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Abstract, A gyroveetor is a hyperbolic vector. Gyroveetors are equivalence 
classes of directed gyrosegments that add according to the gyroparallelogram 
law just as vectors are equivalence classes of directed segments that add ac­
cording to the parallelogram law. In the “gyrolanguage” of this paper one 
attaches the prefix “gyro” to a classical term to mean the analogous term in 
hyperbolic geometry. The prefix stems from Thomas gyration, which is the 
mathematical abstraction of the relativistic effect known as Thomas preces­
sion. Gyrolanguage turns out to be the language one needs to articulate novel 
analogies that the classical and the modem in this paper share. The aim of 
this article is to employ recent developments in analytic hyperbolic geometry 
for the presentation of the relativistic hyperbolic parallelogram law, and the 
relativistic particle aberration.

1. Introduction

Einstein noted in 1905 that
“Das Geselz vom Parallelogramm der Geschwindigkeilen gill also 
nach unserer Theorie nur in ersier Annaherung.”

[Thus the law of velocity parallelogram is valid according lo our theory only lo a 
first approximation.] The important “velocity parallelogram” notion lhal appears 
in Einstein’s 1905 original paper [1] as “Parallelogramm der Geschwindigkeilen” 
does not appear in its English translation [2], It can be found, however, in other 
English translations as, for instance, the translation by H. Lorenlz, H. Weyl and 
H. Minkowski [6, pp. 37-65; p. 50].
About a century later the geometry underlying Einstein’s observation on the 
approximate validity of the velocity parallelogram was uncovered in [18, 23],

A. Einstein [1]
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Einsteinian velocities are regulated by hyperbolic geometry and its gyrovector 
space algebraic structure just as Newtonian velocities are regulated by Euclidean 
geometry and its vector space algebraic structure. Accordingly, Einsteinian ve­
locities obey the gyroparallelogram addition law of gyrovectors just as Newtonian 
velocities obey the parallelogram addition law of vectors. Gyrovectors or, equiva­
lently, hyperbolic vectors, are introduced in [23].
The gyroparallelogram law (24) of gyrovector addition, shown in Fig. 3, is anal­
ogous to the parallelogram law of vector addition in Euclidean geometry, and is 
given by the coaddition of gyrovectors. Remarkably, in order to capture analo­
gies between parallelograms and gyroparallelograms, we must employ both the 
gyrocommutative operation © and the commutative cooperation EB of gyrovector 
spaces. Gyrovectors are thus equivalence classes of directed gyrosegments in an 
Einstein gyrovector space that add according to the gyroparallelogram law, Fig. 2, 
just like vectors, which are equivalence classes of directed segments that add ac­
cording to the parallelogram law.
Along the analogies, a remarkable disanalogy emerges as well. Newtonian veloc­
ity addition and the parallelogram addition law of Newtonian velocities coincide. 
In contrast, Einstein velocity addition and the gyroparallelogram addition law of 
Einsteinian velocities do not coincide. The reason is clear: Einstein velocity ad­
dition is in general noncommutative, while the gyroparallelogram addition law is 
commutative.

Definition 1 (Einstein Addition in the Ball). Let ¥  =  (¥, + , •) be a real inner 
product space [7] and let ¥ s be the s-ball o /¥ ,

¥ s =  {v e  ¥ ;  ||v|| < s} (1)

where s > 0 is an arbitrarily fixed constant. Einstein addition ® is a binary 
operation in ¥ s given by the equation [23]

n : V -----------{ u  +  — •v +  —— (u -v )u l (2)
1 +  uyy \  7u s2 1 +  7u j

s2
satisfying the gamma identity

7u®v — " u ' v 1 + UV
1 2 “ (3)

u, v  6 ¥ s, where yu is the gamma factor
1

(4)

in ¥ s, and where ■ and || || are the inner product and norm that the ball ¥ s inherits 
from its space ¥ .
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In the special case when ¥  =  R3 is the Euclidean 3-space, ¥ s reduces to the ball 
of R3 of all relativistically admissible velocities, and Einstein addition in R3 turns 
out to be the special relativistic Einstein addition law of relativistically admissible 
velocities, where c is the vacuum speed of light. We naturally use the notation 
U0V =  110 ( —v ).

When the vectors u  and v  in the ball ¥ s of ¥  are parallel in ¥ ,  u  || v, that 
is, u  =  Av for some A e  R, Einstein addition reduces to a commutative and 
associative binary operation between parallel velocities

u — v
»» : v =  . ............ . u  II V .  (5)

1 +  -4- u  vsl 11 1111 11

Seemingly structureless, Einstein addition (2) is neither commutative nor associa­
tive. It is therefore important to realize that Einstein addition possesses a useful 
structure similar to, but richer than, that of a the common vector space operation. 
As such it gives rise to the Einstein gyrovector spaces [14, 15, 17, 18, 19, 20, 23] 
linked to Lie gyrovector spaces [4] and differential geometry [22],
In order to capture analogies with groups, we must introduce into gyrogroups 
(G, ©) a second operation EB, called cooperation. It is a coaddition that shares 
useful duality symmetries with its gyrogroup addition © [18, 23].

Definition 2 (The Gyrogroup Cooperation (Coaddition)). Let (G, ©) be a gy­
rogroup with gyrogroup operation (or, addition) ©. The gyrogroup cooperation 
{or, coaddition) EE3 is a second binary operation in G given by the equation

a EB b =  a©gyr[a, ©6]6 (6)

for all a,b  6 G.

Naturally, we use the notation a □ 6 =  a EE3 (—b). The gyrogroup cooperation 
is commutative if and only if the gyrogroup operation is gyrocommutative [23, 
Theorem 3.4, p. 50].
The gyrogroup cooperation EB is expressed in (6) in terms of the gyrogroup opera­
tion © and gyrator gyr. It can be shown that, similarly, the gyrogroup operation © 
can be expressed in terms of the gyrogroup cooperation EB and gyrator gyr by the 
identity [23, Theorem 2.10, p. 28],

a ©6 =  a EB gyr[a, b\b (7)

for all a, 6 in a gyrogroup (G, ©). Identities (6) and (7) exhibit one of the duality 
symmetries that the gyrogroup operation and cooperation share.
First gyrogroup theorems are presented in [18, 23], where it is shown in particular 
that any gyrogroup possesses a unique identity (left and right) and each element
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of any gyrogroup possesses a unique inverse (left and right). Furthermore, any 
gyrogroup obeys the left cancellation law

0a®  (a® b) = b (8)

and the two right cancellation laws

(6®a) B a = b (9)
(b B a)©a =  b (10)

[23, p. 33]. Identities (9) and (10) present a duality symmetry between a gyrogroup 
operation and cooperation.
Finally, it follows from the left cancellation law and the left gyroassociative law 
that gyrations in a gyrogroup are uniquely determined by the gyrogroup operation

gyr[a, b]x = ©(a®6)®{a®(6®a:)}. (11)

Identity (11) is therefore called the gyrator identity.

2. Gyroangles

Definition 3 (Unit Gyroveetors). Let 0a® b be a nonzero gyrovector in an Ein­
stein gyrovector space (Vs, ®, ®). Its gyrolength is ||©a®b|| and its associated 
gyrovector

©a®b
©a®b

( 12)

is called a unit gyrovector.

Definition 4 (The Gyroeosine Function And Gyroangles). Let ©a®b and ©a®c 
be two nonzero rooted gyroveetors, rooted at a common point a  in an Einstein gy­
rovector space (Vs, ®, ®). The gyroeosine o f the measure o f the gywangle a, 
0 < a  < 7T, that the two rooted gyroveetors generate is given by the equation

0a® b 0a® c
c o s a  =  t;---------------77--,-------------- tt . (1 3 )

||©a®b|| ||©a®c||
Gyroangles are invariant under left gyrotranslations [23, Theorem 8.6], The gy- 
roangle a  in (13) is denoted by a  =  Zbac or, equivalently, a  =  Zcab. Two 
gyroangles are congruent if they have the same measure.

The gyrotrigonometry of the Einstein gyrovector plane, presented and studied in 
[23, Ex. (8), p. 328], is summarized in Fig. 1.
The operational interpretation of gyroangles in R | is natural. The origin of the 
Einstein gyrovector space (R |, ®, ®) is conformal. Hence, gyroangles and angles 
with vertex at the origin coincide. Accordingly, if a, b, c are any three points of an 
Einstein gyrovector space (R j, ®, ®), the measure of the gyroangle a g =  Zsbac 
equals the measure of the angle a a =  Za(©a®b)0(©a®c) between the directions
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Figure 1, Gyrotrigonometry in Einstein gyroveetor plane (R.2, ©, ®).
The gyroeosine and the gyrosine are elementary gyrotrigonometrie 
functions. Their behaviour is identical with that of the elementary 
trigonometric functions modulo gamma factors. Thus, for instance, 
sin2 a  +  cos2 a =  1 and cot a =  cos a /  sin a = jcb/ (7aa) [23].

of motion of inertial frames and Ec away from inertial frame £ a , as seen by 
observers at rest relative to £ a. This follows from the result that gyroangles are 
invariant under left gyrotranslations.
The gyrotriangle gyroangles determine uniquely the gyrotriangle side-gyrolengths. 
Using the standard notation for gyrotriangles as in Fig. 1 but in which gyroangle 7 
need not be tt/2 , we have

cos a  +  cos 0  cos 7
7a =  -------:---rt ■ '--------sin 0  sin 7

cos 0  +  cos a  cos 7
7b =  ---- ^ ------ :---------- (14)sm  a  sin 7 

cos 7 +  cos a  cos 0  
sin a  sin [37C
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and conversely

cos a  =  

cos 0  =

- 7 a  +  7 h7c 
7b7c b sC s  

- 7 b  +  7a 7c 
7a7cascs

(15)

c o s y  =
- 7 c  +  7;, 7b 

7a7baA
where as 
interesting

implying

a/s,  etc. The special case of (14) when y =  tt/ 2 is particularly

cos a  

sin 0 
cos 0

7b =

7C =

sm  a
cos a  cos [0 
sin a  sin 0

cot a  cot [0

(16)

7a 7b 7c 7a®b (17)
for any right gyroangled gyrotriangle. As such, (17) may be viewed as a Pythago­
rean theorem in Einstein gyrovector spaces. Identities (14)—(15) follow from [23, 
Theorem 8.48, p. 280] with translation from Mobius to Einstein gyrovector spaces. 
The second equation in (17) follows from the gamma identity (3).

3. The Gyroparallelogram Law

A quadrilateral is a parallelogram if the lines containing opposite sides are parallel. 
Since the notion of parallelism between lines in vector spaces cannot be extended 
to gyrolines in gyrovector spaces, we note an equivalent definition of the paral­
lelogram: A quadrilateral is a parallelogram if the midpoints of its two diagonals 
coincide. Accordingly, a gyroparallelogram is a gyroquadrilateral the two diago­
nals of which intersect at their gyromidpoints [16], The formal definition of the 
gyroparallelogram in a gyrovector space thus follows.

Definition 5 (Gyroparallelograms). Let a, b  and b ? be any three points in a gy­
rovector space (G, ®, ®). The four points a, b, b ?, a ? in G are the vertices o f the 
gyroparallelogram a b a ?b ?, Fig. 2, i f  a ? satisfies the gyroparallelogram condition

a ? =  (b EE3 b ?)0 a. (18)

The gyroparallelogram is degenerate if  the three points a, b  and b ? are gyro- 
collinear [23, Def. 6.22],
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Figure 2, Einstein Gyroparallelogram, Def. 5, and the Relativistic Ve­
locity Gyroparallelogram Addition Law, (24). Let a, b, b ' be any three 
nongyrocollinear points in an Einstein gyrovector space (Vs, ffi, ®), Vs 
being the s-ball of the real inner product space (¥ , + , •), and let a ' 
be given by the gyroparallelogram condition (18), a ' =  (b EB b')© a. 
Then the four points a, b, b ', a ' are the vertices of the Einstein gy­
roparallelogram a b a 'b ' and, by [23, Theorem 6.45], opposite sides are 
equal modulo gyrations. Shown are three expressions for the gyro- 
center m aba'b' =  rriaa' =  iribb' of the Einstein gyroparallelogram 
a b a 'b ' in an Einstein gyrovector plane (R |, ffi, ®). These can be ob­
tained by relativistic CM (Center of Momentum) velocity considera­
tions [19, 21, 23],

I f  the gyroparallelogram a b a 'b ' is non-degenerate, then the two vertices in each 
o f the pairs (a, a ') and (b, b ') are said to be opposite to one another. The gy- 
rosegments o f adjacent vertices, ab, ba', a 'b ' and b 'a  are the sides o f the gy­
roparallelogram. The gyrosegments aa ' and b b ' that join opposite vertices in the 
non-degenerate gyroparallelogram a b a 'b ' are the gyrodiagonals o f the gyropar­
allelogram.

The gyrogeometric significance of the gyroparallelogram condition (18) rests on 
its gyrocovariance with respect to rotations and left gyrotranslations. Indeed, a ' of
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(18) satisfies the identity [23, Eq. 3.64]

x® a? =  x® {(b EB b ?)©a} =  {(x®b) EE3 (x®b?)}©(x0 a) (19)

for all a, b, b?, x c  (>'. demonstrating that the point a ' and its generating points a, 
b  and b? vary together under left gyrotranslations.
Of particular interest is the spacial case of (19) corresponding to x  =  ©a, giving 
rise to the identity

(©affib) ffl (0 affib?) =  0 a® {(b ffl b ?)©a} (20)

for all a, b, b ? e  G. Identity (20) is a special kind of associative law enabling one 
to group together b  and b ? of the left hand side of (20). The need to employ this 
special kind of associative law will arise in the proof of the gyroparallelogram law 
in Theorem 2.

Theorem 1 (Gyroparallelogram Symmetries). Every vertex o f the gyroparallel­
ogram a b a ?b ? satisfies the gyroparallelogram condition, (18), that is,

a  =  (b EE3 b ?)0 a ? 

b  =  (a EE3 a ?)0 b ?
(21)

b ? =  (a EE3 a ?)©b 

a ? =  (b EE3 b ?)0 a.

Furthermore, the two gyrodiagonals o f the gyroparallelogram are concurrent, the 
concurrency point being the gyromidpoint o f each o f the two gyrodiagonals.

Proof: The last equation in (21) is valid by Definition 5 of the gyroparallelogram. 
By the right cancellation law (10) this equation is equivalent to the equation

a  ffl a ? =  b  ffl b ?. (22)

Since the coaddition EB is commutative in gyrovector spaces [23, Theorem 3.4], 
equation (22) is equivalent to each of the equations in (21) by the right cancellation 
law (10), thus verifying the first part of the theorem.
Equation (22) implies

(a EB a ') =  |® (b  EB b ?). (23)

By [23, Def. 3.37] the left-hand side of (23) is the gyromidpoint of the gyrodiag- 
onal a a ? and the right-hand side of (23) is the gyromidpoint of the gyrodiagonal 
b b ? [23, Theorem 6.33], Hence, the gyromidpoints of the two gyrodiagonals a a ? 
and b b ? of the gyroparallelogram coincide, thus verifying the second part of the 
theorem. □
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4. The Relativistic Velocity Gyroparallelogram Addition Law

Theorem 2 (The Gyroparallelogram Addition Law). Let aba?b? be a gyropar­
allelogram in a gyrovector space (G , ©, ®), Fig. 2. Then

(0a® b) EB (0a® b?) =  ©a®a?. (24)

Proof: By (20) and (18) we have

(0a® b) ffl (0a® b?) =  0a® {(b  ffl b?)©a}
(25)

=  © a® a.

The gyroparallelogram addition law (24) in an Einstein gyrovector space of rela- 
tivistically admissible velocities (R |, 0 , ®), Fig. 2, is called the relativistic velocity 
gyroparallelogram addition law.
The relativistic velocity gyroparallelogram addition law plays in special relativity 
a role analogous to the role that the velocity parallelogram addition law plays in 
classical mechanics. In order to demonstrate this analogy we employ our study of 
the gyroparallelogram gyroangles in Sec. 5 to recover the standard angle of stellar 
aberration that results from the apparent shift in the position of stars due to the 
motion of the Earth as it orbits the Sun. The discovery of stellar aberration by 
Bradley around 1728 is described in [12].

5. The Gyroparallelogram Gyroangles

Let

a  =  Z B A B ' = Z B 'A 'B  

0 = Z A 'B A  = Z A B 'A '

be the two distinct gyroangles of the gyroparallelogram A B A 'B ', Fig. 3. They are 
related to each other by the equations

l a l b d s b s  -  ( 1  +  l a l b )  COS 0
COS a  =  — ------------------------------------- — -------- —

1 +  l a l b  ~  la lb a -s O s  COS 0

a  l a l b d s b s  ~  ( 1  +  l a l b )  COS a  

1 +  l a l b  -  l a l b d s b s  COS a

(27)

as one can see by translating [23, Theorem 8.59, p. 297] from Mobius to Einstein 
gyrovector spaces by means of [23, Eqs. (6.309)-(6.310), p. 297],
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Figure 3, The Gyroangles of the Einstein Gyroparallelogram in Ein­
stein gyroveetor spaces (Vs , ©, ®). The two distinct gyroangles a and 
/3 of a gyroparallelogram in an Einstein gyroveetor space are related to 
each other by (27)—(28).

It follows from (27) and the gyrotrigonometrie identity sin2 a+ eos2 a  =  sin2 0+  
cos2 0  =  1, Fig. 1, that

l a  +  7 6  . asm a  = -------------------------------- - sm 0
1 +  l a l b  -  la lb O -sO s  COS [0

■ a  l a  +  l hsm 0 =  ----------------------------------sm a.
1 +  l a l b  ~  la lb O -sO s  COS a

(28)

In the Newtonian limit, s —» oo, and 75 reduce to 1 while as and bs van­
ish. Hence, identities (27)-(28) for the gyroparallelogram reduce to the identities 
cos a  = — cos 0  and sin a  = sin 0  for the parallelogram, implying 0  =  tt — a  as 
expected.
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According to the gyroparallelogram addition law, (24), the gyrodiagonal A A ' of a 
gyroparallelogram A B A 'B ', Fig. 3, satisfies the gyrovector equation

©A®A' =  a  ffl b  (29)

where a  and b  are the gyrovectors
a  =  QA®B

, (30)
b  =  eA ® B '

with magnitudes
a =  a

b =  lib (31)

Furthermore, by [23, Eqs. (3.156)-(3.157), p. 81] we have

7a +  7ba  ffl b  =
l l  +  7 b  +  7 a 7 b ( 1 +  a s - b s )  -  1

implying

1 .. m _  (7a +  7 b )(/(7 a  + 7 b  )2 -  2{7a 7b i 1 ~  a s'bs) +  1}
— ||a ffl b|| =  
s

and

7a: 11 b —

(7a +  7b )2 -  7a 7b (! -  a s'bs) -  1 

7a +  7b +  7a7b(! +  a s’b s) -  1

where, as we see from Fig. 3
7a7b(! -  a s 'b s) +  1

a s-bs =  asbs cos a.

(32)

(33)

(34)

(35)

Here a s =  a / s, as = a /s , etc.
We now wish to calculate the gyroparallelogram gyroangle a ' (0') generated by 
the gyroparallelogram gyrodiagonal A A ' {BA'), Fig. 3, in terms of the gyropar­
allelogram gyroangle a  (0) and its side gyrolengths a =  ||a|| and b =  ||b||. We 
therefore extend the gyrotriangle A B A ' of the gyroparallelogram in Fig. 3 into a 
right gyroangled gyrotriangle A C  A ' , as shown in Fig. 4; and apply the Einstein gy- 
rotrigonometry, Fig. 1, to the resulting two right gyroangled gyrotriangles A C  A' 
and B C A ' in Fig. 4.
Applying Einstein gyrotrigonometry, Fig. 1, to the right gyroangled gyrotriangle 
B C A ' in Fig. 4 we have

c o s ( tt —  0 )  

sin(7r — 0)

\\eB ® c\\
b

% b

(36)
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Figure 4, The Gyroangles of the Einstein Gyroparallelogram in Ein­
stein gyroveetor spaces (Vs , ©, ®). The two distinct gyroangles a and 
/3 of a gyroparallelogram in an Einstein gyroveetor space are related 
to each other by (27)—(28). If B  lies between A  and C, as shown 
here, then ||©.AffiC'|| =  ||©j4ffiB||ffi||©B©C'||, and ||©i?ffiC'|| =  
6cos(tt — 0). If C  lies between A  and B  then ||©j4©C'|| = 
||©J4ffiB||©||©BffiC'||, and ||©BffiC'|| =  bcos(3.

Hence, noting that cos(tt — 0) = — cos 0  and sin(7r — 0) = sin 0  we have

||0i3®(7|| =  —bcos0  

T'||eA,®c||ll©^.?®<̂ll = % bs'm 0.
(37)

It follows from the first equation in (37) that the gyrolength of gyrosegment AC, 
Fig. 4, is given by

e l e c ' l l  =  | |e ^ 0 B ||0 | |e B 0 ( 7  
=  a ® ( — 6 cos 5 )

=  aQbc o s0  
a — b cos [0 

1 — asbs cos 0

(38)
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where we use the notation in (30)—(31), and employ Einstein addition for parallel 
velocities, (5). The first equation in (38) is the gyrotriangle equality studied in 
[23, Theorem 6.47, p. 146],
Applying Einstein gyrotrigonometry, Fig. 1, to the right gyroangled gyrotriangle 
A C  A1 in Fig. 4 we have

so that

cos a
eA®c
lla EB b||

sin a ^SA'®cWe A '®C
7afflblla f f lb ll

cot a 7afflbll®^®^ll

(39)

(40)

Substituting into (40)

0  7afflbfrom (34);
ii) ||0 -40(71| from (38);

iii) 1\\qa '(&c \\ ||©7l?®(7|| from (37); and
iv) expressing cos 0  and sin 0  in terms of cos a  and sin a  by (27)-(28), 

we obtain the following remarkably simple and elegant expression

, / 7a a +  7b & cos acot a  =
76 6 sin a

Similarly, by symmetry considerations

76 ^ +  7a a cos a  cot (a  — a  ) =  ----------------------.
7a a sin a

Furthermore, similarly to (41)-(42) we have

7& 6 +  7a a cos 0

and

cot 0  =

cot (0 — 0') =

7a a sin 0 

7a a +  7& & cos 0

(41)

(42)

(43)

(44)
76 b sin 0

To express a' in terms of 0  we substitute cos a  and sin a  from (27)-(28) into (41) 
obtaining

, a — b cos 0
cot a  =  7„ -----------C-.

6 sin 0
(45)
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Using the notation

9' = a '
9 = TT — 0

(46)

suggested in Fig. 4, identity (45) takes the form

cot 6'
as +  bs cos 9 |  +  cos 9

la  bs sin 9 = la  sin 9
(47)

called the relativistic particle aberration formula.
Formula (47) is identical, modulo notation, to the standard relativistic particle aber­
ration formula which is commonly obtained by applying the Lorentz transforma­
tion [5, Eq. (5.4), p. 13]. Here, in contrast, we establish the standard relativistic 
particle aberration formula by means of the relativistic velocity gyroparallelogram 
addition law.
When 0  =  tt/ 2, the gyroangle 9' in (47) reduces to 9'0 given by

c o t  °'o =  l a
a
b'

(48)

The gyroangle 9 — 9' is called the aberration gyroangle of the gyroparallelogram 
A B A 'B ' in Fig. 4, giving rise to the relativistic particle aberration angle.
In the special case when 0 = ir/2 the aberration gyroangle reduces to tt/2  — 9'0, 
given by

fan ^  -  9'0J = cot 9'0 = (49)

In the special case when b approaches s, (47) reduces to the equation
as +  cos 9

cot 9 =  7a
sin 9 (50)

called the relativistic photon (or light, or stellar) aberration formula. It implies 
the following equivalent formulas

1 sin 9
sin 9 =

cos 9' =

7a 1 +  as cos 9

as +  cos 9 
1 +  as cos 9

(51)

and
9'

tan — =  
2

noting the trigonometric identity

tan — (52)

9'
tan — =  ----------—.

2 1 -)- cos 9
(53)
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Interestingly, i) the relativistic particle aberration formula (47) is identical with 
Rindler’s particle aberration formula, [10, p. 86], and ii) the relativistic photon 
aberration formula (50) is identical with the well-known relativistic electromag­
netic wave aberration formula observed in stellar aberration [2, pp. 146-149], [3, 
pp. 132-133], [5, pp. 12-14], [8, pp. 84-87], [9, pp. 57-58], [10, pp. 81-82], 
[11, p. 71], [13, p. 146], This identity indicates that the gyroparallelogram law 
plays in relativistic mechanics the same role that the parallelogram law plays in 
classical mechanics.
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