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1. Introduction*

It is well known that in quantum theory the particles of a gas cannot be con-
sidered as independent even in the limiting case of zero interaction (ideal gas). As
a consequence of the symmetry properties of the wave function, the space coordi-
nates of the particles are correlated in the sense of an apparent repulsion in the
case of Fermi-Dirac statistics and of an apparent attraction in the case of Bose-
Einstein statistics. The explicit quantitative form of the correlation has been given
for temperatures high compared to the degeneracy temperature [1] and for the fully
degenerate Fermi gas [2]. In the following we shall discuss the general case of the
ideal gas without interaction and the connection between correlation of position,
density fluctuation and scattering properties of the gas.

The procedure followed is a slight generalization of a method used by Heisen-
berg [3].

2. General relations
We consider the density in six dimensional coordinate space (pair density) which

we denote by p2(f, r'). For a gas, this quantity can only be a function of the abso-
lute value of the distance between the particles and may hence be written

(1) P2 (r, r') = p2W (Ir-r'f)
Here p is the ordinary density (number of particles per unit volume) and pW(R)
the density at distance R from a given particle. If the particles are independent,
W(R) = 1; in the general case, W(R) tends to 1 for large R. The function W(R)
may be related to the density fluctuations as follows [4], [5]. Denoting by zi and Zk
the numbers of particles contained in infinitely small volume elements dvi, dvk lo-
cated at distance Rik from each other, we have, since the probability that the num-
bers zi and Zk take values other than zero or one is negligible:

( i) Al = ( Zi) All = pd vi ,
(2)

( (Zi Zk) Atv = p2W (Rik) d vid Vk.
* Added in proof: Practically all the expressions for the correlation function W(R) given in

the present paper have already been obtained in a paper by F. London [8] which had escaped
my attention. London's results have recently been rederived by G. Leibfried [9]. The only re-
sult concerning W(R) which goes essentially beyond the contents of these papers is its asymptotic
form (36).

58I



582 SECOND BERKELEY SYMPOSIUM: PLACZEK

We now consider a volume of linear dimensions larger than the distance Ro at
which W(RO) may be put equal to one. Denoting by N = zi the number of

particles in this volume, we have for its mean square fluctuation:

(3) (N2) AtV- (NAV) = (zi) AV - (Az)AV} + E ( ZiZk) AV
i i,k

- ( Zi) At' (Zk) All
Introducing (2) into (3), we find

(4) 1+pf{W(R) -1}dR= (N2) All-(NAV) 2
NAV

The mean square fluctuation of N and hence the left hand side of (4) may be ex-
pressed in terms of the compressibility.
We finally shall need the following relation between the scattering cross section

and W(R):
(5) a (h) = 1 + pJI W (R) 0h}e jid.dR.

Here a(h) is the scattering cross section per particle per unit solid angle in units of
the scattering cross section per unit solid angle of the isolated particle. 2Trh is the
difference of the wave vectors of incoming and scattered wave, h is related to the
scattering angle 6 by

2 sin -
(6) 2

x

where X is the wave length. The first term in (5) represents the scattering by the

isolated particle, the second term the interference effect. According to (5) a (h) -

p
is the three dimensional Fourier transform of W(R) - 1. For the scattering cross
section in the forward direction (h = 0) we have from (5) and (4)

(N2) A, -V(NAt')2
(5a) oa(O) =

NAAt'
Eq. (5) has first been derived by Zernike and Prins [5] on the basis of classical in-
terference theory for the particular case of scattering of X-rays by liquids. It de-
scribes correctly the scattering of light or particles by a quantum gas without in-
teraction if the deviation of the refractive index of the gas from unity is very small
compared to unity and if furthermore the change of the energy of the incident
light quantum or particle in the scattering process is negligible. For systems of in-
teracting particles the conditions for the validity of (5) are far more stringent, but
do not concern us here.

3. Determination of W(R) and a(h)
We now proceed to the calculation of the pair density p2(r, i') for a system of

noninteracting particles. If the particles have a spin, s, we have to distinguish
2s + 1 spin directions. Since particles of different spin directions are independent
we need only to calculate the pair density for particles of parallel spin. This may
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be done by considering only particles of one spin direction and paying no further
attention to the spin. All quantities used in the following will thus refer to particles
of one spin direction. Only for the ordinary density will this be explicitly indicated
by a subscript 0.
We consider a system of Z noninteracting particles enclosed in a volume V. De-

noting the eigenfunction of an individual particle in the quantum state "a" by
q6a(i), the probability Pa(i)di of finding a particle which is in state a, in the volume
element di is

Pa(i)di= NW,O(i 2d i, 1/4la(i 2d i=
We have thus for the density po(i):

(7) PO Ii).=, aPa ( )= ia a ( )12
a a

where n-a is the average number of particles in the state "a" and

na= Z.

If we were to pay no attention to the symmetry condition to be imposed on the
total wave function of the system, the pair density would be given by

P2 ( i,i)= nanbPa()Pb(i)+ na(na 1)Pa(i)Pa ()
a,b a

= B flanb1'I'a( i)4b( i') 12+ Ina(fa. I)ka( i)(ra ) 12.
a,b a

For Bose-Einstein statistics (symmetric wave function) we have to replace the

product 4,6a(r)4vb(i') by X1a(2)&b(i') + ,6a(?'),6b(i) for a
X

b (first sum) while

the second sum remains unchanged. For Fermi-Diiac statistics (antisymmetric
wave function) the second sum has to be omitted while in the first sum 4a(f%(i')
is replaced by X{1,ba(i)kb(i') - 'a(?') Pb(i) }.

We have thus

(8) P2 ( ,i)=2 E nanb a ( i)CA ( r ) ± 46a (i)Pb ( 2i
a,b

+ na(na 1)'|{( 0 4a ( i)
80X

where the upper and lower lines have to be taken for Bose-Einstein and Fermi-
Dirac statistics, respectively. With the relation [6]

(8a) 'nanb =nanb, n,, (na _ 1) = j "a
(8) may be written

(8b) P22i') =Ennb 146a(i),b ( ') ±4a( 6b (r 1
a,b
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Resolving the absolute square in (8b) and using (7), we obtain

(9) P2 ' po ()PoU ')± Ina (4')'aU') 2 -

We now specialize (9) to the case of a gas without external forces. Here the eigen-
functions are plane waves

(I~~~~~~~~~~~~~~~~~~0)aika.r
(10) ,A()=u_

and the density po(I) is independent of r:

I:naPo=a Z
(1 1) P0= V v

The average number of particles in state "a" is given [6] by

(12) na B1ekaAt + I

with

(13) k,

(m mass, K Boltzmann's constant, T temperature, h Planck's constant). The upper
and lower signs in (12) have to be taken for Bose-Einstein and Fermi-Dirac sta-
tistics, respectively. B is a normalizing constant determined by (11).

The number of states in a small interval Ak is given by VAk. Introducing now
(10) and (12) into the sums in (9) and (11), and replacing the sums by integrals,
we have, with

(14) n (k) - ge7k2/kt +i'

(15) pO=fn (k) dk,

( 16) faga(r a(r n ( k) e2,r4 (i-r') d k,
a

and thus

(17) P2( r, ') =Po (fn (k) e2rik(rr')dk).

Since n(k) depends only on the magnitude of k, its Fourier transform and hence
the pair density depends only on R = | r . From (17) and (1) we have finally

(18) Wo (R) = 1 (
2

where the index 0 on W indicates that in4the case of particles with spin it refers to
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particles of parallel spin only. n(R) stands for the Fourier transform of n(k),

(19) Ft (R) = fn (k) e2wik.Rdk fBek:'A - dk

1 sin 2kR dk.
2~R JO Be k2/2 +Ik 2 dk

For particles of spin s we have

(20) p = (2s + 1) po,

(21) W (R) 12 s + Wo (R) I+Wo(R) -1
=2 s+1 2 s+1I

and

(18a) W(R) -1 +1 Wo (R) -II 2+ (R)).
Noting that, from (12)

(22) ni (0) = Po

we have, for R = 0
2 for BRE. statistics

(23) W (0) = 0 for F.D. statistics
and

(24) W(0) = 1 +

From (5), (20) and (18a) we have for the cross section

a(h) = 1+pf [W (R)- Ile2 ihRdR

= 1 +pof[Wo (R)-4 I e2TihRd.R= 1+ I [f (R) ]2e2Tih RdR

and, using the convolution theorem,

(25) a(h) =1 +-Jfn(k)n(lk+hIl)dk.
From (25) and (5a) we obtain for the mean square density fluctuation

(26) (N2) AV-(NAV)2 -o(O)=1+ fn2 (k) dk.

4. Degenerate Fermi gas
For a fully degenerate Fermi gas

(2 7) n (k) = 10 for k>ko
where, from (14),
(28) ko = (43 ) / pl/3

nt(R) is thus here the Fourier transform of the step function. From (19) we have
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immediately

(29) Ft (R) 3
x2

x
cos x 3 I J3/2 (X)

t(0)V2 X3/2
where

(2 9a) x = 27rk0= (6r2) 1/3p/3R

so that

(30) W (R) 1 _9r [J3/2(x)J2
2 x3

and, for s 2

(31) W(R) = 1 97r [J3/2 (X)]2

(30) has been obtained by Wigner and Seitz [2] in a somewhat different way.
Figure 1 shows the functions Wo(R) and W(R). For all R we have Wo(R) _ 1;

0 .4 .8 .2 1.6 2.0 2 0

1.0~ ~ ~ ~~~FGR 1.

WT(R) W(R)

.8 -.9

.6 -.8

.4 7

.2 .6

0 0 4. .8 1.2 i.6 2.0 R

FIGURE 1

The functions Wo(R) and W(R)

at all its maxima the function Wo(R) has the value 1, its minima [except of course
the first one, W(O) = 0] are very little pronounced.

For the cross section one obtains from (27) and (25)

(32) a (h) = fI (l ()fr < ,k r2)1/3h1/
1I for y > l ko PO

(7r2\l1/3 h;

T3) pl/3-
The correlation diminishes thus the scattering for small h, while for h > 2ko there
is no correlation effect. This may also be understood by momentum considerations.



CORRELATION OF POSITION FOR QUANTUM GAS 587

If the momentum transferred to a particle in the scattering process is smaller than
twice the maximum momentum of the particles, some of the transitions will lead
to occupied states and are thus excluded by the Pauli principle.

5. Other cases

In the limit of zero density B goes to infinity and

n (k) k3 -k2/k'-ke
PO

Hence
Ft (R) e-T(ktR)2

Po
and

e -2ir(k, R) 2

(33) W(R) = 1 + 2s+1

Except for the spin factor, (33) agrees with the expression given by De Boer [1]
for this case.

For B > 1, n(k) may be expanded in inverse powers of B
co

n (k) = -(± 1)rnemak2/k2B-n
m=l

and hence we have for ni(R):
. e0-,r(ktR) 2/m

(34) n (R) = k3 ( 1) 1 B-m
m=l

where B is determined by

(35) po= (O)= k3
C

(31/2
m3=2

Determining B as a function of po/k3 from (35) and introducing it into (34), one
obtains W(R) from (18a). For B - 1 < < 1 the expansion (34) is impractical. In
this case one has to return to the original integral (19). For the Bose gas one ob-
tains by contour integration

(3 6) W (R)-1 = (146e
-

R L_ . -1 < < , kR > >(2 s+1)(kR?)2 ' B1 < , k >

where the correlation length L is defined by

(3 6a) kL 1 = .135 PckL4v(Bl) PPC

Pc is the condensation density given by (35) for B = 1, [7], namely,
PC= k3(3).

(36a) shows the increase of the correlation length on the approach to condensa-
tion.
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