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Abstract, We present a new equation with respect to a unit vector field on 
Riemannian manifold M n such that its solution defines a totally geodesic 
submanifold in the unit tangent bundle with Sasakian metric and apply it to 
some classes of unit vector fields. We introduce a class of eovariantly normal 
unit vector fields and prove that within this class the Hopf vector field is 
a unique global one with totally geodesic property. For the wider class of 
geodesic unit vector fields on a sphere we give a new necessary and sufficient 
condition to generate a totally geodesic submanifold in TiSn.

1. In troduction

This paper is organized as follows. In Section 2 we give definitions of harmonic 
and minimal unit vector fields, rough Hessian and harmonicily tensor for the unit 
vector field. In Section 3 we give definition of a totally geodesic unit vector field 
and prove a basic Lemma 2 which gives a necessary and sufficient condition for 
the unit vector field to be lotaly geodesic. Theorem 2 contains a necessary and 
sufficient condition on strongly normal unit vector field to be minimal. In Sec­
tion 4 we apply Lemma 2 to the case of a unit sphere (Lemma 4) and describe 
the geodesic unit vector fields on the sphere with totally geodesic properly (The­
orem 5). We also introduce a notion of eovariantly normal unit vector field and 
prove lhal within this class the Hopf vector field is a unique one with a totally 
geodesic properly (Theorem 3). This theorem is a revised and simplified version 
of Theorem 2.1 in [27], Section 5 contains an observation lhal the Hopf vector 
field on a unit sphere provides an example of global imbedding of Sasakian space 
form into Sasakian manifold as a Sasakian space form with a specific ^-curvature 
(Theorem 6).
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2. P relim inaries 

2.1. Sasakian Metric

Let (M, g) be //-dimensional Riemannian manifold with metric g. Denote by {•, •) 
a scalar product with respect to g. A natural Riemannian metric on the tangent 
bundle has been defined by S. Sasaki [20]. We describe it briefly in terms of the 
connection map.
At each point Q =  (g,£) e  T M  the tangent space TqT M  can be split into the 
so-called vertical and horizontal parts

TqT M  = H qT M  ® VqTM .

The vertical part VqT M  is tangent to the fiber, while the horizontal part is transver­
sal to it. If (u1, . . . ,  un; C1, • • •, £n) form the natural induced local coordinate sys­
tem on T M , then for X  e  TqT M u we have

X  = X id/dui +  X n+td/dC

with respect to the natural frame {d /d u l , d /d£f}  on T M .
Denote by tt : T M  —» M  the tangent bundle projection map. Then its differen­
tial tr* : TqT M  —» TqM  acts on X  as tt*X =  X td /d x t and defines a linear 
isomorphism between VqT M  and TqM .
The so-called connection map K  : TqT M  —» TqM  acts on X  by the rule K X  =  
(A'w' ? -I- X k)d f dul and defines a linear isomorphism between H qT M  and
TqM . The images tt*X and K X  are called horizontal and vertical projections of 
X ,  respectively. It is easy to see that Vq =  ker7r*|g, H q =  ker AT|q .

Let X , Y  e  TqT M . The Sasakian metric on T M  is defined by the following 
scalar product

«X,F))|0 = faX,**Y)\g + {KX,KY) \g

at each point Q =  (q, £). Horizontal and vertical subspaces are mutually orthogo­
nal with respect to Sasakian metric.
The operations inverse to projections are called lifts. Namely, if A' c  TqM n, then 
X h =  X 1d /d u 1 — T)k^ X kd /d C  is in H qT M  and it is called a horizontal lift 
of X ,  while X v =  X td/d£f, which is in VqT M , is called a vertical lift of X .
The Sasakian metric can be completely defined by scalar product of combinations 
of lifts of vector fields from M  to T M  as

( ( X \ Y h))\Q = (X ,Y ) \q, ( (X h, Y v))\Q = 0, { { X \ Y v))\Q = { X ,Y ) \g.
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2.2. Harmonic and Minimal Unit Vector Fields

Suppose, as above, that u := (u1, . . . ,  un) are the local coordinates on M n. Denote 
by (u, £) := (u1, . . . ,  un; . . . ,  £n) the natural local coordinates in the tangent 
bundle T M n. If £(«) is a (unit) vector field on M n, then it defines a mapping

£ : M n -» T M n or £ : M n -» T1M n, when |£| =  1

given by £(«) = («,£(«)).
For the mappings /  : (M, g) —» (N, h) between Riemannian manifolds the energy 
of /  is defined as

E ( f )  := \  [  | d / | 2dvolM
2 JM

where |d /  | is a norm of 1-form d /  in the co-tangent bundle T*M . Supposing on 
7 i M  the Sasakian metric, the following definition becomes natural.

Definition 1. A unit vector field is called harmonic, if it is a critical point o f energy 
functional o f mapping £ : M n —» T \M n.

Up to an additive constant, the energy functional of the mapping is a total bending 
of a unit vector field [24]

B ( 0  := cn [  |Y£ |2 dvolM
JM

where cn is some normalizing constant and |Y£|2 =  YH=i l^7- ,s |2 with respect to 
orthonormal frame e \ , . . . ,  en.
Introduce a point-wise linear operator A £ : TqM n —> . acting as

= -Y xC -
In case of integrable distribution the unit vector field £ is called holonomic [1],
In this case the operator A £ is symmetric and is known as Weingarten or a shape 
operator for each hypersurface of the foliation. In general, A £ is not symmetric, 
but formally preserves the Codazzi equation. Namely, a covariant derivative of A £ 
is defined by

- ( V i 4 e)F  =  V x Vy£ -  V Vxy£- (1)
Then for the curvature operator of M n we can write down the Codazzi-type equa­
tion

R (X , F )£  =  ( V y A ^ X  -  ( V y A ^ Y .
From this viewpoint, it is natural to call the operator A^ as non-holonomic shape 
operator. Remark, that the right hand side is, up to constant, a skew symmetric part 
of the covariant derivative of 
Introduce a symmetric tensor field

He** (A'. Y) = i[(YyHc)X + (YXH€)F] (2)
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which is the symmetric part of the covariant derivative of A^. The trace
n

-  Y  Hess?(ej, et) := A£
i=i

where e \ , . . . ,  en is an orthonormal frame, is known as rough Laplacian [2] of 
the field £. Therefore, one can treat the tensor field (2) as a rough Hessian of the 
field £.
With respect to the above given notations, the unit vector field is harmonic if and 
only if [24]

AC =  - |V C |2C-

Introduce a tensor field

Hmc( I ,  Y ) = \  [J?(C, A?X )F  +  1?(£, A?F)X ] (3)

which is a symmetric part of the tensor field i?(£, .4<;A')F. The trace
n

tra c e H m ^  :=  y ^ H m g (e j,  e^)
i=i

is responsible for harmonicity of mapping £ : M n —» T \M n in terms of general 
notion of harmonic maps [10]. Precisely, a harmonic unit vector field £ defines a 
harmonic mapping £ : M n —» T iM n if and only if [11]

trace  H m ^ =  0.

From this viewpoint, it is natural to refer to the tensor field (3) as harmonicity 
tensor of the field £.
Consider now the image £(M n) c  T \M n with a pull-back Sasaki an metric.

Definition 2. A unit vector field £ on Riemannian manifold M n is called minimal 
if the image o f {local) imbedding £ : M n —» T \M n is minimal submanifold in the 
unit tangent bundle T \M n with Sasakian metric.

A number of results on minimal unit vector fields one can find in [4, 5,6, 8,12,13, 
14, 15, 16, 17, 19, 21, 22, 23]. In [25], the author has found explicitly the second 
fundamental form of £(M n) and presented some examples of unit vector fields of 
constant mean curvature.

3. Totally Geodesic U nit Vector Fields

Definition 3. A unit vector field £ on Riemannian manifold M n is called totally 
geodesic if  the image o f {local) imbedding £ : M n —» T \M n is totally geodesic 
submanifold in the unit tangent bundle T \M n with Sasakian metric.
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Using the explicit expression for the second fundamental form [25], the author 
gave a full description of the totally geodesic (local) unit vector fields on two­
dimensional Riemannian manifold.

Theorem 1 ([28]). Let (M 2, g) be a Riemannian manifold with a sign-preserving 
Gaussian curvature K . Then M  admits a totally geodesic unit vector field £ if and 
only i f  there is a local parametrization o f M  with respect to which the metric g is 
o f the form

ds2 =  du2 +  sin2 a(u) dv2

where a(u) solves the differential equation —— =  1 ----- ——. The corresponding
du cos a

local unit vector field £ is o f the form

£ =  cos (av +  lo0)du +
sin(au +  luo) 

sin a(u)
where a and loq are constants.

For the case of flat Riemannian two-manifold, the totally geodesic unit vector field 
is either parallel or moves helically along a pencil of parallel straight lines on a 
plane with a constant angle speed [26], It is easy to see that the following corollary 
is true.

Corollary 1. Integral trajectories o f a totally geodesic {local) unit vector field on 
the non-flat Riemannian manifold M 2 are locally conformally equivalent to the 
integral trajectories o f totally geodesic unit vector field on a plane. Moreover, with 
respect to Cartesian coordinates (x, y ) on the plane, these integral trajectories are

x  = c fo r a =  0

y(x)  = ----In I sin(aa:)| +  c fo r a ^  0
a

where c is a parameter.

In what follows, we present a new differential equation with respect to a unit vector 
field such that its solution generates a totally geodesic submanifold in T) M "\
In terms of horizontal and vertical lifts of vector fields from the base to its tangent 
bundle, the differential of mapping £ : M n —» T M n is acting as

= X h + ( V x £)v = X h -  { A ^ X r  (4)

where V means Levi-Civita connection on M n and the lifts are considered to 
points of £{Mn).
It is well known that if £ is a unit vector field on M n, then the vertical lift £v is 
a unit normal vector field on a hypersurface T iM n C T M n. Since £ is of unit 
length, £ t X  _L £v and hence in this case £* : T M n —» T ( T i M n).
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Denote by ^  —> TqM n a formal adjoint operator

(Ai X , Y ) q = ( X , A l Y ) q.

Denote by £-*- a distribution on M n with £ as its normal unit vector field. Then for 
each vector field N  c ( ' .  the vector field

N  = ( A \ N ) h +  N v (5)

is normal to £(M n). Thus, (5) presents the normal distribution on £(M n).

Lemma 1. Let M n be Riemannian manifold and T \M n its unit tangent bundle 
with Sasakian metric. Let £ a smooth (local) unit vector field on M n. The sec­
ond fundamental form o f £(M n) C T \M n with respect to the normal vector
field (5) is o f the form

£*F) =  —<Hessc(X, Y )  +  Y ) , N )  (6)

where X  and Y  are arbitrary vector fields on M n.

Proof: By definition, we have

% (£*X ,£*F ) =  { { V ^ x ^ Y , N ) ) ( gM)

where V is the Levi-Civita connection of Sasakian metric on T M n. To calculate 
V ^x£*F , we can use the formulas [18]

V Xh Y h = ( V x Y ) h -  ^ ( R ( X ,  F )C f , V Xv Y h = ^(R(fi,  X ) Y ) h

V x h Y v = ( V X Y ) V +  ^(R(A, Y ) X ) h, V Xv Y v = 0.

A direct calculation yields

=  ( v x f  +  v x $ y  +  \ r {l  y Y i ) x ) h 

+ { v x v Yi - l- R ( x , Y ) i ) v.

The derivative above is not tangent to £(M n). It contains a projection on “external” 
normal vector field, i.e. on £f which is a unit normal of T \M n inside T M n. To 
correct the situation, we should subtract this projection, namely — ( Xx £, V y £)£, 
from the vertical part of the derivative.
Therefore, we have

£*F) =  <yx y y £ +  v y £)£ -  ± r (x , r ) £ ,  n )

+  (V x F  +  V * £ )F  +  X y O X ,  A \ N)
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or, equivalently,

£*F) =  (Vx Vy£ +  (Vx £, Vy£)£ -  \ r {X,  F )£

+  AC(VXF  +  l-R (£ , V X£)F  +  V y£)X ), N ).

Taking into account (1), (2), (3) and (5), and also

RIX.  F )£  =  V xV yC -  V y VxC -  V p ^

we can write

% (£*X , £*F) =  -(H essc(X, F ) +  i cHmc( I ,  Y ) , N )

which completes the proof. □

Lemma 2. Let M n be Riemannian manifold and T \M n its unit tangent bundle 
with Sasakian metric. Let £ be a smooth {local) unit vector field on M n. The 
vector field £ generates a totally geodesic submanifold £(M n) C T \M n if  and 
only if  £ satisfies

Hessc(X, F ) +  i cHmc( I ,  F ) -  <A?X, A?F)£  =  0 (7)

for all (local) vector fields X, Y  on M n.

Proof: Taking into account (6), the condition on £ to be totally geodesic takes the 
form

-  Hessc(X, F ) -  i cHmc( I ,  F )  =  A£.
Multiplying the equation above by £, we can find easily A =  — {/If A'. A^F). □

Following [16], we call a unit vector field £ strongly normal if

{{Vx A ^ Y ,  Z) = 0

for all X , Y , Z  e  £-*-. In other words, (V y A ^ F  =  A£ for all I , F  e  £-*-. It is 
easy to find the function A. Indeed, we have

A =  ((VXAC)F,£) = (VVxy£ -  V x V y£,£)
=  - { V x V y £ , £ )  =  { V x £ ,V y £ ) .

Thus, the strongly normal unit vector field can be characterized by the equation

{Vx A i ) Y  = (A€X ,A €F )£  (8)

for all X, F  e  £x .
The strong normality condition highly simplifies the second fundamental form of 
£(M n) C T \M n. An orthonormal frame ey e?,. . . ,  en is called adapted to the 
field £ if ei =  £ and e<z, ■ ■ ■, en 6 £■*■.



Minimal and Totally G eodesic  Unit Vector Fields 299

Lemma 3. Let £ be a unit strongly normal vector field on Riemannian manifold 
M n. With respect to the adapted frame, the matrical components o f the second 
fundamental form o f  £(M n) C T \ ( M n) simultaneously take the form

/* * ... *\
* 0 . . .  0

V* o ... o/
Proof: Set N„ < „.o  2........n. The condition (8) implies

R( X,  F )£  =  0, Hessc(X, Y)  = (A^X,  AeF)£, Hm?(X, F )  ~  £ 

for all X,  Y  e  £■*-. Therefore, with respect to the adapted frame

{£* 5 £*c^) 0, 01, 3  2 , . . . ,  n
for all a  =  2 , . . . ,  11. □

The following assertion is a natural corollary of the Lemma 3.

Theorem 2. Let £ be a unit strongly normal vector field. Denote by k the geodesic 
curvature o f its integral trajectories and by u the principal normal unit vector field 
o f the trajectories. The field £ is minimal if  and only if

fc[£, 0 } +  £(fc)2/ -  kA ^R (2/, £)£ +  k 2£ = 0

where [£, v\ =  V^i/ — V„£.

Proof: Indeed,

C*ei )  =  -< H ess€(£ ,£ ) +  ^ H m €(C ,C),e tJ).

Denote by v  a vector field of the principal normals of ̂ -integral trajectories and by 
k  their geodesic curvature function. Then

Hessj(£, £) =  V v?f -  VCVC£ =  W ,£  -  = k[o, £] -  £(*0*

Hm€(£,£) =  -i*(£ , Vc£)£ = - k R i M Z  

and we get

^o-(C*ei,C*ei) =  (&[£> v] +  £(&)i/ ~  kA^R(i / ,^)^,ea).
Finally, to be minimal, the field £ should satisfy

fc[£, v) +  £(fc)i/ -  kA ^R iy, £)£ =  A £.

Multiplying by £, we get

\  = m , v U )  = k ( Y ^ , 0  = - k 2

which completes the proof. □
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Thus, we get the following

Corollary 2 ([16]). Every unit strongly normal geodesic vector field is minimal. 

Most of examples of minimal unit vector fields in [16] are based on this Corollary.

4. T he C ase o f a  U nit Sphere

If the manifold is a unit sphere S n+1, the equation (7) can be simplified essentially.

Lemma 4. A unit (local) vector field £ on a unit sphere S n+1 generates a totally 
geodesic submanifold £(Sn+1) C T iS n+1 if  and only i f  £ satisfies

( VxAt f i Y  = \  [(£c g)(X,  F )  A^£ +  <£, X ) ( A I y  +  F )2 L (9)

+  <£, Y ) ( A \ X  -  X )| +  {AzX,  A^F)£

where (£^ g)(X,  F )  =  (Vy£, F ) +  (X,  Vy£) «  « Eie derivative o f metric tensor 
in a direction o f £.

Proof: Indeed, on the unit sphere

(V y A ^ X  -  (V xA f )F  =  R(X,  F )£  = <£,F)X -  (£ ,X )F

Hence,

Hes8€(X ,F ) =  ( V y ^ ) F  +  i [ ( C ,F ) X -  (C,X)F].

For Hm^(T, F ) we have

Hm?(X, F )  =  X-  [<Vy£, F )£  -  <£, F )V yC  +  <Vy£, X>£ -  <£, X ) VyC]

=  l- (£ ^  g)(X,  F )£  +  \  [<£, F ) ^ X  +  <£, X)A^y ] .

Finally, we find

(Vx A^Y = X-  [(£c g)(X, Y)Ac£ + <£, X)(A lY  + Y) + <£, Y)(A\X  -  X)]

+  <A€X ,A €F)£.

Remind that the operator A £ is symmetric if and only if the field £ is holonomic, 
and is skew-symmetric if and only if the field £ is a Killing vector field. Both types 
of these fields can be included into a class of covariantly normal unit vector 
fields.
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Definition 4. A regular unit vector field on Riemannian manifold is said to be 
covariantly normal if the operator ^  : T M  —> £-*- defined by A ^X  = —V x£ 
satisfies the normality condition

= A^A\

with respect to some orthonormal frame.

The integral trajectories of holonomic and Killing unit vector fields are always 
geodesic. Every covariantly normal unit vector field possesses this property.

Lemma 5. Integral trajectories o f a covariantly normal unit vector field are geo­
desic lines.

Proof: Suppose £ is a unit covariantly normal vector field on a Riemannian mani­
fold M n+1. Find a unit vector field vi such that

=  —ko  i-

Geometrically, the function k  is a geodesic curvature of the integral trajectory of 
the field £.
Complete up the pair (£, vi) to the orthonormal frame (£, i' i , . . . ,  on). Then we 
can set

=  ~ k v i, X Vai  =

where a, 0 =  1, , n.  With respect to the frame . . .  ,i/n) the matrix A^
takes the form

( ° k 0 . ■ ° \

Ae =
0 a\ 4  • • 4

VO ai a2 • • < )
and, therefore,

ka\ . . .  k a f \ /0  0 ..
•ka\ * *

, A \A t =
0 * . . *II

\kafi * • *  J \o  * .. ’ *)
which allows to conclude that k  =  0. □

Now we can easily prove the following

Theorem 3. Let £ be a global covariantly normal unit vector field on a unit sphere 
S n+1. Then i is a totally geodesic if and only i f  n =  2m and £ is a Hopf vector 
field.
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Proof: Suppose £ is covariantly normal and totally geodesic. Then

V  =  -V ^£  =  0
by Lemma 5 and the equation (9) takes the form

{VXA^)Y =  i  [(£, X) ( A\ Y  + Y) +  (£, Y) (A\X  -  X)] +  {A^X, ^ K )£ . (10)

Setting X  Y  =  £ we get an identity. Set Y  =  £ and take arbitrary unit X  _L £. 
Then we get

2(Va , 4 / ) £ - X  Ai X.
On the other hand, directly

( V x ^ ) £  =  - ( V XVC£ -  V VxC£) =  A \X .

Hence,

4 L -  =  ~ E -
Therefore, n =  2m. Since A £ is real normal linear operator, there exists an or­
thonormal frame such that

(0  \
0 1 

- 1  0 
A* =

0 1
V - 1  0 /

with zero all other entries. Therefore, A^ +  A^ =  0 and £ is a Killing vector field. 
Since £ is supposed global, £ is a Hopf vector field.
Finally, if we take X , Y  _L £, we get the equation

(Vx Az)Y = (AzX,AzY)Z.
But for a Killing vector field £ we have [16]

( V x A z ) Y  = R ( £ , X ) Y  = (X ,F )£ .

Since £ is a Hopf vector field, (A^X,  A^Y)  =  (X,  Y) .  So, in this case we have an 
identity.
If we suppose now that £ is a Hopf vector field on a unit sphere, then £ is covariantly 
normal as a Killing vector field and totally geodesic [27] as a characteristic vector 
field of a standard contact metric structure on S 2m+1. □

Theorem 3 is a correct and simplified version of Theorem 2.1 [27], where the 
normality of the operator A £ was implicitly used in a proof.
In the case of a weaker condition on the field £ to be only a geodesic one, the result 
is not so definite. We begin with some preparations.
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The almost complex structure on T M n is defined by

J X h = X r . J X V = X h

for all vector field X  on M n. Thus, T M n with Sasakian metric is an almost 
Kahlerian manifold. It is Kahlerian if and only if M n is flat [9].
The unit tangent bundle T \M n is a hypersurface in T M n with a unit normal vector 
£v at each point (q, £) e  T \M n. Define a unit vector field £, a 1-form fj and a (1,1) 
tensor field (p on 7 i M n by

I  =  - j c  = j x  = p>x  + n ( x ) e -
The triple (£, fj, <p) form a standard almost contact structure on T i M n with Sasa­
kian metric gs- This structure is not almost contact metric one. By taking

f  =  2£ =  2^h, fj = ^ fj , <p = fi, gem =

at each point (q, £) e  T \M n, we get the almost contact metric structure (£, fj, (p)
on (T1M n,gcm).
In a case of a general almost contact metric manifold (M , f, fj, (p, g) the following 
definition is known [7],

Definition 5. A submanifold N  o f a contact metric manifold (M , £, fj, ip, g) is 
called invariant if ip(TpN)  C TpN  and anti-invariant if  <p(TpN)  C (TpN ) L for  
every p e  N.

If N  is the invariant submanifold, then the characteristic vector field £ is tangent 
to N  at each of its points.
After all mentioned above, the following definition is natural [3].

Definition 6. A unit vector field £ on a Riemannian manifold (M n,g) is called 
invariant (anti-invariant) is the submanifold £(M n) C (T \M n, gcm) is invariant 
(anti-invariant).

It is easy to see from (4) that the invariant unit vector field is always a geodesic 
one, i.e. its integral trajectories are geodesic lines.
Binh, Boeckx and Vanhecke [3] have considered this kind of unit vector fields and 
proved the following

Theorem 4. A unit vector field £ on ( M n, g) is invariant if and only i f  (fi =  fj =  
(•, £)g , =  A^) is an almost contact structure on M n. In particular, £ is a geo­
desic vector field on M n and n = 2m  +  1.

Now we can formulate the result.

Theorem 5. A unit geodesic vector field £ on S !l' 1 is totally geodesic if  and only 
if n =  2m and £ is a strongly normal invariant unit vector field.
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Proof: Suppose £ is a geodesic and totally geodesic unit vector field. Then A^£ =  
0 and the equation (9) takes the form (10). Follow the proof of Theorem 3, we 
come to the following conditions on the field £

A \X  = - X , ( V x ^ ) y  =  <A?X, A?F)£  (11)

for all X , Y  e  £■*-. From the left equation in (11) we conclude that n =  2m. 
Comparing the right one with (8), we see that £ is a strongly normal vector field. 
Consider now a (1,1) tensor field p  = A^ = —V£ and a 1-form rj =  {•, £). Taking 
into account the left equation in (11) and A ^  =  0, we see that

‘p2 X  =  —X  +  t](X)£,  ¥>£ =  0, ri(<pX) = 0, r,{X) = 1

for any vector field X  on the sphere. Therefore, the triple

<P = M ,  £ =  £, r}={;£)

form an almost contact structure with the field £ as a characteristic vector field of 
this structure. By Theorem 4, the field £ is invariant.
Conversely, suppose £ is strongly normal and invariant vector field on S n+1. Then, 
by Theorem 4, £ is geodesic and n =  2m. The rest of the proof is a direct checking 
of formula (10). □

5. A R em arkab le  P ro p erty  o f the  H opf Vector Field

It is well-known that for a unit sphere S n the standard contact metric structure on 
T iS n is a Sasaki an one. If £ is a Hopf unit vector field on S '1" ' ' 1. then £ is a 
characteristic vector field of a standard contact metric structure on the unit sphere 
S 2m+1. By Theorem 4, the submanifold £(52m+1) is invariant submanifold in 
T1S 2m+1. Therefore, £(S2m+1) is also Sasakian with respect to the induced struc­
ture [29]. Since the Hopf vector field is strongly normal, by Theorem 5, the sub­
manifold £(52m+1) is totally geodesic. The sectional curvature of the submanifold 
£ (52m+i) was found in [27] and implies a remarkable corollary.

Theorem 6. Let £ be a Hopf vector field on the unit sphere S 2m+1. With respect 
to the induced structure, the manifold £(S2m+1) is a Sasakian space form o f ip- 
curvature 5/4.

In other words, the Hopf vector field provides an example of embedding of a 
Sasakian space form  of 99-curvature 1 into Sasakian manifold such that the image 
is contact, totally geodesic Sasakian space form  of 99-curvature 5/4 with respect to 
the induced structure.
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