of each other. For analysis (a), each row of Q contains the following
elements: 8/9 (once, in the principal diagonal), —1/9 (eight times), 0 (45
times). For analysis (b), each row of Q contains: 7/9 (in the diagonal), —1/9
(seven times), 1/18 (14 times), —1/18 (14 times), O (18 times). For analysis (c),
each row of Q contains: 5/9 (in the diagonal), —1/3 (once), —1/9 (twice), 1/18
(18 times), —1/18 (18 times), 0 (14 times). [Check by sum and by sum of
squares, using (7) and (8).] Hence we easily obtain from (18) and (37) the
variances under normality of g, and g, as listed in table II. The variances for

TABLE II

VARIANCES OF STATISTICS CALCULATED FROM TABLE I

Variance of ¢ Variance of g» Variance of h
Given by (18) Given by (37) Given by (53)
Analysis and Equivalent n and Equivalent n
(a) 0.142 (39) 0.600 (35) 0.00111
(b) 0.210 (26) 1.011 (19) 0.00126
(c) 0.698 (6) 3.324 (6) 0.00259

analysis (a) are in error in the sense that we have good reason to think that the
residuals are contaminated by substantial treatment effects, but they are quoted
to show how the variances given by the formulas change with ». The ‘“‘equivalent
n’’ shown in brackets is that size of homogeneous sample which has most nearly
the same variance of ¢, and g., according to (20) and (38).

In order to calculate h and Var [A|(Y;)], we first obtain a convenient expres-
sion for 3 ;;(g:)2(Y: — §)(Y; — 7). For analysis (a) we can use (56), obtaining

(82) T @) Y — 9) (¥ — ) = gSS(blocks) = 1733.67.
7]

To find a similar expression for analysis (b), we express the vector (Y; — %) as
the sum of four orthogonal vectors in A, the first consisting of the estimated
block effects (differences of block means from the general mean), the other three
of the estimated main effects of the factors, D, S, N, separately. We then trans-
form each component vector by the matrix ((¢:;)%), and note that the result is
orthogonal to each of the other three component vectors. Hence the required sum
of squares can be obtained easily by considering the four components one at a
time, as if the other three were not present, and summing the results. We get

(83)
% @)*(¥: — (¥, — 7) = 2SS (blocks) + 1= $8(main effects of D, S, )
L3

= 1515.62.
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The same method, a little less easily, yields for analysis (c)

(84)
2 (@) (Yi—Y; —§) = %SS(blocks) - %SS(replications)
ij

+ g—i SS(main effects of D, S, N)

+ 17_8 SS(two-factor interactions of D, S, N)

= 724.58.

Hence from (53) we obtain the variances listed in table 1I.

For analysis (b), inspection of figure 1 does not reveal any peculiarity in the
distribution of the residuals nor any suggestion of regression of (24) on (Y;) nor
of (z;) on (Y3). Calculations yield the following results, where the number fol-
lowing the = sign is the standard deviation of the sampling distribution of the
statistic under the ideal conditions.

g1 = —0.02 = 0.46,
(85) ' ge = —0.57 + 1.01,
h = —0.023 = 0.035,
= 0.019 & 0.018.

Tukey’s test: compare the nonadditivity term 18.09 (1 degree of freedom) with
the residual mean square 16.03 (41 degrees of freedom), ratio = 1.13.

In the absence of further development of theory, it is reasonable to regard
the above standard deviations as crude approximations to standard errors of
estimation of the hypothetical parameters v1, v, x, ¢. They are very large, and
the estimates are consequently very poor. Consider h, for example. The fitted
values (Y;) cover a range of about 24. The factor by which the error standard
deviations (¢;) change from one end of this range to the other is exp (12x), on
the regression hypothesis of section 3.1. Two standard errors above and below &
give us 0.05 and —0.09, roughly, limits between which we may hope that x
lies, and the corresponding limits for exp (12x) are 1.8 and 1/3.1. Thus although
there is no evidence of heteroscedasticity, the data are reasonably compatible
with a change in the error standard deviation by a factor of 2 in either direc-
tion over the range covered by (Y,). A much larger body of data would be
needed for usefully precise estimation.

One point in the above discussion merits further consideration. The variances
in table II have been presented merely to illustrate the formulas. When we have
decided which analysis to use, we can proceed as indicated above. Significance
tests of the deviations of g1, gz, h, from 0 are in any case valid tests of the ideal
statistical conditions. But if we wish to compare the sensitivities of the three
analyses, (a), (b), (c), for detecting nonnormality or heteroscedasticity, further

It
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thought is needed, because what each statistic, g1, g2, h, estimates differs for each
analysis, in accordance with the difference in the implied ideal conditions.
Consider the h statistic. Let us suppose, for the purpose of comparison, that
in fact the (u;) are linear combinations of block means, main effects and two-
factor interactions of the factors, but there is no three-factor interaction nor any
other effects on the means; and suppose further that there is a small regression
of error variance on the mean, with parameter x. Then for analysis (c¢), we obtain
(to the best of our knowledge) a nearly unbiased estimate of x by calculating h%,
which turns out to be 1.202 k.. (We use the suffices a, b, ¢ here to distinguish be-
tween analyses.) But in analyses (a) and (b), some real treatment effects are
left in the apparent error variation, and the result of this seems to be roughly,
on the average, to increase the apparent residual variance by a constant amount,
independent of the mean, and therefore to diminish the apparent magnitude of x.
Hence the following roughly unbiased estimates of x are suggested:
H

s

The variance of each estimate is presumably roughly found by multiplying the

2
(86) % e = 1.565 ha, B = 1.197 hs.

TABLE III

AN EXPERIMENT WITH INSECTICIDES

The three entries in each cell are the observed count of
leatherjackets yu», the fitted value Y,
in parentheses, and the residual 2.,

Treatments

Block  1(control) 2(control) 3 4 5 6

1 92 66 19 29 16 25
(77.2) (77.2) (35.9) (23.8) (18.9) (13.9)
14.8 —11.2 —16.9 5.2 -29 11.1

2 60 46 35 10 11 5
(63.9) (63.9) (22.6) (10.4) (5.6) 0.6)
-39 -17.9 124 —-04 54 4.4

3 46 81 17 22 16 9
(67.9) (67.9) (26.6) (14.4) (9.6) (4.6)
-21.9 13.1 —9.6 7.6 6.4 44

4 120 59 43 13 10 2
(77.2) (77.2) (35.9) (23.8) (18.9) (13.9)
42.8 —18.2 71 -10.8 —89 -11.9

5 49 64 25 24 8 7
(65.5) (65.5) (24.3) (12.1) (7.3) 2.3)
-16.5 -1.5 0.7 11.9 0.7 4.7

6 134 60 52 20 28 11
(86.9) (86.9) (45.6) (33.4) (28.6) (23.6)

47.1 —26.9 6.4 —13.4 —0.6 —12.6
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corresponding entry in table II by the square of the multiplier of £. We obtain
87) (a) 0.0027, (b) 0.0018, (c) 0.0037.

While these estimated variances are crude, they are no doubt correct in indicat-
ing that analysis (b) is the most sensitive, and analysis (¢) the least, for detecting
a departure of x from 0.

5.2. Insect counts. To demonstrate that with even a small body of data the
methods of this paper are capable of revealing a gross enough violation of the
ideal conditions, let us consider some leatherjacket counts which Bartlett [5]
quoted as an example to illustrate the use of a transformation of the data in
reducing heteroscedasticity. In each of six randomized blocks (replications) there
were six plots, four treated by various toxic emulsions and two untreated as
controls. In table III are shown the total counts of leatherjackets recovered on
each plot, together with the fitted values and residuals when treatment means
and block means are estimated. Let the observation in the uth row and vth
column of table III be denoted by 9., with u,» = 1,2, ---, 6. Then the fitted
values are given by

1 1
Yul = )7142 = 6 ? Yuv + ﬁ % (yul + yu2) - gl

(88)
1 1 ~
uv=—zyuv+_zyuv_y; 1)23
65 6 %
The analysis of variance goes as shown in table IV.
TABLE 1V
ANALYSIS OF VARIANCE FOR EXPERIMENT WITH INSECTICIDES
Degrees of Freedom Sums of Squares Mean Squares
Blocks 5 2358.22 471.64
Treatments 4 24963.14 6240.78
Residual 26 8502.53 327.02

Because there are twice as many control plots as of each type of treated plot?
condition 2 is violated. Twelve rows of Q contain the elements: 7/9 (in the
diagonal), —2/9 (once), —5/36 (four times), —1/18 (10 times), 1/36 (20 times).
The other 24 rows of Q contain: 25/36 (in the diagonal), —5/36 (10 times),
1/36 (25 times). It is straightforward to calculate the various functions on Q

that are needed.
2 (gi)? = 18.833, 2 (g:)® = 12.778,
1 1)

D = 8.649, F = 0.034,
(89)
S Y-V, - 7) = % SS(blocks) + 3 SS(treatments)
ij

25

+ % [12 2 Wur + Yud) — y]
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Hence we find

g1 = 177 4+ 0.61,

g: = 4.39 £ 1.35,

h = 0.046 £ 0.011,

f = 0.0135 =4 0.0071.

(90)

Tukey’s test: compare the nonadditivity term 1196.54 (one degree of freedom)
with the residual mean square 292.24 (25 degrees of freedom), ratio = 4.09,
about the upper 5.1 per cent point of the variance-ratio distribution.

The power transformation suggested by substituting the above value of A
into (62) is p = 0.12, and by substituting f into (71) is p = —0.04. Thus h
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Fitted values and residuals from table III.
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and f both indicate something like a logarithmic transformation of the original
counts. This is satisfactory, because experience with insect counts suggests that
under homogeneous conditions they will closely approximate a negative binomial
distribution (see Evans [9]), and that the negative binomial distributions for
counts made with similar technique under different treatments or conditions
may be expected to have roughly the same exponent. If k denotes the presumed
common exponent, the transformed variables

: 3\ V2
1 ytg
(91) log (y + 5 Ic) or 2sinh™! 3
b1

will have almost constant variance equal to ¢’(k), the second derivative of the
logarithm of the Gamma function at k, and roughly normal distribution, provided
that E(y) and k are not too small. We can estimate k& by comparing the mean
squares of the counts for each treatment with the mean count for that treat-
ment, ignoring block differences; see Bliss and Owen [6], who also give an

TABLE V
TraNsFORMED CoUNTS log(y + 4) FroM TaBLe III
Block 1(control) 2(control) 3 4 5 6
1 4.56 4.25 3.14 3.50 3.00 3.37
2 4.16 391 3.66 2.64 271 2.20
3 3.91 4.44 3.04 3.26 3.00 2.56
4 4.82 4.14 3.85 2.83 2.64 1.79
5 3.97 4.22 3.37 3.33 2.48 2.40
6 4.93 4.16 4.03 3.18 3.47 2.71
Mean N
transformed 4.29 3.52 3.12 2.88 2.50
counts

analysis of these observations. We obtain a pooled estimate of about 5 or 6
for k. This estimate may be expected to be on the low side, because block dif-
ferences have been ignored. Let us therefore guess the round figure of 8 for £,
and consider the transformed counts log (y 4- 4), shown in table V. The analysis
of variance now goes as shown in table VI. The residual mean square is equal

TABLE VI

ANALYSIS OF VARIANCE FOR TRANSFORMED COUNTS

Degrees of Freedom Sums of Squares Mean Square
Blocks 5 1.3145 0.2629
Treatments 4 16.3918 4.0980
Residual 26 3.2692 0.1257
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to y/(8.44) approximately, or about 94 per cent of ¢’(8), so the guessed value
for k has been quite well confirmed. The residuals after fitting block and treat-
ment means to the entries in table V do not show any interesting phenomena,
which is what one would expect with so few observations; and they are not re-
produced here. One may conclude that the scale of log (y + 4) is satisfactory
for viewing the counts through the simple row-column least-squares analysis.
(Bliss and Owen recommend for these counts the transformation log (y + 12.6),
for reasons that do not entirely convince. Of course, almost any logarithmic
transformation will lead to apparently well-behaved residuals, with so few obser-
vations.)

5.3. Comparisons of designs. The informativeness of the residuals depends
on Q, which in turn depends largely but not entirely on the values of n and ».
It is possible for two designs to have the same n and » and yet differ perceptibly
in the properties of their residuals. This will be illustrated by two examples with
very small n.

Consider first the estimation of a quadratic response surface representing the
dependence of mean yield on the (continuously variable) levels of two factors.
The rotatable designs of Box and Hunter [7] do not in general satisfy condition 2,
but it can happen that they do, and there is something to be said for trying to
secure this if possible. The designs are specified by points in the factor-level
space, here a plane, representing treatment combinations at which observations
are made. One suitable design consists of two independent observations at a
center point and ten further observations, one at each of ten points spaced
equally on the circumference of a circle round the center point. With all the
observations arranged in one randomized block, we have n = 12,» = 6, and

(92)

05 -05 0 0 0 0 0 0 0 (] 0 0

-05 05 O 0 0 0 0 0 0 0 0 0
0 0 0.5 -0324 0 0124 0 —0.1 0 0124 O —-0.324

Q = 0 0 -—-032¢4 05 -032¢4 O 0124 0 -01 O 0.124 0
0 0 0 —0324 0. 0 -01 0 0.124

5 -0324 0 0.124

Rows 3 to 12 of Q are permutations of each other; the number —0.324 stands
for — (V5 4 1)/10 and 0.124 for (V5 — 1)/10. For this design we find

(93) Var (g1) = 4.5, Var (g:) = 10.05.

Another possible design, also satisfying condition 2, consists of two observations
at the center point and two at each of five points spaced equally on the cir-
cumference of the circle. Now every row of Q contains the elements 0.5 (in the
diagonal), —0.5 (once), 0 (10 times), like the first two rows above, and we find
that g, is not defined but g. is a better estimate than before,

(94) Var (gz) = 5.76.

For the purposé of detecting outliers, the first of these designs is better than the
second (neither is good).
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As another example, consider the estimation of the main effects of eight two-
level factors, 4, B, C, D, E, F, G, H, by a fractional factorial design arranged
in one block, so that n = 16 and » = 7. One possibility is to use the alias sub-
group generated by the interactions ABCD, CDEF, ACEG, EFGH ; another
possibility is to use the alias subgroup generated by ABC, CDE, EFG, AGH.
For the first design, every row of Q contains the elements: 7/16 (in the diagonal
and also once elsewhere), —1/16 (14 times). For the second design, each row
of Q has: 7/16 (in the diagonal), 3/16 (twice), —3/16 (four times), 1/16 (four
times), —1/16 (five times). We can make the following comparisons.

(a) For checking on outliers, the second design is much better, because no pair
of residuals has a correlation coefficient exceeding 3/7 in magnitude, whereas for
the first design the residuals are equal in pairs.

(b) For checking nonnormality, the first design is better (though both are
very bad), because we find

for the first design: Var (g,) = 1.20, Var (g;) = 8.77;
for the second design: Var (g;) = 2.64, Var (g:) = 24.56.

(e) Checking heteroscedasticity is possible only with the second design, because
we find

for the first design: 3 (¢:)%(Y; — %) = 0 for all 4;
J

for the second design: ¥, (¢)(Y: — 9)(¥; — §) = 1 88(4, C, E, 6)
ij
+£8S(8, D, F, H).

(d) For checking nonadditivity, the first design is better, because no two-
factor interactions are confounded with main effects, whereas for the second
design 12 of the 28 possible two-factor interactions are so confounded.

Most statisticians most of the time would prefer the first design to the second,
as it leaves the main effects clear of two-factor interaction aliases. If confidence
were felt that all interactions were negligible, the better control on outliers
might make the second design preferable.

5.4. Designs with equal-magnitude correlations. Some interest attaches to the
possibility of designs satisfying conditions 1 and 2 and such that all the off-
diagonal elements of Q are equal in magnitude. Such designs are especially
favorable for the detection of gross errors as outliers, and permit several of the
formulas of this paper to assume their simplest form.

A necessary prerequisite for such a design is that [»(n — 1)/(n — »)]Y2 be an
integer, this being the difference between the numbers of negative and positive
signs among the off-diagonal elements of any row of Q. A simple homogeneous
sample having v = n — 1 satisfies this condition, for any n; and the condition
is also satisfied for any n if we set » = 1. Some other combinations of n and »
satisfying the condition are shown in table VII. All possibilities with n < 36 and
1 < v <n — 1 are listed, together with a few others having n > 36.
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TABLE VII

PossIBILITIES FOR DESIGNS WITH
EQUAL-MAGNITUDE CORRELATIONS

n 4 n v
9 3,6 33 11, 22, 25, 27
10 58 35 18
15 8 36 15 21
16 6% 10* —
21 16 49 21,28
25 10,15 64 8 28* 36, 50, 56
26 13 81 36, 45
28  7,16,21,25 100 45* 56

It would seem that for most of the listed combinations of n and » there
is no actual design with equal-magnitude correlations. Any ordinary type of
orthogonal design has the property that every element of Q is an integer
multiple of 1/n. If the design has equal-magnitude correlations, we see that
[¥(n — »)/(n — 1)]2 must be an integer. Possibilities in table VII satisfying this
condition are shown with the value of » in italics. The asterisk indicates known
solutions. Solutions for n = 16 were given in [3]. The possibility » = 64 and
v = 28 is realizable as a hyper-Graeco-Latin square, formed by superimposing
three orthogonal 8 X 8 Latin squares. The possibility » = 100 and » = 45 is
similarly realizable by superimposing four orthogonal 10 X 10 Latin squares, of
which the existence has been demonstrated by R. C. Bose. There is an unlimited
sequence of such Latin square designs having equal-magnitude correlations. In
particular, they exist whenever = is a power of 4. One may conjecture that the
possibility n = 64 and » = 36, may be realizable by a 2% factorial experiment
with a suitable selection of interactions estimated.

5.5. A counterevample. Not every kind of departure from the ideal statistical
conditions can be seen clearly by examining the residuals (quite apart from the
imprecision arising from large sampling errors). A good example of the possible
unhelpfulness of looking at residuals is provided by some data (apparently
slightly faked) quoted by Graybill [14], showing the yields of four varieties of
wheat grown at 13 locations in the state of Oklahoma. If the residuals from row
and column means are calculated, they seem to have different mean squares in
the four columns, and we might be led to modify the least-squares analysis by
postulating a different error variance for each variety. But if the original observa-
tions (not these residuals) are examined more closely, it will appear that the
locations do not have a simple additive effect, but rather the varieties seem to
respond with different sensitivity to different locations. Variety number 3 has
nearly the same yield at all locations, whereas the other varieties show pro-
nounced differences, on the whole similar in sign but varying in magnitude. It
is primarily the additive assumption about rows and columns which is inap-
propriate here, and needs to be modified. A more plausible assumption would
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be the following. The observation y,, in the uth row and sth column, where
w=12 .-.,13,and v = 1, 2, 3, 4, is independently drawn from a population
with mean 8, + 8./, and variance ¢?/a?. The parameters (a,) can be estimated
as inversely proportional to the root mean squares of entries in each column of
the original table: we get the estimates 0.21, 0.36, 1.00, 0.42. If now the entries
in each column are multiplied by the corresponding &, we obtain a set of num-
bers in which (as near as we can judge) row and column effects are additive and
‘the error variance is constant.

6. Discussion

6.1. Given some observations (y;) and associated linear hypothesis, that is,
given the matrix A, we can group together under four main headings the various
questions that can be asked concerning the appropriateness of a least-squares
analysis.

(1) Are the observations trustworthy?

If the answer is yes, we can proceed to challenge the component parts of the
statement of ideal statistical conditions.

(i1) Is it reasonable to suppose the (y,) to be realizations of independent chance
variables such that there exist parameter values (0,) such that E(y;) = 3 ,a:,0,?

(iii) Is it reasonable to suppose the (y;) to be realizations of independent chance
variables all having the same variance?

(iv) Is it reasonable to suppose the (y;) to be realizations of independent chance
variables all normally distributed?

One might add a fifth query concerning the supposition of independence, but
that seems to be a metaphysical matter. A phenomenon which could be thought
of as one of dependence between chance variables could also be thought of in
terms of independent chance variables having a different mutual relation. In
many applications of the method of least squares, independence is a natural as-
sumption, either because of the physical independence of the acts of observa-
tion, or because of a randomization of the layout. One might add a further, more
radical, query about interpreting the observations as any sort of chance phe-
nomena. Why think in terms of chance variables at all? B. de Finetti and L. J.
Savage have claimed that it is possible to express all kinds of uncertainty
regarding phenomena in terms of subjective probabilities. To avail ourselves of a
distinet physical concept of random phenomena (here referred to by the label
‘“‘chance’) is, they have shown, unnecessary. But the physical concept is never-
theless attractive, both because it is philosophically simpler than any.logical
concept of probability, and because of its familiarity in orthodox statistical
thinking. Be all this as it may, we shall here think exclusively in terms of inde-
pendent chance variables. Let us now consider each of the above four types of
question in turn. .

The first question concerns whether we should accept the observations at their
face value, or discard them, partly or wholly, If the general level of the observa-
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tions, that is, 7, or the calculated estimates of some of the parameters (6,), or
the estimate of the error variance ¢2, are strongly discrepant with our prior
expectations, we shall suspect that a blunder has been made somewhere, in
carrying out the plan of observation, or in the arithmetical reduction of the
original readings. If the blunder cannot be identified and rectified, the observa-
tions will perhaps be rejected altogether. The possibility that occasionally a
single observation is affected by a gross error can be allowed for by examining
the largest residuals. In some circumstances it will be appropriate to adopt a
definite routine rejection rule for outliers.

Under the heading (ii) comes a familiar question. In the analysis of a factorial
experiment, how many interactions should be individually estimated, how many
should be allowed to contribute to the estimation of the error variance? Is the
matrix A big enough, or should further columns (representing interactions) be
added, or conversely, can some columns safely be deleted? Another sort of ques-
tion that can arise concerns the scale or units in which the observations can
best be expressed. When what is observed is the yield of a production process,
we are usually interested rather strictly in estimating (or maximizing) mean
yields, and a nonlinear transformation of the observations might well be con-
sidered to be out of place, even if it brought some apparent advantages for the
statistical analysis. But in other cases less easily resolved doubts arise about the
proper scale of measurement. If electrical resistance is observed, would it be
better expressed by its reciprocal, conductivity? If the dimension of objects of
fixed shape is observed, should a linear dimension be recorded, or its square, or
cube? In some population studies we expect treatment effects to be multiplica-
tive, and a linear hypothesis about (u;) becomes more plausible after the counts
have been transformed logarithmically. In recording sensory perceptions or value
judgments arbitrary numerical scores are sometimes used, and on the face of it
these might as well be transformed in almost any manner. We may hope that
by transforming the observations we can arrange that the ideal statistical condi-
tions obtain to a satisfactory degree of closeness, for a small parameter set (6,).
Tukey’s nonadditivity test (f statistic) is valuable as an aid to reducing the num-
ber of interactions that need to be considered.

Under the heading (iii), the h statistic is designed to show up that kind of
dependence of the error variance on the mean that could be removed by a power
transformation of the observations. Other possible sorts of heteroscedasticity can
be detected by examining the residuals, but they are not studied here.

Question (iv) regarding nonnormality can be examined with the g, and g,
statistics.

6.2. The four statistics studied in this paper, g1, o, %, f, and also the largest
residual, max; |2;|, studied in [3], are by no means independent. If the ideal con-
ditions fail in some particular respect, more than one of these statistics may
respond. For example, if n is not very large and if one observation is affected
by a gross error, g; and g» are likely to be large, and possibly also f and & if the
affected observation has an extreme mean, Any kind of heteroscedasticity may
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affect both g; and A. Thus it may be much easier, in a particular case, to assert
that the ideal conditions do not hold, than to say what does and what ought to
be done. '

Certainly all five statistics are not equally important or interesting. I suggest
that it is always worthwhile, if computational facilities permit, to make some
sort of check for outliers. Perhaps this is the only universal recommendation
that should be made. If we are willing to consider transformations, then f and k
become interesting. Above we began by considering g; and g, but that was only
because they were conceptually a little simpler than f and A. It seems that only
from a large bulk of data, such as a whole series of experiments in a particular
field, can any precise information be distilled about the shape of the error dis-
tribution. For smaller amounts of data, calculating ¢, and (especially) g; is a
waste of time. The graphical plotting of residuals against fitted values is no
doubt a good routine procedure, and can be done automatically by a computer.

6.3. Significance tests for theoretical hypotheses. In sections 2 and 3 above
special attention was paid to the sampling distribution of the statistics under the
full ideal conditions, so that significance tests of departure from the ideal condi-
tions could be made. In [3], on the other hand, it was suggested that the tradi-
tional approach to the rejection of outliers through significance tests was
inappropriate, and that choosing a rejection rule was a decision problem similar
to deciding how much fire insurance to take out on one’s house. The difference
of approach to related problems calls for explanation. What is at issue is the
relevance of significance tests in this context.

On a previous oceasion [2] I have pointed to two very different situations in
which a “null hypothesis” is of special interest, and some sort of test of con-
formity of the observations seems to be called for. In the first situation, there
is a certain hypothesis which there is good reason to expect may be almost
exactly true. For example, the hypothesis may be deduced from a general mathe-
matical theory which is believed to be good, and the observations have been
made to test a prediction of the theory. Another example would be an experiment
on extrasensory perception; most people believe that no such thing as ESP
exists and that a “null hypothesis”’ deduced from simple laws of chance must be
true, whereas the experimenter hopes to obtain observations that do not con-
form with this null hypothesis. Yet another example would be a set of supposed
random observations from a specified chance distribution, derived from pseudo-
random numbers, where we might wish to test conformity of the observations
with the nominal distribution. In such situations we wish to know whether the
observations are compatible with the hypothesis considered. It is irrelevant to
ask whether they might also be compatible with other hypotheses. Usually we
are reluctant to try to embed the null hypothesis in a broader class of admissible
hypotheses, defined in terms of only one or two further parameters, such that
one of these hypotheses must be true. If the evidence shows the null hypothesis
to be untenable, shows, that is, that we need to think again, we may perhaps
consider patching up the hypothesis by introducing an extra parameter or two,
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but we look first at some observations to see what sort of modification is needed.
If indeed we had a class of admissible hypotheses at the outset, with not too
many nuisance parameters, the likelihood function would be a complete summary
of the observations, and we could make inferences with Bayes’ theorem. But in
the situation envisaged there is no small enough class of admissible hypotheses,
no intelligible likelihood function, Bayesian inference is not available, and it is
natural to fall back on the primitive significance test, of which Karl Pearson’s
x? test of goodness of fit is the classic example. In such a test a criterion (func-
tion of the observations) is chosen, with an eye to its behavior under some par-
ticular alternatives considered possible, and the value of the criterion calculated
from the data is compared with its sampling distribution under the null hypoth-
esis, for a specified sampling rule. (Sometimes it is a conditional distribution
that is considered.) The end result is a statement that the criterion has been
observed to fall at such and such a percentile of its sampling distribution.
Extreme percentiles (or more generally certain special percentiles) are regarded
as evidence that the observations do not conform with the null hypothesis. This
type of analysis of the data is related to a null hypothesis expressed in terms of
chances in the same way, as nearly as possible, as a simple count of observed
favorable and unfavorable instances is related to a universal hypothesis, of the
type “all A’s are B’s.” Such an analysis is not a decision procedure, it does not
imply any decisions. We do not necessarily believe a universal hypothesis is true
just because no contrary instances have been observed, nor do we necessarily
abandon a universal hypothesis just because a few contrary instances have been
observed. Similarly, our attitude towards a statistical hypothesis is not neces-
sarily determined by the extremeness of the observed value of the test criterion.
The significance test is evidence, but not a verdict. Its function is humble, but
essential. The only way that we can see whether a statistical hypothesis (that
is, a hypothesis about physical phenomena, expressed in terms of chances) is
adequate to represent the phenomena is through significance tests, or, more
informally, by noticing whether the observations are such as we could reasonably
expect if the hypothesis were true. All scientific theories ultimately rest on a
simple test of conformity: universal hypotheses are confirmed by noting the
incidence of favorable cases, statistical hypotheses are confirmed by significance
tests. Any proposal of a class of admissible statistical hypotheses, prerequisite
for the ordinary use of Bayes’ theorem, depends for its justification, if it has
one, ultimately on significance tests.

The above argument constitutes, I believe, a defense of Fisher’s attitude to
significance tests, in his later writings. In [2] I had not realized the importance
of the ahsence of a class of admissible hypotheses, and was therefore skeptical
concerning orthodox significance tests. In addition to tests of theoretical hypoth-
eses, discussed above, for which orthodox significance tests seem to be ap-
propriate, and to tests of simplifying hypotheses, as discussed below, it appears
that there is a third type of situation to which the name test can be reasonably
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applied, as follows. There is a class of admissible hypotheses, and the problem
would be an ordinary one of estimation except that the prior probability is
partly concentrated on a lower dimensional subspace of the parameter space.
When we come to use Bayes’ theorem, the calculations are of the sort termed a
significance test by H. Jeffreys. In [2] I did not perceive that inference problems
of this type could indeed arise in science; convincing examples have since been
given by D. V. Lindley (testing for linkage) and L. J. Savage (testing for
statistic acid).

6.4. Simplifying hypotheses. Can it be said that the ideal statistical condi-
tions for a least-squares analysis constitute a theoretical null hypothesis of the
above sort, so that to check it we resort to significance tests? Not without some
apology. We can hardly claim that we have theoretical reasons for believing the
ideal conditions to hold. We have seen in section 5 that with small amounts of
data it is remarkably difficult for the ideal conditions to disprove themselves.
No doubt many users of the least-squares method believe that the ideal condi-
tions are very nearly satisfied in practice. If that belief is false (in some field of
observation), significance tests will eventually show it, if enough observations
are made, and then the user must consider whether the discrepancies matter and
what he ought to do about them. It is a common scientific practice to make bold
use of the simplest hypotheses until they are clearly shown to need modification.
That practice is presumably the best excuse for waiting until discrepancies with
the ideal conditions are clearly visible before questioning the ordinary direct use
of the method of least squares.

The hypothesis that the ideal statistical conditions are satisfied is an example
of what was called in [2] a simplifying hypothesis. We are disposed to act as
though we believed the hypothesis to be true, not because we really do believe
it true, but because we should be so pleased if it were. Once we realize this, we
see that significance tests are not strictly relevant, though possibly useful in
shaking us from apathy. What is important to know is not whether the observa-
tions conform to the simplifying hypothesis, but whether they are compatible
with seriously different hypotheses that are equally probable a priori. The cor-
rect procedure to follow, in order to decide whether the simplifying hypothesis
should be made, seems to be the following. We first examine all available data
in various ways, no doubt calculating the values of various test criteria, in order
to form a judgment as to what kinds of departure from the ideal conditions
occur. Significance tests as such are not useful, but we shall probably wish to
have some idea of the possible sampling variation of our statistics. We then try
to formulate a plausible class of admissible hypotheses, introducing as few extra
parameters as possible. If we are lucky, we may feel we can get away with only
one extra parameter. Let us consider specially this possibility. An instance would
occeur if we decided that the ideal statistical conditions held very closely provided
we replaced “normal distribution” by ‘“Pearson Type VII distribution”; there
would then be one extra shape parameter, the exponent. Another instance would
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occur if we decided that the ideal conditions held very closely except for depend-
ence of the error variance on the mean, as defined in section 3.1; x would be the
one extra parameter.

Let us call the extra parameter 4, so scaled that when § = 0 we have the full
ideal conditions. We must now decide how we should proceed if we knew for
sure that § was substantially different from 0. The answer would depend on the
class of admissible hypotheses, that is, on what é represented. It might be one
of the following: (a) transform the observations and then use ordinary least
squares, (b) use some kind of weighted least squares, with weights depending on
the residuals and therefore determined iteratively, (c) apply the least-squares
method to a nonlinear hypothesis about (u;), (d) abandon a comprehensive
analysis of the observations and attempt only a more limited piecemeal analysis.
Presumably this procedure would be less attractive than the ordinary least-
squares analysis would have been, had we known for sure that § was zero, be-
cause of greater computational effort, or because the parameters would be more
poorly estimated, or because the results would be more difficult to state and
comprehend, or because the results would be more modest in scope. If, however,
the least-squares method were used when & was not zero, the results would be to
some extent in error and misleading. What we must now do is determine, as well
as we can, the ‘“break-even point,” determine how far & must be from zero for
the error in using simple least squares to outweigh the disadvantages attending
the alternative procedure. (There may be two break-even points, one positive,
the other negative, but for brevity we shall speak as though there was one.)
Once the break-even point is fixed, it is easy to formulate a well-defined decision
problem. No doubt our prior opinion about the value of § is diffuse, and some
suitable probability distribution, possibly uniform, can be named, it matters
little what; and some reasonable loss function, possibly quadratic, can be
named—again it matters little what, provided the break-even point is observed.
If the total sample information available about é gives us a rather precise esti-
mate of §, then an almost optimum decision rule is to decide in favor of simple
least squares or the alternative procedure according to which side of the break-
even point the estimate of § comes (see [2]).

One component of the above train of argument has received some attention in
the literature, namely, to determine how much the results of a simple least-
squares analysis are invalidated when § differs from zero. Unfortunately, atten-
tion has been paid exclusively to the significance levels of certain tests con-
cerning (8,). In most circumstances such tests are inappropriate and ought not
to be made.

6.5. To sum up: In sections 2 and 3 we have considered four statistics designed
to reveal certain types of departure from the ideal statistical conditions. Informa-
tion has been given about their sampling distribution under the “null hypothesis”’
of the full ideal conditions. That is better than no information at all about sam-
pling distributions, and can be directly applied to (approximate) significance
tests having merit as complacency removers. Thus a modest contribution has
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been made. A thorough investigation of the appropriateness of the least-squares
method would have to go further, and would encounter grave difficulties. I sup-
pose that no convincing investigation of this sort has ever been made, for any
field of observation.

As for outliers, significance tests are only relevant if the question at issue is
whether extreme observations, suggestive of gross errors or blunders, occur with
a frequency incompatible with the ideal conditions. Such a question can well be
asked when a considerable bulk of observations of a certain sort are being re-
viewed. For most fields of observation, one may expect that the answer will
turn out to be yes. The day-to-day problem about outliers is different from this,
however. It is not: is the ordinary least-squares method appropriate? but: how
should the ordinary least-squares method be modified? not: do gross errors occur
sometimes? but: how can we protect ourselves from the gross errors that no
doubt occasionally occur? The type of insurance usually adopted (it is not the
only kind conceivable) is to reject completely any observation whose residual
exceeds a tolerance calculated according to some rule, and then apply the least-
squares method to the remaining observations. In [3] suggestions were made for
choosing a routine rejection rule, based on no more prior knowledge about gross
errors than a belief that they occur sometimes. De Finetti [11] has considered a
fully Bayesian approach to the rejection of outliers, necessarily based on more
definite prior knowledge.
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