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Abstract, The aim of this paper is to show that stochastic models provide 
a very good playground to enhance the utility of quantum groups. Quantum 
groups arise naturally and the deformation parameter has a direct physical 
meaning for diffusion systems where it is just the ratio of left/right probability 
rate. In the matrix product state approach to diffusion processes the stationary 
probability distribution is expressed as a matrix product state with respect to 
a quadratic algebra which defines a noneommutative space with a quantum 
group action as its symmetry. Boundary processes amount for the appearance 
of parameter-dependent linear terms in the algebra which leads to a reduction 
of the bulk symmetry.

1. Introduction

Stochastic reaction-diffusion processes are of both theoretical and experimental in­
terest not only because they describe various mechanisms in physics and chemistry 
but they also provide a way of modelling phenomena like traffic flow, kinetics of 
biopolymerizalion, interface growth [11, 8, 12],
A stochastic process is described in terms of a master equation for the probabil­
ity distribution P(si,t)  of a stochastic variable s* =  0 , 1 , 2 , . . . ,  n — 1 at a site 
i =  1 , 2 , . . . ,  L of a linear chain. A configuration on the lattice at a lime t. is deter­
mined by the set of occupation numbers si, so, . . . ,  S£. and a transition lo another 
configuration s' during an infinitesimal lime step dt is given by the probability 
r ( s ,  s') dt. The lime evolution of the stochastic system is governed by the master 
equation

for the probability P (s,t)  of finding the configuration s al a lime t. With the 
restriction of dynamics lo changes of configuration only al two adjacent sites the

S‘
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rates for such changes depend only on these sites. The two-site rates T =  r*f, 
=  0 ,1 ,2 , . . . ,  n — 1 are assumed to be independent from the position 

in the bulk. At the boundaries, i.e., sites 1 and L  additional processes can take 
place with single-site rates L \  and R \. The master equations can be mapped to a 
Schrodinger equation in imaginary time for a quantum Hamiltonian with nearest 
neighbour interaction in the bulk and single site boundary terms

3

The ground state of this in general non-hermitian Hamiltonian corresponds to 
the stationary probability distribution of the stochastic dynamics. The mapping 
provides a connection with integrable quantum spin chains. Examples are the pro­
cesses of particles hopping between lattice sites i, j  with rates gij and a hard core 
repulsion (i.e., a site is empty or occupied by one particle). In the case of the 
symmetric exclusion process =  gji and the stochastic Hamiltonian it coincides 
with the SU(2) symmetric spin 1/2 isotropic Heisenberg ferromagnet. The diffu­
sion driven lattice gas of particles with rates <7i,i+i/<7i+i,i =  q /  1 is mapped to a 
SU9(2)-symmetric X X Z  chain with anisotropy A =  (q +  q~1)/2.
The stationary probability distribution, i.e., the ground state of the quantum Hamil­
tonian with nearest neighbour interaction in the bulk and single site boundary terms 
is expressed as a product of (or a trace over) matrices that form representation of 
a quadratic algebra determined by the dynamics of the process. Following this 
matrix product ground states Anzatz Derrida et al [4] have considered Asym­
metric Simple Exclusion Process (ASEP) with open boundaries of three-species 
diffusion-type, in which the reaction-diffusion processes

TftD tDk =  x tDj -  XjDi

takes place with diffusion T|* =  gik. We consider n species diffusion process on a 
chain with L  sites with nearest-neighbour interaction with exclusion which means 
that a site is either occupied or empty. The empty site is referred to as a vacancy 
(or a hole), the rest n — 1 species as different types of particles. On successive 
sites the particles i and k  exchange places with probability gik dt. The simplest 
form is the n-species symmetric exclusion process known as the lattice gas model 
when each particle hops between nearest-neighbour sites with a constant rate gik =  
gki =  g. The diffusion-driven lattice gas of particles moving under the action of 
an external field is an example of the n-species asymmetric exclusion process of 
particles hopping in a preferred direction. The process is totally asymmetric if all 
jumps are in one direction only and partially asymmetric if the rates gik for moving 
to the left (or backward) are different from the rates gki for moving to the right. 
The particle number rii of each species in the bulk is conserved Y h=o ni =  L. 
One distinguishes closed systems (periodic boundary conditions) and open systems
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with boundary processes -  at site 1 (left) and at site L  (right) the particle i is 
replaced by the particle k  with probabilities L \ dt  and R \ dt respectively,

n —1 n —1

£ | =  - E 4  ^  =  - £ 4
j = 0 3=0

The diffusion algebra is generated by the commutators

Qik^iDk Qki^kDi x k ^ i  x iDk (1)

where i, k  =  0 ,1 , . . . ,  n — 1 and Xi are c-numbers x % =  0. This is an algebra 
with involution, hence hermitian Di

Dt = D f , gfk = gkt, x t = - x f .

For the probability distribution one assumes:

• periodic boundary conditions

P (s 1, . . . ,  sff) =  Tr(DSl DS2 . . .  D Sl )

• boundary processes

P(si ,  . . . , s L) = (w\DSlD S2 . . . D Sl \v)

where the vectors |u) and (to| are defined by

(w\(LfDk +  x t) = 0, ( R fD k -  x t)\v) = 0.

Thus to find the stationary probability distribution one has to compute traces or 
matrix elements with respect to the vectors |u) and (iw| of monomials of the form 
D™1 D™2 . . .  D™ll . The problem to be solved is twofold -  find a representation of 
the matrices D  that is a solution of the quadratic algebra and match the algebraic 
solution with the boundary conditions.
The relations (1) allow an ordering of the elements Dk ■ Monomials of given order 
are the Poineare-Birkhoff-Witt (PBW) basis for polynomials of fixed degree as 
the probability distribution is due to the bulk conservation laws. We thus consider 
an associative algebra [7] generated by the unit e and n additional elements Dk 
obeying n(n — l ) /2  relations (1). The alphabetically ordered monomials

D nsl D ns 2 . . . D n4  (2)

where s i < S2 < ■ ■ ■ < S[, l > 1 and n i, 712, . . .  ,ni  are non-negative integers, are 
a linear basis in the algebra, the PBW basis.

Proposition 1. 1. In the case o f Lie-algebra type diffusion algebras the n gener­
ators Di, and e can be mapped to the generators Jjk o/SU (n) x U (1) and the 
mapping is invertible. The Universal Enveloping Algebra (UEA) generated by Di 
is a subalgerbra o f the UEA o f the Lie-algebra o/SU(n) x U (1).



60 Boyka Aneva

2. The multiparameter quantized noncommutative space can be realized equiva­
lently as a q-deformed Heisenberg algebra o f n oscillators depending on n(n — 
l ) /2  +  1 parameters (in general on n(n  — l) /2  +  n parameters). The UEA o f the 
elements Di in the case o f a diffusion algebra with all coefficients Xi on the RHS 
o f equation (1) equal to zero belongs to the UEA o f a multiparameter deformed 
Heisenberg algebra to which a consistent multiparameter SUq(n) quantization 
corresponds.
3. In an algebra with x-terms on the RHS o f (1) only then is braid associativity 
satisfied if out o f the coefficients Xi,x^, xi corresponding to a triple DiD^Di either 
one coefficient x  is zero or two coefficients x  are zero and the rates are respectively 
related. The diffusion algebras in this case can be obtained by either a change o f 
basis in the n-dimensional noncommutative space or by a suitable change o f basis 
o f the lower dimensional quantum space. The appearance o f the nonzero linear 
terms in the RHS o f the quantum plane relations leads to a lower dimensional 
noncommutative space and a reduction o f the SU q(n) invariance.

2. Representations of the Diffusion Algebras

2.1. Lie-Algebra Types

There are two such algebras. The first type arises when all rates are equal and 
corresponds to the n-species symmetric exclusion process. The second algebra 
appears in the description in the multispecies governed by totally asymmetric ex­
clusion process.

1. All rates equal, gp =  gp =  g.

After rescaling the generators Di, i =  0 ,1 ,2 , . . . ,  n — 1 by

n—1
D t = - D [ ,  $ > *  =  0

3 i=i

the commutators take the form (the primes are omitted)

[Do, Di] = Dq — Di  
[D0, D 2] =  D0 -  D 2

[A i-2 ,D n_i] — Dn_2 — Dn_ i.
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These algebraic relations could be solved in terms of the GL(n) Lie-algebra Weyl 
generators J 3

Do =  —Jq +  J q +  + ----- b Jq 1
D l =  JO -  J l  +  J f  +  . . .  +  J " - 1 

D 2 =  J l  +  j i  _  j |  +  . . .  +  j " - 1

Dn-1 = J l - 1  +  Jn-1 +  Jn- 1 H-------- J'n-1’

The conventional basis for fundamental representation of the U(n) generators 
given by the (ey)a& =  5ia5jb, i, j ,  a, b =  0 , 1 , 2  . . . ,  n — 1 provides the n-dimensio- 
nal matrix representation of the generators D, which entries are 1 only in the first 
row of Do, the second row of D \, the third row of D 3 , . . .  the last row of D n- i  and 
all other entries zero. The correspondence is one-to-one since the U(n) Lie-algebra 
generators can be expressed with the help of the transposed matrices, namely

4  = - D tD j .1 n 3
The Poincare-Birkhoff-Witt basis of the algebra generated by the elements D  thus 
belongs to the basis of the universal enveloping algebra of su(n)  ® « (1 ) and this is 
the hidden symmetry algebra of a stochastic diffusion system with all rates equal. 
One can show that compatibility of the algebraic solution with the boundary value 
problem determines a Pock representation of the diffusion algebra with a constraint 
for the rates which in the case n =  2  has the form

g(Ll + LI + RI  + Rf)  = (Ll  +  +  J?f).

2. For algebras with only one element gij /  0 the algebraic relations read gijDiDj 
=  XjDi — XiDj. The symmetry reduces from SU(n) x U(l)  to U( l ) n _ 1  x U(l).

2.2. The Quantized Noneommutative Space of a Diffusion Model

2.2.1. Algebras with no 2:-Dependent Linear Terms

The algebraic relations (1) without the x -terms on the RHS define the Manin’s 
multiparameter quantized space with the n elements Di viewed as its co-ordinates

gikDiDk -  gkiDkDi = 0. (3)

A representation of the quantum space is obtained by identifying the monomials (2) 
with the states of n oscillators

a i n° a tni +n„_ 1 i 
%n - l  I
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and in this case the generators Dj correspond to n creation operators and the non­
commutative space is equivalent to a multideformed oscillator algebra. It is conve­
nient to consider the ratios

as the set of n(n  — 1)/2  independent parameters and introduce further n real pa­
rameters rj. The latter are at this stage auxiliary parameters needed for a consis­
tent quantized phase space calculus whose realization proceeds as follows. One 
starts with n classical oscillators Ai and A f ,  obeying [Ai, A f )  =  5y for i , j  =  
0 , 1 , . . . ,  n — 1 and defines =  A f  A&. A deformation of the Heisenberg algebra 
is achieved through the invertible maps

ai =
I rio + 1 -%

TT ank/2\ I r» ~  1
L1. “  V (n  -  l)(n, + 1)k>i k>i

where
n ,  -I

ri 1 +-------— =  a j  at
n  ~  1

These deformed oscillators obey to the following algebraic relations

ata f  -  rta f  at = 1

at af  ~QAat at  = 0
OjOj — qjiajai =  0

ataj  ~  at = 0

with i < j .  The deformed oscillators can be arranged in bilinear form in order to 
construct the GLq(n) generators Jy  =  a f  aj, i, j  =  0 , 1 , . . . ,  n — 1. A consistent 
SUq(n) quantization with a corresponding i?-matrix satisfying an Yang-Baxter 
equation is achieved with all deformation parameters qij and equal i.e.,

qtJ = q = rt 1, i < j,  i , j  = 0 , l , . . . , n -  1.

A representation of the matrices Di and D f  and the generators Jy  is provided by 
the action of the oscillators a f  and ai on the basis vectors |rij) =  \n o n i. . .  nn_i) 
(with rii =  0 ,1 ,2 . . . ) .  The symmetry of the model is SUq(n).

2.2.2. Algebras with ^-Dependent Linear Terms

A. Algebras with one a:-dependent linear term. These algebras are obtained from 
the quantum plane by a shift of the corresponding generator Dy =  D f  -I- i j ,  / ( I  — 
qjif). The rescaled matrix Dy forms a u(l)  algebra. The presence of one re­
dependent term due to a boundary process reduces the SUq(n) invariance in the 
bulk to SUg(n — 1) x 17(1) invariance.
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B. Algebras with two a:-dependent linear terms. A diffusion algebra with two c- 
numbers x  always contains one (and only one) nonhomogeneous relation which 
upon fixing the two non zero x  numbers to be x 0 and x n_i  (these can be any other 
two) is of the form

Dn_ iD 0 -  ^ ^ Z > o D „ —i =  —— D n—\ -  ^ = ^ D 0. (4)
9 n - 1 ,0  9 n - 1 ,0  9 n - 1 ,0

This can be mapped to one of the quommutators of the Heisenberg algebra, 
namely

aoao — roao a0 =  1

by a simultaneous shift of ag and a j . Then one identifies D n_i =  Dg and shifts 
the pair a j  and ag to define

Do

Dn-1

9n-1,0 1 - r g  x / l - r g
%n—1 +

ag
9n-lfi l - r g  V I -  rg

which satisfies (4) with

(5)

90,n—l ro = --------•
9n-1,0

The rest of the generators Dk, k  =  1 ,2 , . . . ,  n — 2 are to be identified with the 
remaining n — 2 creation operators a^

Dk = a (6)

for k  different from the fixed index i =  0. Thus to make the correspondence 
with the quantum plane one considers a quantum plane of dimension n — 1 and 
identifies one of the generators of a diffusion algebra with two a:-terms with a 
rescaled annihilation operator. The diffusion algebra is obtained from the deformed 
Heisenberg commutation relations of n — 1 oscillators

D n_ iD 0 -  DgDn-1
9n-l.fi

DgDk — qkDkDg

D kD n-i — qkDn-iDk

Xg

9n-l.fi 

— — Dk

-Dn - 1

%n— 1Dk

DkDi — qkl  DiDk =  0

%n— 1
dn-1,0

Do

V)
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where k  =  1,2 . . . ,  n — 2, and
9 k 0  Q n—l k9k =  ---- =  ------—
9 0 k  9 k , n - 1

9 k  =  0Ofc =  9 k , n —1

0Ofc “  9 k 0  =  9 k , n - 1 “  9 n —l ,k  =  9 0 , n - l  ~  9 n - 1,0-

The last relation in (7) under the constraint
9 k i  j ^ ,—  =  q, k < l
9lk

leads to an one-parameter SUq(n — 2) quantization with //-matrix satisfying the 
Yang Baxter equation. The matrices Dq and D n_i and the unit generate the de­
formed UEA of SU9(2). The symmetry is reduced to SUq(n — 2) ® SUg(2).
We consider as an example the n =  2 partially asymmetric exclusion model de­
fined by

D \D q — rDoDi  — xq D \ — x \D q 

(w \{JJ{Dq -  L \D i +  x{) =  0 

( - i ? f D 0  +  R qD i  ~  x q ) \ v ) =  0  

with xq + x \ = 0, r  =  <701 / 9io and solution
1

Dq = — +
5io 1 -  r s /T ^

_  X i
D i = ----- -

0 10  1 -  r s /T ^
-)a

where
aa+ — ra+a = 1.

The explicit representation of the matrices Dq and D \ in the oscillator basis leads to 
the corresponding representation of the boundary vectors. The transition matrices 
for this process have the form

H  =

(0  0 0 0 \
0 —0oi 0io 0 
0 001 —0io 0

Vo 0 0 0 /
(8)

and

H l = -L°! Lb
L9 -L b h r  = - R i  Rb

RS -R b
Consider now the //-matrix of the two-parameter standard GLP)g(2) deformation

/ I  0 0 0 \

R(p, q) =
l - ±pq p

\o  0  0 1 /
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that satisfies the quantum Yang-Baxter equation R 12R 23R 12 =  -R2 3-R12-R2 3- Shift 
the //-matrix by the 4 x 4 unit matrix to obtain an //-matrix which at the particular 
point (p, q) =  (1, g) has the property of an intensity matrix

/ o  0 0 0 \
0 - q - 1 1 0
0 q -1 - 1  0 '

\ 0  0 0 0 /

The matrix R! =  R(p, q) — I 4 satisfies the modified Yang-Baxter equation

Z ? ?1 2 - R ?2 3 - R ?1 2  —  - R ?2 3 - R ?1 2 - R ?2 3  =  R ' 1 2  —  Z ? ?2 3 -

It is readily seen that the bulk transition rate matrix (8) of the asymmetric exclusion 
model is up to the factor q\q equivalent to the SUg(2) //-matrix R{ 1, q) with g_1 = 
Qoi/gio- Generalization to n >  2 is straightforward.

3. Coherent State Solution

By their very origin the coherent states [10, 6, 17] are quantum states, but at the 
same time they are parametrized by points in the phase space of some classical 
system. This makes them very suitable for the study of systems where one encoun­
ters a relationship between classical and quantum descriptions. From this point of 
view, interacting many-particle systems with stochastic dynamics provide an ap­
propriate playground to enhance the utility of the generalized coherent states and 
we can formulate

Proposition I. The boundary vectors with respect to which one determines the sta­
tionary probability distribution o f the n-species diffusion process are generalized, 
coherent or squeezed states o f the deformed Heisenberg algebra underlying the 
algebraic solution o f the corresponding quadratic algebra.

3.1. Coherent States of a g-Deformed Heisenberg Algebra

We consider an associative algebra with generators a, a+ and q±N subjected to 
defining relations

aaT — qaTa =  1, q or =  qa^q , q a =  q aq

where 0 < q < 1 is a real parameter and a+a =  =  [N], A  Fock
representation is obtained in a Hilbert space spanned by the orthonormal basis 
^ J = |0 )  =  |n), n = 0 ,1 ,2 , . . . ,  and (n |n?) =  5nn>

R (l,q )  -  14 =

a|0) =  0 , a|n) =  [n]1/ 2\n — 1) a+\n) =  [n +  l]1/,2|n +  1). (9)
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The Hilbert space consists of all elements |/ )  =  J2^=o fn\n) with complex f n and 
amplitudes which have a finite norm with respect to the scalar product ( f \ f )  =  
E “=0 l/n|2- The g-deformed oscillator algebra has a Bargmann-Foek represen­
tation on the Hilbert space of entire analytic functions.
Generalized or g-de formed coherent states [1] are defined as the eigenstates of 
the deformed annihilation operator a and are labelled by a continuous (in general 
complex) variable z

o° zn
a \ z ) =z \ z ) ,  |z) =  ^ —= = |n ).

n=0 VFJ-

These vectors belong to the Hilbert space for \z\2 < [oo] =  The scalar prod­
uct of two coherent states for different values of the parameter z  is non-vanishing

(z z =  £
( z z j

\n\ =  e„

and they can be properly normalized with the help of the g-exponent on the RHS 
of (3)

Iz) =  exp9 exp9(za+)|0).

The g-deformed coherent states reduce to the conventional coherent states of a one­
dimensional Heisenberg algebra in the limit q —> 1~. These generalized coherent 
states carry the basic characteristics of the conventional ones, namely continuity 
and completeness (resolution of unity I  =  /  \z)(z\ exp9(—\z\2) dgZ). Hence one 
can expand any state in the coherent states |/ )  =  /  d2q\z) expq(—\z\2)(z\f )  and 
thus to obtain

(z\a+ \/ )  =  z f ( z )
(z \a\ f ) = Dqf (z)

m m  =

which is the Bargmann-Fock representation of the deformed oscillators and the 
number operator.

3.2. Squeezed States of a Deformed Oscillator Algebra

Proposition 2. Let a, a+ and qN generate a deformed Heisenberg algebra with 
the equivalent form o f defining relations

[a,a+] =  qN , N - I Nq a — q aq , N + + Nq a — qa q . ( 10)
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Then there is a two-parameter-dependent linear map to a pair o f quasi-oscillators 
with a “quasiparticle” number operator M

A = pa + oa+, A + = pa+ +  Pa. (11)

These operators generate a deformed Heisenberg algebra

[A, A +] = q ^ , q ^ A  = q ^ A q ^ ,  q ^ A + = qA+qM

provided that

f  =  (M 2 -  M V -

In the limit q —> 1“ the relation between the parameters of the conventional 
squeezed state is recovered [16]. In the deformed “quasi-oscillator” algebra in 
the bock representation space with a vacuum |0)s a normalizable coherent state 
10* is the eigenvector of the annihilation operator A

In order to generate a deformed squeezed state directly one needs of course to 
explicitly construct an operator Sq(p, if), the g-analogue of the squeezed operator 
whose transformation of the oscillators amounts to the linear map in equation (11), 
S g a S f1 =  A. This question remains open despite the encouraging fact that the 
linear transformation has the proper limit q —> 1~.

Proposition 3. A squeezed state o f the deformed creation and annihilation opera­
tors is a normalized solution o f the eigenvalue equation

(pa +  va+)\C, p, v) s =  C|C, /b v)s =  ^|C)s-

This proposition is motivated by the analogy with the non-deformed case [13, 16] 
and by the fact that such normalized eigenstate vectors of the written above lin­
ear combination of /̂-de formed oscillators appear in the solution of the boundary 
problem of a many-particle non-equilibrium system.
To show the effects of squeezing we consider the Hermitian quadrature operators

x = ~ ^ ( a+ + a), P =  (»+ -  ») ( 12)

where the boson operators obey the relations of the form (10) and consequently 
the operators x  and p satisfy the deformed canonical commutation relation [x,p] =  
iqN. The variances (Sx)2 =  {(x — (x))2) and similarly (Sp)2 =  {(p — (p))2) in 
any state obey a generalized Heisenberg Robertson inequality of the form

(Sx)2(Sp)2 >^\([x,p})\2 (13)
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The variances in the deformed coherent states |z) are equal

(Sx)2 = (S p f  = ^  exp9 ((g -  l ) |z |2) . (14)

The deformed coherent states are thus states of equal uncertainties only. Minimum- 
uncertainty states are labelled by the value z  for which the g-exponent in (14) 
has a minimum. In the limit g —» 1“ for 0 < \z\2 < oo the equality of the 
undeformed uncertainties in the Glauber coherent states is recovered. Thus any 
deformed coherent state \z, q) for 0 < g < 1 and 0 < \z\2 < is a Robertson 
intelligent state and is sometimes referred to in the literature as a squeezed state 
in the sense of weak squeezing [3], i.e., (Sx)2 < | ,  and simultaneously (Sp)2 < | .  
We proceed with the discussion of the algebraic states \Q,y,,v,q) which reveal 
stronger squeezing properties, generalizing thus the undeformed case. We show 
that the deformed uncertainties with respect to these states, analogously to the 
conventional case, are not equal. For the purpose we write the inverse of the linear 
map in (11)

a =

a =

\p,\2 — \v \ 

\p,\2 — |i/|:

-A —

t A  +

v
A +

\u\z

^  A+

\fi\2 — \v\2

\p,\2 — |i/|2

where \/i\2 — \v\2 ^  0, being the Jacobian of the linear transformation (11). 
Exploring the eigenvalue properties of the normalized coherent eigenstates of A

(C\A\0s = C
(C\A+\C)S = C

(c\<^\0s = m ^ \ 0 s  = e%-1̂ 2

we calculate the corresponding mean values. This yields a non-equality of the 
g-deformed uncertainties which read explicitly

(fe)2 =  I n J p  _  u!p)2 expg ((? -  D i d 2)2 m  m  ) (15)

(5p)2 =  2 (|^|2 - H 2) 2eXPq ((g "  1)IC|2) •

We now recall the known definition [9,14] of a squeezed state requiring for one of 
the variances to be smaller than the equal uncertainties common minimal value de­
termined by the equality (14) as the minimum in the variable z  of the g-exponential 
function. From the analysis of the function |  exp9 ((g — 1)|C|2) it follows that the 
minimum of this function is the finite limit |  for |C|2 —> fh j-  Hence
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according to the expressions (15) |C) is a squeezed state if either

1 | 
2 W

(1 — v\
exPg ((q -  i)lCl2) <

l l
_ M 2)2 /  ' 2 (i  +  ( i - g))“

which is satisfied provided the parameters (in general complex) p, u of the linear 
transformation (11) are chosen in such a way that

0 <
\p — u\

( \ p \2 — H 2 ) 2
<

(l +  ( l - g ) 2|C|2);

(1 +  (1 -  q))T
(16)

and thus the criterion
( 5 x f  < ( fe )^ in (17)

holds. The ratio at the very RHS of (16) is the basic hypergeometric series 
i$o  ((1 — ?)|C|2; (q ~  !))• Alternatively from equation (15)

1
2 (

p  +  H 2
|2 -  |l/|2)2 exPg ((9 -  1)2ICI2

1 1 
2 ( 1 +  (1 — 9))“

is satisfied if

which gives

b + H 2 ( i + ( i - ? ) 2ici2) r
(|^|2 - | H 2)2 < ( l +  ( l - 9 ) ) “  

(Sp)2 < (Sp^Lin-

(18)

(19)
For 0 < q < 1 the values p, =  ± 2/ are not admissible. The inequality (17) (or (19)) 
together with the condition (16) (or (18)) for the parameters p, v, C> 9 define the 
eigenstates |C) of the linear combination pa +  va+ of the deformed boson op­
erators as generalized squeezed states. In the limit q —> 1“ the corresponding 
expressions for the x , p  uncertainties with respect to the conventional harmonic 
oscillator squeezed states [16] are recovered.
In the deformed uncertainty relation (13) the variances of the operators x  and p 
enter. For two Hermitian operators a third second moment, their covariance in any 
state, is defined by

S(xp) =  - ( x p  + px) — (x)(p).

As can be readily verified the covariance 5(xp) of the quadratures (12) x  and p in 
the deformed boson oscillator coherent state | z) is equal to zero. If we calculate 
now the x -p  covariance in the deformed states |C, p, v) we obtain

Sxp
Im(pi/)

p \2 — \i/\ 2 < [+ P ])s
(

Im(pi/)
5|2 -  H 2)2 exPg ( ( 9  -  i)lCl2 (20)

As seen from (20) the x-p  covariance in the deformed squeezed states for complex 
p, v  is not zero. It vanishes in the particular case of real p, v. For Hermitian
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operators with a nonvanishing covariance the Robertson Heisenberg uncertainty 
relation becomes the Schrodinger inequality in any state

(Sx)2(Sp)2 -  (Sxp)2 > h([x,p})\2. (21)
4

One can further verify that the three second moments in the deformed squeezed 
states as given by equations (15) and (21) satisfy the equality

(Sx)2( S p f  -  (Sxp)2 = ||(C[a:,p]C)|2-

The ^/-deformed squeezed states \Q,p,,u) thus minimize the Schrodinger uncer­
tainty relation for the deformed quadratures and are, in fact, generalized Schrodin­
ger intelligent states [14].

3.3. Deformed Squeezed and Coherent State Solution of the Boundary 
Problem for the n-Speeies Process

The algebra (7) for the n-species open asymmetric exclusion process of a diffu­
sion system coupled at both boundaries to external reservoirs of particles of fixed 
density is solved by the deformed oscillators (6) and the shifted deformed oscilla­
tors (5) with the following relations for the rates

9 0 ,n —l  9 k l  9 k 0  9 n —l ,k
9  =  --------- , 9kl  =  -----, 9k  =  -----  =  ----------

9 n - 1,0 9 lk  9 0 k  9 k , n - 1
and

9 k  — 9 0 k  — 9 k , n —I t  9 0 k  ~  9 k 0  ~  9 k , n - 1 “  9 n - l , k  ~  9 0 , n - l  ~  9 n - 1,0-

For the phase transition inducing boundary processes, when a particle of type k 
is added with a rate Tf and removed with a rate L q at the left end of the chain 
and when it is removed with a rate i?§ and added with a rate at the right end 
of the chain, the systems of equations for the boundary vectors are reduced to the 
algebraic constraints

(w\Lk0Dk = (w\L°kD0, R k0Dk\v) = R°kD0\v) 
and to the pair of equations

(w \(Ln-iDo — Lq- 1 Dn- i )  = (w\, (i?”- 1D n_1-i? o _ 1D 0)|v) =  |v). (22)

Making use of the explicit solution for Dn_i and Dq as shifted deformed oscilla­
tors (with xq =  —xi  =  1), we rewrite equations (22) as

(
T?n ~  1   Z?0

9 n - 1,0 -  ° 1 _ q U 

(  L° — L'1 1 \
(“ P n - ^ O  “  Lo~lao) = (H  ( 5 n -l,0 -----_  °--- j  V 1 ~  9■
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The latter equations determine the boundary vectors as squeezed coherent states of 
the deformed boson operators ag, a j  corresponding to the eigenvalues

— a/1  “  9 ( 9 n - 1 , 0  —

w = y / l - q  gn- in  -

R T 1 -  mn —1
1 - 9  

L°n- 1 -  L\ 
1 - 9

n — 1 s (23)

The explicit form of these vectors is readily written, namely

(to =  (n
oo n  

X -  w n

n=0 v l J
I \ ~2VWV) =  e0 E

n = 0

Thus, the left and right boundary vectors are squeezed coherent states of the shifted 
deformed annihilation and creation operators Dn- i  and Do, associated with the 
non-zero boundary parameters x n_i  and rco, and with eigenvalues depending on 
the right and left boundary rates

(R g ^a o  -  R l ^ a ^ l v )  = A\v) =  W  

(«;|(-kn-iao — To_1a) =  (w\A+ =  (w\w

where the eigenvalues v and w are given by (23). The operators A  and A + sat­
isfy the same deformed commutation relations as a and a+, with the only differ­
ence that they are not Hermitian-conjugate. From the inverse linear maps, with 
i?Q_1L °_1 — Tq— V 0, we obtain 

T oJjn Ido —

fln —

with the help of which the mean values of the generators Do, Dn- i  and the rest 
ones Dk for k  =  1 ,2 , . . . ,  n — 2 are readily found

(w\D0\v) =

(vj\Dn-i \v)  =

o c u r 1̂ . !  -  l ^ r L i ) v 1 -  <1
+

V I  -  9

1 . Rn-lW  +  L°n_

gn- l fi(Rq L I - ,  -  L g R l - i )  V1 -  9
+ n—11

V I -  9
T 0 pO

(w\Dk\v) = —j {vj\D 0\v) = —\(w \D 0\v).
hr} IXa

With these expressions at hand, it is easy to calculate the expectation value of 
any monomial of the form (w\DslD S2. . .  Dsi \v )  (where D Si =  Dj  for i =
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1 , 2 ,L,  j  =  0 ,1 ,2 , . . . , n — 1), which enters the stationary probability dis­
tribution, the current, and the correlation functions. One first makes use of the 
algebra to bring all generators for k  =  1 ,2 , . . . ,  n — 2 to the very right or to 
the very left, which results in an expression of the expectation value as a power 
in D q and D n-i-  Then one writes the arbitrary power of Do, Dn_i as a normally 
ordered product of A  and .4 ' to obtain, upon using the eigenvalue properties of the 
latter, an expression for the relevant physical quantity in terms of the probability- 
rate-dependent boundary eigenvalues v and w.
We note that if the boundary processes are such that there are only incoming parti­
cles of (n—1 )th-type at the left boundary and only outgoing (n—1 )th-type particles 
at the right boundary, i.e., Lq-1 =  R ^ - i  =  0 in (22), then the eigenstate equations 
define the boundary vectors |u) and (iw| as ^/-deformed coherent states. The value 
q /  0 corresponds to a partially asymmetric while q = 0 to a totally asymmetric 
diffusion in the bulk of the n — 1-type particle. The deformed oscillator coherent 
states defined for 0 < q < 1 and for q =  0 provide a unified description of both 
the partially and the totally asymmetric hopping of a given type of particle.

3.4. The Two-Speeies Model with Incoming and Outgoing Particles at Both 
Boundaries

As an example we consider the two-species partially asymmetric simple exclusion 
process. We simplify the notations, namely at the left boundary a particle can be 
added with probability adt  and removed with probability ydf, and at the right 
boundary it can be removed with probability 0dt  and added with probability Sdt. 
The system is described by the configuration set s±,S2, . . .  , s i  where Si =  0 if 
a site i =  1 ,2 , . . . ,  L  is empty and Sj =  1 if a site i is occupied by a particle. 
The particles hop with a probability gold* to the left and with a probability giodt 
to the right, where without loss of generality we can choose the right probability 
rate gio =  1 and the left probability rate goi =  ?• The quadratic algebra D \D q — 
qDoDi =  D q +  D \ is solved by a pair of shifted deformed oscillators a, a+ (see 
equation (5)). The boundary conditions have the form

( B D \  — S D q ) \ v ) =  |t>), ( w \ ( a D o  — 7 D 1 ) =  (u;|.

For a given configuration (si, S2, ■ ■ ■, s l ) the stationary probability is given by the 
expectation value

=  ( w \ D Si D S 2 . . . D Sl \v )

' Z/,
where DSi =  D \ if a site i =  1 ,2 , . . . ,  L is occupied and D Si =  D q if a site i is 
empty and Zj, =  (w \(Dq +  D \) L\v) is the normalization factor to the stationary 
probability distribution. Within the matrix-product ansatz, one can also evaluate
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physical quantities such as the current J  through a bond between site i and site 
i +  1, the mean density (si) at a site i, the two-point correlation function {SiSj}

J  =

Si =

ZL- i
Zl
w \(Dq D i'f  ^D \(D q +  D \)^  *|t>

ZL
n x _  (w \(Dq +  D i)2_1Di(Do +  D i y -1-1 D \(D q +  D i )£'_ j |u)

\8i8j ) — g

and higher correlation functions. In terms of the deformed boson operators the 
boundary conditions read:

(,0a -  5a+)\v) = \ / l -  q ^1 -  y — ^

(ui|(aa+ — ya) =  (tw| ( 1 —
a  — y

V 1 -  9-

Hence, the boundary vectors |u) and (iw| are squeezed coherent states

(0a — 5a+ )|u) =  A\v) =  u|u), («;|(aa+ — ya) =  (v}\A+ =  (tw|u;

corresponding to the eigenvalues

) (0 ,5) =  \J \  - q  1 -
0 - 6 w (a ,y)  =  \ / l - q  1 -

a  — 7

1 - 9 /   ̂ v V 1 - 9

The explicit form of the (unnormalized) vectors is (tw| =

|u) =  V 1n )- ^ 'e now use ° f  the inverse transformation

n)

a
a = a =

a/3 — y SA + + 7
a/3 — y SA.a 0  — y S a/3 — y S

Hence with A =  a  13 — y5 /  0

_ _ 2 a  +  y /? +  5 , iDq + D i = ---------h , A  -)- . A
1 — 9 A y l - g  A y l - g

and the normalization factor (w \(Dq + D \ ) l \v) to the stationary probability dis­
tribution can be easily calculated in terms of the operators A  and .4 ' .  One has

(Do +  D \) L — +
a  +  7 A + _ p ± * _ A + y

1 ~ q  A y i  -  q Ay/1 -  q J

= E
m=0

LI yL—m —m

ml(L  — m)l (1 — q ) L ~ it
■((a+ y )A + (0 + S)A+)m .
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The implementation of the eigenvalue properties of the squeezed states (tw| and \ v) 
and the procedure for normal ordering in A, A + results in the formula

((a + 1 )A + (0 + S)A+)m
[m/2] m —2k r _  n> i |

k=0

x ((j3 + 5)A+)l((a + 1 )A) m —2k—l

One explores next the eigenvalue properties of the operators A, A + with respect 
to the vectors |u) and (iw| in order to find the normalization factor (w \(Dq +  
D i)L\v) =  Z l for the stationary probability distribution

2/, E  ( L m )
171=0

2L~m [̂ 2] m̂ k (k) ( a +  7 )k(0 + S)k 
( l - q ) L~ f  ^  fr'Q (a3  -  7 <5)m

m  — 2k
((0 +  5)w)l((a +  7 )u)m —2k—l

Consequently one obtains directly an expression for the current J . Using the pre­
scription of normal ordering, one can readily calculate the correlation functions 
and any other quantity of interest like density profiles, etc.

3.5. The Two-Species Asymmetric Simple Exclusion Transfer Process

The model in which one considers only incoming particles at the left boundary 
and only outgoing particles at the right one is exactly solvable through the matrix- 
product states approach [4, 2], We comment on it here just to show that the q- 
deformed oscillator coherent states provide the most simple and convenient ap­
proach to an unified solution of both the partially and the totally asymmetric pro­
cesses. In the partially asymmetric case the probability rate of hopping to the right 
is goi =  q while the left probability rate is <710 =  1. The totally asymmetric exclu­
sion process of particles hopping to the right only is obtained for q = 0. At the left 
boundary a particle can be added with a probability ml/ and it can be removed at 
the right boundary with a probability 0dt. The quadratic algebra is generated by a 
unit and two generators obeying the relation:
Case A. PASEP 0 < q < 1

D \ D q — qDgD± =  D g  +  D \ .

Case B. TASEP q = 0

D\Dg — Dg +  D\
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with the same boundary conditions defining in both cases the boundary vectors (tw| 
and \v)

(w \Dq =  {tul—, 
a

Di\v) =  —It;)

The algebraic solutions (with the corresponding boundary problems) for the par­
tially and for the totally asymmetric cases are of the form of shifted deformed 
oscillators for a real parameter 0 < q < 1 and for q =  0, respectively.
Case A

_ 1 a+ 1 a
Do = z------- 1— , , D\ =   --------1— .

1 ~  q y l  ~  q 1 ~  q y l  ~  q
To solve the boundary problem we choose the vector |u) to be the (unnormalized!) 
eigenvector of the annihilation operator a for a real value of the parameter v and the 
vector (to| to be the eigenvector (unnormalized and different from the conjugated 
one) of the creation operator for the real parameter w

u =  e„ ( H  =  (0 |e “ % (24)

The factor eq 2 in (24) is due to the condition (u;|u) =  1, which is a convenient 
choice in physical applications. According to the algebraic solution, these are 
also eigenvectors of the shifted operators with the corresponding relations of the 
eigenvalues

1 1  w 1 1  v
a  1 — q y/l — q ’ 0  1 — q y jl  — q

Hence the boundary vectors |u) and (to| are a subset of the coherent states of the 
;/-deformed Heisenberg algebra, labelled by the positive real parameters v(a, q) 
and w(0, q) defined in (24). The relation of the boundary vectors to the coherent 
states simplifies the calculation of the stationary probability distribution. Since, 
according to the algebraic solution

L  
\L(Dq -I- D i) —

■yL—m
~(a+ +  a'f

ml(L — m)l (1 — q)L m( \ / l  — q)r

in order to find the expectation values with respect to the coherent states, one has 
normally to order the m-th power of the linear combination a +  a+ , using aa+ — 
qa+a =  1. This is achieved with the help of the Stirling numbers

[m/2] m —2k r 9 j i i

<“++“>m= S
+  \ l „ m —2k—l~(a+)la (25)
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where the /̂-de formed Stirling numbers S$  satisfy the recurrence relation
q ( k ) =  rz,l q (k )  , q ( k - l )^m+l lAWm '

m— 1) _ 1
~  2^i= i fil. For the correlationwith S%} = S0m, =  S t } = 1 and

functions one also needs the expressions

aka+ = qka+ak +  [fc]a*-\ a(a+)k = qk(a+)ka +  [&](a+)fe- 1.

Using these relations one can easily find the relevant physical quantities. For the 
normalization factor Z L one obtains

L
(w\(Do +  D i )l \v) = E

LI ■yL—m

m=0 m l(L  -  (1 -  q)L~ f
[m/2] m - 2 k

y  E  E  W
[m — 2k]!

[l]l[m -  2k -  l]lk = 0  1=0

Case B
Do =  1 +  < =0, D i =  1 +  aq=o- (26)

As the algebra itself, the solution (26) and the boundary vectors are also obtained 
as the limit q —> 0 of the ^/-dependent solution and eigenvectors where the repre­
sentation of the oscillator operators in (26) is found from equations (9) with q =  0, 
namely a+\n) =  |n +  1), a\n) =  |n — 1) and

1 — a 1 - 0w = V =
a

Hence the boundary vectors have the form

'1 — a x n
(w = (n \ E an = 0

1 a  o  old )  1■ '  n = 0

i  i _  M 1/2
y 0  a 0 )
OO y 1 _ 0 s n

n)

The physical quantities of the model are readily obtained from the partially asym­
metric case in the limit q —> 0. Equation (25) becomes simply

[m/2] m - 2 k

(a + a - ) L|g_n — 5 /  S / > E  « . o ) 'K - o ) '\ m —2 k —l

k=0

\<3:

1=0

where now S ^ +1 L=o =  Sm\q=o +  <Sm E = o  and S$n ^L=o =  m  -  1. The
expression for Z/, becomes

L cyl—m  T f [d i/ 2] Di—‘2k

(w \(Dq + D i )l \v) =  E  Yrr-----E  ^  z_E  E  \g=0wlvm^ k- 1.
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The coherent-state description thus provides a unified solution of the partially and 
fully asymmetric simple exclusion models.

4. Conclusions

To summarize we have considered a quantum group solution to the n-species sto­
chastic diffusion process and applied the /̂-de formed squeezed and coherent states 
to obtain within the matrix-product states approach a boundary problem solution 
to a multiparticle (general n) open stochastic system of lattice Brownian motion. 
The deformed coherent states provide a unified description of both the partially 
and the fully asymmetric cases, the solution of the fully asymmetric one being ob­
tained in the limit q —> 0 of the deformation parameter q. The discussed deformed 
squeezed- and coherent-state solution of the boundary problem for the n-species 
stochastic diffusion process is proposed as a generalization of the known examples 
within the matrix-product states approach.
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