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Abstract, The reductions of the multi-component nonlinear Sehrodinger 
models related to C..I and D.III type symmetric spaces are studied. We pay 
special attention to the MNLS related to the sp(4), so(10) and so(12) Lie al­
gebras. The MNLS related to sp(4) is a three-component MNLS which finds 
applications to Bose-Einstein condensates. The MNLS related to so(12) and 
so(10) Lie algebras after convenient Zg or Z4 reductions reduce to three and 
four-component MNLS showing new types of -interactions that are inte- 
grable. We briefly explain how these new types of MNLS can be integrated 
by the inverse scattering method. The spectral properties of the Lax operators 
L  and the corresponding recursion operator A are outlined. Applications to 
spinor model of Bose-Einstein condensates are discussed.

1. In troduction

When spinor Bose-Einstein condensates (BEC’s) are trapped in magnetic poten­
tial, the spin degree of freedom is frozen. However, in the condensate trapped by an 
optical potential, the spin is free. We consider BEC’s of alcali atoms in the F  =  1 
hyperfine state, elongated in x  direction and confined in the transverse directions y, 
z by purely optical means. Then, in the absence of external magnetic fields is char­
acterized by the magnetic quantum number which has three allowed values m F =  
1, 0, —l.Thus the assembly of atoms in the F  =  1 hyperfine state can be described 
by a normalized spinor wave function <f>(x,t) = $o(x, t),  (x , t ) )T
whose components are labelled by the values of nip. In short the dynamics of
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such EEC’s is described by a three-component Gross-Pitaevskii (GP) system of 
equations. In the one-dimensional approximation described above the GP system 
goes into the following three-component nonlinear Schrodinger equation in (ID) 
re-space [18]

id t$ i  +  i +  2 ( |$ i |2 +  2 |$ o|2) $ i +  2$!L1$§ =  0

idf$o + + 2(|$_i|2 + |$0|2 + |$i|2)$o + 2$5$i$-i = 0 (1)
i5t$ _ i +  d2$ _ i +  2 ( |$ _ i |2 +  2|$ 0|2)$ _ i +  2$J#§ =  0.

This model is integrable by means of inverse scattering transform method [18]. It 
also allows an exact description of the dynamics and interaction of bright solitons 
with spin degrees of freedom. Matter-wave solitons are expected to be useful in 
atom laser, atom interferometry and coherent atom transport. It could contribute 
to the realization of quantum information processing or computation, as a part of 
new field of atom optics. Lax pairs and geometric interpretation of the model (1) 
are given in [8]. Darboux transformation for this special integrable model is de­
veloped in [21]. We will show that the system (1) is related to symmetric space 
C .I ~  Sp(4)/U(2) with canonical Z2-reduction and has natural Lie algebraic in­
terpretation.
The applications of the differential geometric and Lie algebraic methods to soli- 
ton type equations lead to the discovery of close relationship between the MNLS 
equations and the symmetric spaces [8]. It was shown that these MNLS systems 
have Lax representation with the generalized Zakharov-Shabat system as the Lax 
operator

Lib{x, t, A) =  i ^ -  -I- (Q(x, t) — A J)ib{x, t, A) =  0 (2)
arc

where J  is a constant element of the Cart an subalgebra f) c  0 of the simple Lie 
algebra g and Q(x,t)  = [J,Q{x,t)\.  In other words, Q(x,t)  belongs to the co­
adjoint orbit Ad j  of g passing through J .
The choice of J  determines the dimension of A dj which can be viewed as the 
phase space of the relevant nonlinear evolution equations (NLEE). It is equal to 
the number of roots of g such that a(J)  /  0. Taking into account that if a  is a 
root, then —a  is also a root of g; therefore dim Ad j  is always even.
We concentrate on those most degenerate choices for J  for which a d j has just two 
non-vanishing eigenvalues ±2a; in this case J 2 =  a21. Such choices of J  are com­
patible with several types of symmetric spaces in Cartan classification: A .I I I  ~  
SU(p +  q)/S(V(p)  <g> U (q)), C .I ~  Sp(2p)/U(p) and D .I I I  ~  SO(2p)/U(p) 
[8, 17], The classification of the symmetric spaces related to a given simple Lie 
algebra g is directly related to the classification of the Cartan involutions (i.e., to 
the classifications of the real forms) that the algebra admits. Lor more details see 
e.g. [17,24],
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The interpretation of the Inverse Scattering Method (ISM) as a generalized Fou­
rier transforms and the expansion over the so-called “squared” solutions (see [20, 
16] for regular and [10,15,12] for non-regular J )  allow one to study all the funda­
mental properties of the corresponding NLEE’s. These include: i) the description 
of the class of NLEE related to a given Lax operator L(A) and solvable by the ISM; 
ii) derivation of the infinite family of integrals of motion; and iii) their hierarchy of 
Hamiltonian structures.
The degeneracy of J  means that the subalgebra g j  c  0 of elements commut­
ing with J  (i.e., the kernel of the operator ad j) is non-commutative which makes 
more difficult the derivation of the fundamental analytic solutions (FAS) of the 
Lax operator (2) and the construction of the corresponding (generating) recursion 
operator A. Here we continue our studies in [16, 10] finding new algebraic reduc­
tions of MNLS equations related to C.I and D .in  type symmetric spaces. Some of 
them like equation (1) find applications to Bose Einstein condensates and nonlin­
ear optics. The derived reduced MNLS system seem to be new to the best of our 
knowledge.
The present article is organized as follows: In Section 2 we give some preliminaries 
about the simple Lie algebras and the general form of the MNLS models and the 
relevant recursion operators. Section 3 is devoted to the spectral properties of the 
Lax operator L. In Section 4 we discuss the Hamiltonian properties of the MNLS 
systems using the classical J?-matrix method. In Section 5 we apply the approach 
in [27, 15] and derive the dressing factors and the soliton solutions for symmetric 
spaces related to D-, and D (i Lie algebras. Section 6 is devoted to the analysis 
of the reductions of the MNLS equations by applying the reduction group [25] 
method. The relation between reductions and scattering data for L  operator are 
outlined in Section 7.

2. Preliminaries

2.1. Simple Lie Algebras

Here we fix the notations and the normalization conditions for the Cartan-Weyl 
generators {hk, E a} of g (r =  rank g) with root system A. We introduce hk G f), 
k = 1 , . . . ,  r  as the Cart an elements dual to the orthonormal basis {e*} in the root 
space Er and the Weyl generators E a, a  c  A. Their commutation relations

(3)
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Here a = J2k=i akek is a / -dimensional vector dual to J  e  f) and (•, •) is the scalar 
product in Er . The normalization of the basis is determined by

E —a = E{ ( E - a , E a
2

(a, a) ’ E'—a1—j3 — E,r_j

where N a^  = ±(p  +  1) and the integer p > 0 is such that a  +  s 0  6 A for all 
s =  1 ,. . .  ,p, a  +  (p +  1)0 A and {•, •) is the Killing form of g, see [17]. The 
root system A of g is invariant with respect to the group WB of Weyl reflections Sa

Say = y -
2(« , y )

(a, a)  ’
a  e  A.

With each reflection Sa one can relate an internal automorphism of the algebra 
A d^Q e  Auto 0 which act in a natural way on the Cartan-Weyl basis, namely

Sa(H0) = AaH pA - 1  = H p ,  0' = Sa0

Sa{E@) =  A ^ E p A - 1 =  n„_jEj'. na^  =  ±1.

Since S% =  1 we must have A 2a =  ± 1 .
As we already mentioned in the Introduction the MNLS equations correspond to 
Lax operator (2) with non-regular (constant) Cartan elements J  e  f). If J  is a regu­
lar element of the Cartan subalgebra of g then ad j  has as many different eigenval­
ues as is the number of the roots of the algebra and they are given by a,j = aij (J), 
cxj e  A. Such J ’s can be used to introduce ordering in the root system by assum­
ing that a  > 0 if a(J)  > 0. In what follows we will assume that all roots for which 
a(J)  > 0 are positive.
Obviously we can consider the eigensubspaces of a d j as grading of the algebra g. 
In what follows we will consider symmetric spaces related to maximally degener­
ated J , i.e., a d j has only two non-vanishing eigenvalues ± 2a. Then g is split into 
a direct sum of the subalgebra go and the linear subspaces g±

g =  go © 0+ © 0 - , 0 - l.c. {X±j  ; \ J .X - \  = —2nX~ } .

The subalgebra go contains the Cartan subalgebra f) and also all root vectors E±a E 
0 corresponding to the roots a  such that (a, a ) =  0. The root system A splits into 
subsets of roots A =  9q U 9+ U (—0+), where

0o = {a E A ; a(J)  =  0}, 0+ = {a E A ; a(J)  = a > 0}.

We can use the gauge transformation commuting with J  to simplify Q; in particular 
we can remove all components of Q in  go; effectively this means that our Q(x,t)  =  
Q+(x, t )+ Q -(x ,  t) e 0+Ug_ can be viewed as alocal coordinate in the co-adjoint 
orbit M j  ~  0/00

Q+(x,t) = ^  qa (x, t )Ea , Q~(x,  t) =  J ]  Pa(x , t )E a . 
a€9+ a€9-

(4)
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Obviously Q± c  g± and

ad j Q =  [J, Q\ =  2a(Q+ -  QJ),  (a d j)_1Q =  -*-(Q+ -  Q -)
2 a

besides \E„. Ep) =  0 for any pair of roots a, 0  e  0+. This simplifies solving the 
recursion relations and the explicit calculation of the recursion operator A.

2.2. Lax Representation of the MNLS Type Models

The operator (2) together with the corresponding operator M (A)

M (  X)ib = -  [Q, ad j 1 Q] +  2i a d j 1 Qx +  2XQ -  2A2 j )  ip(x, t, A) =  0

(5)
where Q =  Q(x,t) ,  provide the Lax representation for the MNLS type systems. 
The compatibility condition [L(X),M(X)\ =  0 of (2) and (5) gives the general 
form of the MNLS equations on symmetric spaces

1
2

■ 3Q1 d2Q
’ dt  +  d x 2

2a2[ad j1 Q, [ad j1 Q, Q]] =  0. (6)

Following [1] one can consider more general M-operators of the form

i /  N \
M ( A)$ =  i—  +  ( j p V k(x, t)XkJ * { x , t , \ )  = 0, /(A) lim V(x, t ,X) .  >±00

The Lax representation [L(X),M(X)} = 0 leads to a recurrent relations between 
Vk(x, t) = V 1 + Vkd

Vfc+1 (x, t )  =  ttj0 4 + i ) =  A ± v l ( x , t )  -  a d j 1 [Ck,Q(x, t)},  k = l , . . . , N  

Vk (x, t) = (11 -  irj)(Vk) = Ck + i f  d y [Q(y, t), Vk (y , f)]
J ± Q O

where itj =  a d j1 o a d j and Ck =  (1 — ttj )C k are block-diagonal integration 
constants, for details see, e.g. [1, 8]. These relations are resolved by the recursion 
operators

A ± Z
adj
4a2

\ d Z  ,
d.r Q(x), f dy[Q(y),Z(y)\  

J ±0O
(7)

where we assume that Z  =  7tjZ  e  M.j .  As a result we obtain that the class of 
(generically nonlocal) NLEE solvable by the ISM have the form

fc=0
Ck, a d j 1 Q ( x , t ) ] = 0 ,  /(A) 7+(A) 0

. 0 /-(A ) (8)
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where /(A) =  J2k=o Ck^N~k determines their dispersion law. The NLEE (8) 
become local if /(A) =  /o(A) J ,  where /o(A) is a scalar function. In particular, if 
/(A) =  - 2 A2J  we get the MNLS equation (6).

2.3. Basic Physical Example: C.I Type Symmetric Space Sp(2p)/U(p)

We choose g =  C2 =  sp(4) algebra; it has 2 simple roots, namely =  e\ — e?, 
a2 =  2e2. We fix up the ('artan element

J  =  diag(a, a, — a, — a), J 2 =  a2! .

Then the corresponding potential Q(x,t)  (4) takes the form

Q(x, t)  =

Imposing the involution pk =  q%, k  =  1,2 and P1 2  =  g*2 we obtain the following 
three-component MNLS system for the independent fields qi2 (x, t), qi(x, t) and 
92 C M )

. dq1 2  , d2 qi2

/ o 0 912 9 i  \
0 0 92 —912

P 12 P2 0 0
\ P 1 P 12 0 0  }

1 a- + dx 2
+  2912O912I +  |?i| +  |921 ) — 291929*2 — 0

. %i . 9 2q1 2 . o, 12\ o 2 * _ n+  qx2 +  2gi(|gi| +  2|gi2| ) — 2 q1 2 q2 — 0

• , d 2 q2 ,2 . 0 . ,2x o 2 * _  n
m ~ 0 f  +  q x 2 +  2^2(|521 +  2|gi2| ) — 2g129i — 0.

(9)

If we identify the physical quantities of the system (1) with

$0 = 912, $1 = —q i , $-1 = 92
then equation (9) will coincide with (1). The system can be written in a Hamilton­
ian form by introducing the Poisson brackets

{q3 (x),Pk(y)} = 2iSk]S(x -  y), {qi2 (x) ,p i 2 (y)} = iS(x -  y)

and the Hamiltonian
H  — i?kin -Hint

1 f°°
•ffkin — / dx

& J — 00

a $ 0 a$g 1 / a $ ia # ^  a $ _ i a $ ^ x
dx dx  2 v dx dx dx dx

-Hint — ..2 a j -f°° dx [d$oi2 +  m2f  +  (m2 +  i$ - i i2)2l
J — 00

f  dx ( |$ o $ ^ i +  $1$5 |2) .
n J — 00
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The soliton solutions of the sp(4) MNLS system of equations (1) were derived 
independently in [18,19].

2.4. D .III Type Symmetric Space

We choose g =  Dg ~  so(12); it has 6 simple roots, namely a \  = e\ — e%,
q.2 =  62 — 63, 03 =  63 — 64, 0 4  = € 4  — eg, cig =  65 — eg and 01 g =  eg +  eg. 3iVe 
fix up the ('artan element

J  =  diag(a, a, a, a, a, a, —a, —a, —a, —a, —a, —a), J 2 =  a 2l

which means that the subset 6 + =  {e* +  ej} with 1 < i < j  < 6. Then the 
corresponding potential Q(x, t)  (4) takes the form

/ 0 0 0 0 0 0 916 915 914 913 912 0
0 0 0 0 0 0 926 925 924 923 0 912
0 0 0 0 0 0 936 935 934 0 923 -913
0 0 0 0 0 0 946 945 0 934 “ 924 914
0 0 0 0 0 0 956 0 945 “ 935 925 -915
0 0 0 0 0 0 0 956 “ 946 936 “ 926 916

P w P26 P36 P46 P56 0 0 0 0 0 0
P15 P25 P35 P45 0 P56 0 0 0 0 0 0
P14 P24 Pm 0 P45 - P46 0 0 0 0 0 0
P13 P2Z 0 Pm ~ P35 P36 0 0 0 0 0 0
P12 0 P23 ~ P24 P25 ~ P26 0 0 0 0 0 0

\  0 P l2 - P m P l4 ~ P 15 P16 0 0 0 0 0 0
( 10)

Here by qij(x,  t) and Pij(x,  t) where i, j  belong to the set of indices J  =  { ( i j ) ;
1 < i < j  < 6} we denote the coefficients of the generators Ea and E - a with 
a  =  ei +  ej. Then the generic NLEE (6) becomes a system of 30 equations. 
Imposing the natural involution Q = Q \  i.e., pij =  q*j we obtain a MNLS for the 
15 independent functions qij(x,  t).

Similarly we consider also the Dg ~  so(10) algebra. The corresponding Q(x,t)  
will be a 10 x 10 matrix-valued function which can be obtained from the equation 
for (10) by removing the first and the last rows and columns. The generic NLEE 
will be a system of 20 equations, the involution Q Q 1 will reduce them to a 
10-component MNLS.
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3. Spectral Data and Generalized Exponents

Here we will start with a brief sketch of the direct scattering problem for (2). It is 
based on the Jost solutions [7,26] defined by their asymptotics

lim tp(x,t, X)elXJx =  1, lim cp{x, t, X)elXJx =  1x ^ —oo
\ - l .and the scattering matrix T(t,  A) =  (ip(x, t, A)) 1 <p{x, t, A) and its inverse T(A, t)

? M > )  (11)
where a ± (t, A) and 6± (f, A) are r  x r  block matrices. The blocks a ± > b~. and

satisfy a number of relations coming from the fact that T(A)T(A) =  1, for 
example

a+ (A)c_ (A) +  b~ (A)d+ (A) =  1, a+ (A)d” (A) -  6” (A)c+ (A) =  0

etc.
The fundamental analytic solutions (FAS) x ^ i x ^ ^ X )  of L(A) are analytic func­
tions of A for Im A ^  0 and are related to the Jost solutions by

\ t, A) =  4>(x, t, X )S j ( t ,  A) =  ib(x, t, A) T f  (t, A).

Here S f ,  T f  upper- and lower- block-triangular matrices

S j ( t ,  A) =  

T+(f,A) =

1 d (t, A)
0 c+ (t, A)

1 —b~(t,X)

S j ( t ,X )  =
c (t , A) 0 

—d+(t, A) 1

T — (f x\ _  (a+(t,X) 0 
~  \b+(t,X)  11^0 a (t, A)

satisfy T f ( t ,  X )S f ( t ,  A) =  T(t,  A) and can be viewed as the factors of a gener­
alized Gauss decompositions of T(t,  A) [10]. If Q(x, t) evolves according to (8) 
then

,d6± da±
A) -  b± (t, A)/±(A) =  0, i—  +  [/±(A), a± (t, A)] =  0

dt
(12)

On the real axis in the complex A-plane both FAS \~{x.  t, A) are linearly depen­
dent

X+(x,t ,X) = x~ (x , t ,X )G 0 (t,X) (13)
and Go(t, A) can be considered as a minimal set of scattering data in the case of 
absence of discrete eigenvalues for the Lax operator (2), see [12].
The mapping between the potential of the Lax operator and the scattering data is 
based on the Wronskian relations [2], As an example of one we write down

i r°°= x / d x  ( [ Q ( x , t ) , J } x + ( x , t , X ) E a ( x + ( x , t , X y r 1)
£ J —oo
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where Ea is the root vector corresponding to the root a  e  Q+. Thus the “squared” 
solutions that appeared first in [1, 20] were later generalized in [16, 10] to Lax 
operators of the type (2) as follows

e±(x, t, A) =  7r j ^ ( x ,  t, X)Ea(x ± (x, t, A))-1 ) .

They can also be viewed as natural generalizations of the usual exponentials and 
their completeness relations in M  j  [16,10] provide us the spectral decompositions 
of the recursion operators A± for which e±a (x, A) are eigenfunctions

A + e |a (a:,A) =  \ e ± a (x, A), A _ e |a (a:, A) =  Xe^a(x, A), a  G 9+.

The (generating) recursion operators A± appeared first in the AKNS-approach [1] 
as a tool to generate the class of all M-operators as well as the NLEE related to 
the given Lax operator. Next Gel’fand and Dickey [9] discovered that the class of 
these M-operators is contained in the diagonal of the resolvent of L. The kernel 
of the resolvent of L  can be explicitly defined in terms of the fundamental analytic 
solutions x^ix-, A) of (2), see [11, 16,10].

4. Hamiltonian Properties of the MNLS Models

It is well known that the MNLS equations possess hierarchies of Hamiltonian struc­
tures. The phase space M. j  of the MNLS equations is the co-adjoint orbit of the 
0 ~  D r determined by J ; in addition we assume that the matrix elements of 
Q(x, t) are smooth functions tending to zero fast enough for |rc| —» oo.
On the D .Ill-type symmetric spaces the Hamiltonian of (6) is given by

^ mnls =  « /_”  dx |2 (a d 7 1 Qx , a d j1 Qx) +  ^ ([a d j1 Q, Q], [ad j1 Q, Q ])j .
(14)

Direct calculation shows that this Hamiltonian is proportional to the third coef­
ficient I3 of the expansion of the generating functional of the principal series of 
motion In det a + with respect to A

OO

ln d e ta + (f, A) =  V". IfcA~fc
k = 1

i.e., i?MNLS =  8i/3- The equation of motion (6) that Q satisfies is generated by 
the canonical symplectic structure

^ mnls =  — 2ia J dx ^ SQ(x , t) A a d j1 SQ(x, t)^>.

The hierarchies of symplectic structures defined on M  j  are generated by the cor­
responding recursion operators A± (7) and are given by the following families of
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compatible two-forms

Omnls =  _ 2ia J dx (^SQ(x, t) A Ak ad j 1 SQ(x, t)^>, A =  -  (A+ +  A _ ) .

The corresponding Hamiltonians for the higher MNLS are -HjJ nls =  8 ilz+k- 
For /(A) =  —2A2J  equation (12) gives da± /d f  =  0 and a± (A) can be viewed 
as generating functionals of integrals of motion whose number r 2 is larger than 
the rank r  of g. This is obviously due to the degeneracy of the dispersion law. 
For generic /(A) from (12) there follows that only functions of the eigenvalues 
of a± (A) will be conserved. Indeed, it follows from the classical P-matrix ap­
proach [7], One of the definitions of the classical /(’-matrix is based on the Lax 
representation of the MNLS (2). In particular, if U(x,  A) has the form

U (x, A) =  Q(x, t) — A J

and the matrix elements of Q(x,  A) satisfy the Poisson brackets {•, •}

{Pa2 (x, t ) ,qai (y, t)} = i $aia2$(x -  y)

then the classical //-matrix can be defined through the relation 

{U(x,  A) ® U(y, fi)} = [R(x -  y), U(x,  A) ® 1 +  1 ® U(y, n)}S(x -  y). (15)

Our system of equations (15) allows //-matrix given by [8]

//(A — m) =  — P2 A — y,
where

jP — hk ® hk +
k= 1 ct£A

E a ® E - a 
\E,,. E —a)

Here hk are the Cartan elements introduced in (3) which are properly normal­
ized to (hi, hk) =  Sik. P  is the second Casimir endomorphism of the algebra and 
posses special properties concerning its action onto the matrices of the correspond­
ing group

P (A  ,v B) (B s  A)P.
Using these properties of the P-matrix and the commutation relations of the alge­
bra (3) we obtain

[P, Q(x)  ® ® Q(x)\ = 0
[P, A J  ® a +  ^ a  ® J] =  2(A — fi){U (x, A) ® U (x, fj,)}.

These relations are true for any Q(x)  taking value in the algebra and the rela­
tion (15) seems most natural and its right hand side does not contain Q(x, t).
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Let us now show, that the classical J?-matrix is a very effective tool for calculating 
the Poisson brackets between the matrix elements of T ( A). It will be more con­
venient here to consider periodic boundary conditions on the interval [-L,  L\, i.e., 
Q(x — L) =  Q(x +  L) and to introduce the fundamental solution T(x,  y, A) [7]

+ U(x,X)T(x,y,X)  = 0, T (x ,x ,  A) = 1.

Skipping the details we just formulate the following relation for the Poisson brack­
ets between the matrix elements of T(x,  y, A)

^ T (x ,y ,  X) ® T (x ,y ,  fi)^ = [R(X -  /x), T(x,  y, A) ® T(x,  y, y,)}. (16)

The corresponding monodromy matrix Tl (A) describes the transition from — L  to 
L  and Tl (A) =  T ( —L, L, A). The Poisson brackets between the matrix elements 
of Tl (X) follow directly from equation (16)) and are given by

| t l (A) ® TL(fj)|  =  [R(X -  »), Tl (A) ® Tl (jj,)\ . (17)

We could also write the Poisson brackets between the matrix elements of the in­
verse of the monodromy matrix Ti(X)

j f L(A) ® =  [t l (A) ® TL(fj),R(X -  /x)] . (18)

An elementary consequence of this result is the involutivity of the integrals of 
motion and from the principal series which appear in the expansions of

QG QG
lndeta+(A ) =  ^ J L,feA” fe, -  In det c£(A) =  J LikX~k (19)

k=1 k=1
CXD CXD

lndetc+(A ) = JL,kX~k, -  In det a£(A) = ]T  IL,kX~k- (20)
k=1 k=1

As a result of the reduction conditions (35) that we impose, the generating func­
tional of the principal series of integrals of motion is only one, i.e., In det a j(A ). 
Another important property of the integrals I ^  and is their locality, i.e., their
densities depend only on Q and its a:-derivatives.
The simplest consequence of the relations (17) and (18) is the involutivity of 
and J^ k- Indeed, taking the trace of both sides of (17) and (18) shows that 
{trT£,(A),trT£,(^i)} =  0 and {trT£,(A),tr’T£,(^)} =  0. We can also multiply 
both sides of (17) and (18) by C  ® C  and then take the trace. This proves

{ trT L(A )C ,trTL(^)C} = 0, { t i f L(X)C, t i fL(fj)c} =  0.
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In particular, for C = 1 +  J  and C = 1 — J  we get the involutivity of 

j t r a ^ (A ) ,t r a ^ ( /x ) j  =  0, j t r  a£(A ),tra^(/x ) j  =  0

{ t r e f  (A ),tre f  (/x)} =  0, | t r c + (A ) , t r c £ (^ ) | =  0.

Equations (17) and (18) were derived for the typical representation F I1) of the 
corresponding group G, but they hold true also for any other finite-dimensional 
representation of G. Let us denote by FM  the r-th fundamental representation of 
G; then the element Tl(A) will have representation in V ^ ' \  see [17]. In particular, 
if we consider equations (17) and (18) in the representation F ^  and sandwich 
them between the highest and lowest weight vectors in F ^  we get

{det a t(A ), det a t  (/x)} =  0, {det e£(A), det e£(^)} =  0. (21)

Since equations (21) hold true for all values of A and /j, we can insert into them the 
expansions (19) with the result

{^L,kj I l ,p}  =  0, ^i,p} =  0, k ,p  =  1 , 2 , . . . .

Lets go back to our basic physical example from Section 2.3 associated with the 
algebra g =  sp(4) and consider the monodromy matrix Tl (A) in the typical repre­
sentation. The matrix elements of the diagonal blocks of a&(A) for 1 < a < 2 
and 1 < b <  2 are denoted by a&(A) =  a*b according to (11). Now Poisson 
brackets between the scattering data a  t  (A) and a  t  (ji) are obtained in a straight- 
forwar way from (17)

{a+ U (A), a+  12(/x)} =   ̂( a t  u(A )a+ 12(/x) -  a+  12(A)a+ u (/i))

{ a t  n(A), a t  21(/x)} =  ^   ̂ ( « t  2i(A)a t  i i (p ) “  al  n ( A) « t  21 (/*))

{a t  n(^)> a t  22(7̂ )} =  ^  i ai  21 W ai  12(p )_  a t  i2(-^)a t  21 (p))

{a t  22(^)’ a t  12(t0 } =  2(^ _  (a i  12(- )̂a t  22 (tO — a t  22(A)a t  12 (tO)

{a t  2 2 ) ’ a t  2l(P)} =  2(^ _  ^) 22(- )̂a t  21 (P) — a t  2l(A)a t  22 (71))

{a t  2l(A)> a t  12(/^)} =  2(^ _  l l(AK  22 (tO — a t  22(A)a t  11 (tO)

{at ii(A)> at iiCm) } = 0, {at 22(A), at 22(̂ )| =0
{a t  12(A)> a t  12̂ 7*) } =  0, {a t  21(A)> a t  21(t0} =  0-
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Now that we know the Poisson brackets between the matrix elements of a + it is 
not difficult to extend the above result over its invariants

{ tra+ (A ),a+ y (^)} =  ^ ^ — [a +(X), a+(fi)}tJ, i , j  = 1,2

{ d e ta J (A ) ,a J y (^)} =  0, i , j  = 1,2.

This somewhat more concrete analysis allows one to see that only functions of the 
eigenvalues of a [  (A) produce integrals of motion in involution.
We are able to transfer these results also for the case of potentials belonging to the 
co-adjoint orbit of the g ~  D , determined by J  and with zero boundary conditions

{T(A, t) ® T(ji, t)} = [R(A -  n ) ,T ( A, t) ® T(ji, t)]. (22)/

Here T( A, t) is the scattering matrix, obtained after taking the limit L ^  coin the 
corresponding monodromy matrix Tj_,(A). Indeed, let us multiply (16) by E(y,  A)® 
E(y,  n) on the right and by E ~ 1 (x, A) ® E ~ 1 (x, fi) on the left, where E(x ,  A) =  
exp(— iXJx)  and take the limit for .r ' :x-. y ' :xc Since

lim ----------=  ±i7r5(A — u)
x ^ ± o o  X — f i

we get

< T(A) ® T(ji)

R±  (A — fj.)

= R +(A -  fi)T(X) ® T(jjl) -  T ( A) ® T ( n ) R -(A -  fi)

1 /  r \  (23)
—------- r [ ^ 2  hk ® hk +  n 0j  ±  i7r5(A -
2(A "  /*) \ t i  J

where I I o j  and I I u  are defined as follows

no./ =  5 ^  (Ea  ® E ~a +  E  '> ® Ea)
a& 0

rtijr =  ^  (Ea ® E - a  -  E - a  ® Ea) •
a&+

Analogously we prove that:

i) there are integrals R  =  lim ^ o o  and Jp = lim ^ o o  j£,)P that are in 
involution, i.e.,

{Ik, I p }  = = 0

for some positive values of k  and p\
ii) the principal series of integrals of motion R ,  generated by In det a± (t, A), i.e., 

the eigenvalues of (A) and (A) produce integrals of motion in involution.
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So for MNLS we have extra integrals of motion that are not all in involution. In­
deed, lets denote the matrix elements of the scattering matrix T ( A, t) according 
to (11) and multiply 23 by E ab ® E cci on the right, where (E ab)ij =  Sai$ bj  and 
take the trace of the elements in the first and in the second position of the tensor 
product. Thus we obtain the Poisson brackets between the scattering data

{Tba(A), Tdcifi)} = tr  (T(A) ® T(/x) (Eab ® E,>,M. -  R - E ab ® Edc)) •

Lets list the relations contained in the above equality and concerning the block- 
diagonal portions of the scattering matrix a +{A) and a - (A)

{a £ ( A)> a fc(p)} =  2{x \  ^  ( a i ( A)a te(p) -  a te(A)a i ( p ) )  • C24)

The above result allows us to compute the Poisson brackets between the invariants 
of a ± (A) and their matrix elements

{ t r f a ^ A ) ) ® * ^ ) }  =  [(a ± (A ))\a ± (ri]_ ]t ^

{tr In a ± (A), a^c(fj,)} = 0.

This analysis allows reveals that only the eigenvalues of a ± (A) and e^ A ) produce 
integrals of motion in involution.
From (22) it follows that the first integrals R  generated by In det a± (t, A) are in 
involution. Due to the special degenerate choice of the dispersion law /(A) =  
—2A2 J , any matrix elements of the blocks a ± (A) will generate integrals of motion, 
which, however, will not be in involution, see (24)-(25). The Hamiltonian for the 
MNLS models is proportional to 1%, i.e., belongs to the principal series. If we 
choose a generic (i.e., non-degenerate) dispersion law then the Hamiltonian of the 
corresponding NLEE will not be in involution with J;J . Such are the dispersion 
laws for the NLEE’s that allow “boomeron” and “trappon” type solutions [3, 5, 4], 
This is the reason why their velocities become time-dependent.

5. Dressing Factors and Soliton Solutions

The main idea of the dressing method is starting from a FAS A) of L ( A)
with potential g(0) to construct a new singular solution A) of the Riemann-
Hilbert Problem (13) with singularities located at prescribed positions A f. Then 
the new solutions A) will correspond to a potential of L ( A) with two
discrete eigenvalues A f. It is related to the regular one by the dressing factors
u(x,  A)

X(i)ix i A) = u(x,X)xf 0)( x ,X )u I 1 (X), «_ (A) =  ^ l i r n ^ u ^ ^ ) .
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If g ~  B , . D , the dressing factors take the form [13] 

u(x, A) =  1 +  (ci(A) — l )P i (x )  +  (c]"1(A) — l )P _ i (x ) ,  P_i =  S P i  S _1 (26) 

where the rank 1 projector P \(x )  and the function ci(A) are given by

P\(x)  =
\n(x))(m(x)\
(■m(x) \n(x)) ’

\n (x )) = x t ( x ^ i ) \ n o}^

|no) and (mo| are constant vectors and

m  A _ A +
C1<A) =

(m(x) | =  (m0|xg (x, A]~).

5 = E ( - ! )
k=1

fe+1
(E kk +  E kk)’ k = 2r +  1 — k.

Here E k n  is an 2r  x 2r  matrix whose matrix elements are (E k n ) i j  =  $ ik$ nj .  Then 
the “dressed” potential have the form

Q ( i ) ( x , t )  =  Q(0) ( x , t ) -(Af -  \ i ) [ J , p ( x , t ) } ,  p(x, t)  =  P 1 (x, t) — P_i(x,  t). 

where

p(x ,t) = 2  ( Y , h k ( x , t ) H ek +  E (Pa (x , t )E a + P - a( x , t ) E . a )
\ m \n ) \ k=1 aeA+ ,

r

(m\n) = Y ,(:n 0k’m 0ke2avix+Wa,livit +  n0km 0ke - 2aviX- Wa^ vlt) 
k = 1

hk(x, t) = n 0km 0ke2aviX+Wa^ vlt -  n0km 0ke - 2aviX- Wa^ vlt

and

Pa (x , t )  = (nokm os -  (—l ) s+kriQSm Qk)e_ 2iat1ix-&a(tl' i-vi)t 

P - a (x , t )  = (■n0-sm 0k -  (—l ) s+kn Qkm0s)e2iaMi2+8ia04 

for a  =  ek +  es, and

P j x , t )  = n0 km 0se2ai'iX+Wa^ t -  ( - l ) s+knQ-sm Q-ke - 2ai' ' x- 1&a>l^ t 

P - a (x, t) = n0 km 0se - 2a’' lx- Wai11’'lt -  ( - l ) s+kn 0sm 0ke2ai'lx+Waf11I'lt 

for a  = ek — es, k < s.
Let us consider now the purely solitonic case, i.e., Q(o)(x) =  0 and 

X ^ ( x , t ,  Af) =  exp(—iAf J x  — 4 i \ f  2 Jt).

Thus the one-soliton solution is

2iani (nojmok — (—l ¥ +knokm 0j )  e_2iaw:r_8ia04_I''i)<
Qik = ----------- ---------------- t--------------------- --------- ,--------- -̂---------

yXpiip2 ch \ 2 av\x  +  Wmvip.it +  |  In
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where (i j ) e  J  and
r r

<f>i =  Y 1  n o rm O]i <^2 =  n 0 jm 0 j ’ Af =  fj,i ±  ii/1 . 
] =1 ] =1

6. New Reductions o f MNLS Equations

6.1. The Reduction Group

The reduction group G r  introduced by Mikhailov [25] provides a powerful tool for 
constructing new integrable equations [27, 6, 13, 14, 22, 23] starting from known 
ones. It is a finite group which preserves the Lax representation, i.e., it ensures 
that the reduction constrains are automatically compatible with the evolution. The 
main idea of the reduction group is to impose an invariance condition on the Lax 
operators (2) and (5). In particular this means that the dispersion law / m n l s (A )  =  

—2A2 J  must also be compatible with the reduction group action.
Here we consider two types of G r  reductions -  like in [15] we will embed them as 
subgroup of W %:

Type I: 

Type H:

where

and

B ^ U H x G, X*)B = U(x, t ,  A), 

B ~ 1 V^(x, t ,X*)B = V(x,  t, A) 

C ~ rU*{x , t , \* )C = —U(x, t, A), 

C - H ^ i x ,  t, A*)C = - V ( x ,  t, A)

B ~ XJ B  = J
(27)

C ” 1 J C  = - J
(28)

U (x, t, A) =  Q(x, t) — A J

V(x , t ,  A) =  — [Q, ad j 1 Q] +  2 iadJ 1 Qx (x, t) +  2 \Q (x , t )  — 2A 2J. 

The automorphisms C  and B  must be of even order.

6.2. Example of Z4-Reduction

Let us impose the following Z4-reduction

B ~ 1 (U^(xJt JX¥))B = U(x, t ,  A), U( xJt JX) = Q(x, t)  -  XJ

B  =  ’  We ^  —  ê  '  —  64 5 B  —  II

where wei_ej are the Weyl reflection with respect to the roots e, — ej of the so(10)- 
algebra. Then B(  J)  =  J  and the corresponding reduced potential Qred e  so(10)
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takes the form

/ 0 0 0 0 0 915 914 0 912 ° ^0 0 0 0 0 925 0 914 0 912
0 0 0 0 0 915 912 0 914 0
0 0 0 0 0 925 0 912 0 914
0 0 0 0 0 0 925 -915 925 -915
91*5 <1% 91*5 92*5 0 0 0 0 0 0
9*4 0 9*2 0 925 0 0 0 0 0
0 9*4 0 9*2 -9*5 0 0 0 0 0
9*2 0 9*4 0 925 0 0 0 0 0
\o 9*2 0 91*4 -9*5 0 0 0 0 0 )

Thus one derives the following four component MNLS system related to D-,- 
algebra (here the independent fields are: gi2(a:, t), qu(x ,  t), qi$(x, t) and q2h(x, t))

1 fl­
at ■ -t- 9a:2

+  2gi4(|gis|2 +  1̂ 2512) +  2qi4Qi2 =  0
, dqu  d2qu  „ l2 ,9 , , 9 ,
m dt dx 2 ~^~^14(1^141 +  2|gi2| +  I^isI +  19251 )

+  2gi2(|9i5|2 +  1̂ 2512) +  2gf29*4 =  0

d q w , 9 2q \$ |2 , ol |2 . i |2 , i |2\
Qx 2 +2gl5(2|gl5l + 215251 +19121 + 19141 )at +  9a:2

ia %25
dt

+ 29129159*4 + 29l49l59l2 = 0

+
92
g^25 "I" ^925(2192512 +  2|9i5|2 +  I91212 +  I91412) 

+  2gi49259*2 +  29129259*4 =  0.

(29)

The Hamiltonian of (29) is obtained from the general expression (14) by imposing 
the reduction constraints

H  — //ki„ + -Hint
h  ■ = ~  r  a ( d q i 5  d q * 5 dqu  d q * 4 d q i 2 d q * 2 9 q i 2  9gi2

11111 a l o o  \  9a: 9a: dx dx dx dx dx dx

Hint —
& J — OO

roc

/ OO
da: (l9is|2 + |925|2 + I912I2 + |9i4|)2

-O O

a  J -
d x (|9i5|2 + |925|2 + 9*2914 + 9129m )2-
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6.3. Example of Zg-Reduetion

Let us impose the following Zg-reduction

B ^ i u H x ,  t, A*))B = U(x, t, A), U(x, t, A) =  Q(x, t) -  A J

B  — vje i — e2 ■ u,ig2_eg • iue 3 — e4 ■ iue 4 — e5 ■ iue5—eg, B  — 1

where wei- ej are the Weyl reflection with respect to the roots Cj — e, of the so(12)- 
algebra. Then B(  J)  =  J  and the corresponding reduced potential Qred e  so(12) 
takes the form

Q red =
0

qf Oj

where

q  =

 ̂912 -913 914 913 912 0 \-913 914 913 912 0 912
914 913 912 0 912 -913
913 912 0 912 -913 914
912 0 912 -913 914 913

V 0 912 -913 914 913 912 /

Thus one derives the following three-component MNLS system related to D e­
algebra (here the independent fields are: qi2 (x, t), qrz(x, t), and qu(x,  t))

■ dqi2 9 912 0 |2 . oi |2 I ol |2\ | a (i |2 I |2\ia—----1— -----2gi2(3|9i2| +  2|gi3[ +2|gi4 | ) +  4gi4(|gi3| — \qv2 \ )d x 2

. d q iz , S29i3ia- + d x 2

+  29i39*2 — 2gf29*4 — 2 9439*4 — 2 9449*2 — 0 

— 2913 (319i312 +  2)91212 +  2|^i412) +  2gf29*3 +  2 9449*3

1a-

+  49139129*4 +  49139149*2 “  49129149*3 =  0

.0914 , 02914 0 _ |2 . ,1 ,2 , ,, i2\

(30)

+ d x 2
— 2914(19141 +  4 |^121 +  4 1̂ 131 ) +  4912(21913! — I9121 ) 

+  4943944 — 4 9i3912 — 4942914 =  0-
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The Hamiltonian of (30) is obtained from the general expression (14) by imposing 
the reduction constraints

H  — -ffkin "i" S int
_  3

-“ kin — - °° dx  ( 9qi2 9 q h  +  2 9 q n 9 q *13 +  2 9qi4 9q*14 
a j-oo  \  dx dx dx dx dx dx

OO

Sin t — [  dx  (e|gi2|4 +  6|gi3|4 +  \qu\4 +  8|gi4|2(|gi2|2 +  |gi.s|2))
a J-oo K J
i / j  / 2 * 2  i 2 * 2  2 * 2  2 * 2  2 * 2  2 *2 \H / dx (gi29i4 + 9m 9i2 — 9i39i4 — 9m 9i3 — 9i29i3 — 9i39i2)

12 r°°
H---/ dx ((I912I2 - 2|9i3|2)(9i29i4 + 9149*2))

12 r°°
H---/ dx (9129149*1 + 9i39*49*2)-& J — OO

The soliton solutions of the reduced MNLS require additional efforts. The prob­
lem is that the generic expression for the dressing factor (26) does not satisfy the 
reduction conditions.

7. Reductions and the Scattering Data

The reduction conditions (27) and (28) imposed on the potential of the Lax opera­
tor (2) induce an invariance conditions for the corresponding fundamental analyti­
cal solutions

Type I: B - \ x +(x, t , \ * ) ) ^ B = ( KC ^A) a _°(A)) ( x " ( x , t ,  A))” 1 (31)

Type II: C _1(x± (x, t, \*))*C =  x ^ (x ,  t, A) (32)

and for the scattering matrix (11)

Type I: B _ 1 T \ t ,  A*)B = (T(t,  A))-1 (33)

Type II: C - hT*(t, A*)C = T(t,  A). (34)

ll* we represent the internal automorphisms Sa of type I in the form

_  fccB. |_ 0 \
b a ~  \  0 B - J

the reduction conditions on the matrix blocks a± (A), 6± (A), c± (A) and d± (A) in 
the scattering matrix and its inverse (11) read

B+(a+( A * ) ) ^ 1 =  c+ (A), B+(b+( A * ) ) ^ ! 1 =  cT(A)

B-(b~(  A * ) ) ^ 1 =  d+ (A), B - (a ~ (  A * ) ) ^ ! 1 =  c“ (A).
(35)
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For the other reductions of type II the internal automorphisms preserving J  up to 
a sign has off-diagonal block structure as follows

/  0 C+\
“ \ C -  0

and the matrix blocks of T ( A) are constrained by

C+(a~( X* ) ) * ^ 1 = a+( A), C - i a + i X ^ f C Z 1 = a "  (A)

C+Cft+CA*))^!1 =  —6“ (A), C-(b- (X*)TC+ 1 =  - 6 + (A).

Similar reduction constraints could be written also for the inverse T ( A) to the scat­
tering matrix T(  A).
Our last remark here is that the reductions described above can not be applied to 
any generic NLEE. Indeed, equation (12) will be compatible with the reduction 
only if the dispersion law /(A) satisfies

B+ 1 (f+(X*))] B+ = Z+HA), BZ1 (/-(A * ) ) 1 BZ1 = fz\A).

Any generic NLEE is compatible with reduction of Type II if the dispersion law 
complies with

C+ (f-(X*)T (Z ' =  /+(A), CL (U(X*)T cz1 = /-(A ).

8. Conclusions

We have described new systems of MNLS type obtained as Z4 and Zg-reductions 
of the MNLS related to a D .I I I  type symmetric space. The Hamiltonian formalism 
and the theory of A-operators for MNLS related to the relevant simple Lie algebras 
are briefly discussed. We show how the method, presented in [13] for the N-  
wave equations and their gauge equivalent systems can be extended to MNLS type 
systems [14], The reduction of the multi-component nonlinear Schrodinger (NLS) 
equations on symmetric space C .I ~  Sp(2p)/U(p) for p =  2 is related to spinor 
model of Bose Einstein condensate. Other interesting reductions of MNLS type 
equations were reported in [15] and a systematic study of the problem is on the 
way.
These results can be extended and the reductions of MNLS-type equations related 
to other symmetric and homogeneous spaces can be explored. As a result one 
can systematically obtain and classify new integrable systems of MNLS type. The 
method is explicitly gauge covariant and can also be applied to their gauge equiv­
alent systems of Heisenberg ferromagnet type. Such research would entail a volu­
minous calculations and will be continued in subsequent publications.
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