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Abstract, In this work a hypothesis about the fluid flow character is pro­
posed which consists in the splitting of a flow in two parts. The first one is 
treated dynamically, and the second statistically. The instability generating 
energy coming from the dynamical flow being distributed by the statistical 
flow results in an influence on the first one and forms the observed flow. The 
connection between the two flows is obtained by the requirement of the me­
chanical energy conservation. A corresponding model is analyzed in some 
details and applied to the case o f developed turbulence in a channel Poiseuille 
flow. The mean velocity profiles for values of Re. =  13800, 23200, 32800 
are computed and compared with the existing experimental data. Numeri­
cally derived velocity profiles with R e  from 100 to 143000 are given.

1. Introduction

Nowadays the Hamiltonian formalism is well developed and has found many ap­
plications in hydrodynamics in case of ideal fluid (for comprehensive reviews see 
for example [1] and [2]). In the present work we start from different basic consid­
erations aiming to obtain equations of motion which would provide the possibility 
of description of dissipative behavior of the fluid. As it is usual for the Hamilton­
ian formalism for fluid, we will work with fluid particles in order to pass to finite 
degree of freedom. Later on in this paper we will obtain the typical size of these 
elements for the chosen example. We assume also that fluid elements keep their 
integrity. In other words we consider flow as non-mixing but interacting trajecto­
ries having size of the fluid elements. It is this part of the fluid motion for which 
we will attempt to write a Lagrangian. Some terms of it are connected with the 
interaction between neighboring trajectories that accumulate an internal friction 
energy during the movement. This energy is, of course, non-conservative. We will
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split the calculations in two stages. The first one is to obtain the main flow from 
derived equation of motion and the second one is to distribute the non-conservative 
energy inside the main flow. We will focus on the non-geophysical flows. Other 
basic circumstance is that we omit thermodynamical behavior of the fluid move­
ment which leads us to expect that equation of motion of the main fluid will be 
in the form of the Burgers equation. Recently there are many attempts to use this 
equation for the description of the turbulence by modelling the external force in 
different ways including stochastically, cf [3], [4] and [5], Concerning the dissipa­
tive mechanism we are going to create additional model for the eddy dissipation 
that is energetically connected with non-conservative terms in the Lagrangian. We 
provide a realization of the above considered project and have tested it on relatively 
simple example of incompressible channel Poiseuille flow with high Re.

2. Description of the Model

In order to describe the dynamical part of the flow we will use Lagrangian for­
malism to obtain the equation of motion. Let us define the kinetic and potential 
energies that are significant for our task. We construct our model having in mind 
geometry of the two-dimensional channel Poiseuille flow -  a fact that gives possi­
bility for its simplification. For the kinetic energy of the fluid particles in rectan­
gular coordinates q =  q(qi, 92) (the flow is oriented along q±) we can write

where 2a is the width of the channel and p is the fluid density. The integration in 
respect of a' give us the kinetic energies of the all fluid elements in point q. In the 
chosen test flow the channel width is constant. The potential of the external force 
p is equal to the pressure difference between the two ends of the channel and can 
be written as

where p is the external force per unit cross length (oriented in the direction of 
qi). On this stage, as we have mentioned before, we will consider the fluid as 
continuum of trajectories with finite size. We introduce two types of internal forces 
with respect to trajectories: the first one is oriented along to trajectories itself and 
the second one is between the neighbor trajectories at given point. These forces 
are reactive -  they are results of the action of the external force, the geometry of 
the flow and the physical characteristics of the flow, as viscosity for example. Is 
it simplest to use the first derivative of the velocity along the trajectory in order to 
represent the first type of force mentioned above. We can expect to find out this
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force before and after obstacles. The potential of this force can we written as

d %
dqf

da? (3)

where the kinematic coefficient of viscosity v  of the fluid is a constant. The flow 
moves under the following boundary conditions g(g2 =  0) =  g(g2 =  2a) =  0. 
From the equation of the continuity follows that the sum (3) is zero. This means 
that this force, respectively the potential, is conservative.
The last force that we include in the Lagrangian is expressed through the velocity 
derivatives between the neighboring trajectories at the given point

17 = "  E
i-J= 1

2a ® d2qi
d q't da?(g2)- (4)

This potential accumulates the energy of interaction between the given trajectory 
and its neighbors. This needs at least the second derivatives and we choose the 
simplest case. The potential (4) is non-conservative and this is evident because the 
corresponding energy increase monotonically. From our point of view this force is 
responsible for the emergence of the turbulence. We note that in our example the 
potentials (3) and (4) are constants. Now we can write the Lagrangian:

L ( q , q , t )  =
Z i= 1 

2

2 a /*2 a
g fda?(g2) -
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The action will be

2a d2qi
da?(g2) +  v

i;] = 1

dqf1

2 a

dq[ d a?(g2)

tl
S[q(M = /  L(q,q,t)dt.

da?(g2)- (5)

(6)
<0

The variation of the functional (6) after above made remarks leads to the following 
equations of motion:

PQ i =
^  d2qt d2qt
+  +  vdqi dq 2 ’

pq2 = v-d2q2 , d2q2
+  v - (7)

Equations (7) are particular cases of the Burgers equation in Lagrangian variables. 
Now we start to discuss the distribution of the energy described in (4). This is the 
process that we hope to connect with the turbulence. The initial considerations 
in this sense is that up to a certain value the stored non-conservative energy dis­
sipates via the molecular diffusion mechanism. Above that value it may dissipate 
in another way, namely, via the macroscopic dispersion process which reveals the



240 Nedialko Valkov

turbulence process. After decreasing of eddies energy (due to of internal friction 
between the flow and eddies) to the given value the process turns into molecular 
one. The density of a non-conservative energy will be denoted by e. For the latter 
quantity, in view of the equations (7) and in the case when stationary channel flow 
dp/dqi is constant we can write:

where eiy is the non-conservative energy density from a layer with coordinate q2 
and length ly and A  is constant.
Now we will make an important assumption about the space-time structure of the 
fluid stream. The eddies are homing at a certain time-interval A t  of the motion of 
a given volume in the corresponding layer. Based on this assumption, and taking 
into account that the trajectories are straight lines and the profile is parabolic with 
corresponding boundary conditions, we can write for e(ly)

e(ly)  =  Ani/qi(q2)A t  =  vA nA (a2 — g |)A f/2 . (9)

Here ly is the trajectory length passed by the fluid from the corresponding layer 
(q2) after n eddies germinated. It follows from the above considerations that the 
stored internal energy is distributed by the corresponding layer in portions equal to

e(ly)|n=i =  1'A 2(a2 -  q l)A t /2  = f .  (10)

During the propagation a momentum transfer occurs between trajectories of the 
dynamical flow. We suppose that this transfer is in all directions with equal proba­
bilities. However, in view of the symmetry, the fluxes with well developed turbu­
lence from the channel center to the walls and contrariwise remain uncompensated. 
The difference between these two fluxes, added to the dynamically derived flow, 
determines the resultant motion. We have to note however, that in the zone near the 
centerline the fluxes from the channel walls to the center are mutually compensated 
and, therefore, they must be excluded from the momentum transfer balance. Let 
us denote the half-width of this zone with Y. Aiming to determine the effective 
length Ay of the eddy flow we will make use of the following simple expression 
for the eddy velocity decrease

4 — =  - h A ,  w0 = f (q 2) = \fe  (11)
d®

where w is the eddy velocity at a point q2 of the channel profile, k\ is a fluid 
constant with length dimension. The dependence of w on A  reflects the influence of



An Attempt to Use Mechanical Energy Conservation Principle in Case o f ... 241

the flux turbulization on the process of eddies absorption. In this way the effective 
length of the eddy originating from given point q2C is obtained as

where C  is the threshold velocity at which the molecular diffusion mechanism is 
switching on. As can be seen from (9) the values of Xyc depend very weekly on 
Re. In this paper we have assumed that the momentum transfer, which is realized 
due to the turbulence mechanism, is proportional to the velocity gradient (here 
&2 is the fluid constant). The last assumption expresses the view that momentum 
exchange is realized between neighboring trajectories while eddies are regarded 
as a transmitter. Accordingly, at a given point we have the following momentum 
balance: ipl is the total quantity of momentum carried throw this point by all eddies 
coming from central line to the walls, yjf is contrariwise quantity of momentum 
and loss of momentum due to of eddies born at this point. To average the pulsatory 
character of eddy emergency we use the ratio the eddy eruption time A tr (accepted 
as a flow constant) and time period between two consecutive eddy eruptions At.  
So for the profile 91(92) of the resultant flow we obtain

where J(-) is the Dirac delta function. As to the spatial structure of the flow we 
note that the numerical experiments have shown good results when the trajectories 
are treated as having equal width A x  for the whole flow.

3. Experimental Material

To evaluate the parameters of the model described above the data from [6] have 
been used. In Figure 1 the comparison between experimental data for the three 
cases of developed turbulence (Re = 13800, 23200, 32300) and the computed 
curves of the mean velocity profiles are shown. The statistical results are shown in 
Table 1. The parameters are: A t  = 0.0003s, C = 0.0026 m/s, k\ = 0.00033 m, 
&2 =  0.0246 m, A tr/ A t  =  1/10.2, A x  =  7.10“ ° m. In Figure 2 the eddy’s 
effective lengths for the upward and downward turbulent flow are shown. Y  is 
the semi-width of the central part of the channel where the symmetric turbulent 
flows directed to the central line are mutually compensated (the value of Y  was 
obtained about 0.16a). In Figure 3 nine velocity profiles calculated according to

=  ( / f e e )  -  C ^ / h A (12)

91 to )  =  91(92) +  H (9 2 ) +  ŷ T(92) -  91(92)] A t

(13)
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above described model with Re =  100, 2200, 3000, 10000, 37000, 50000, 73000, 
97000, 143000 are shown.

oo
’B>
Na

0.03 0.02 0.01
Channel half-width [m]

0.00

Figure 1. Measured and calculated curves of the main velocity profile 
for the flows with corresponding Re

central line

Be= 13800 
7Je=23300 

- J&=32300

Figure 2. The effective eddy’s length for the upward and downward 
flows for each point of the channel profile

Table 1

Flows(-Re)
13800
23200
32300

Mean velocity MSE(%)
1.3
1.5
1.7

Re calculated 
14473 
22918 
31574
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-------7?e=100
------ i?e=1700
------- Re^ 2200
------i?e=10000
------7?e=37000
------T?e=50000
------ i?e=74000
------7? 97000
------- i?e=143000

0.03 0.02 0.01 
Channel half-width [m]

0.00

Figure 3. Numerically derived profiles for Re = 100, 2200, 3000, 
10000,37000,50000,74000,93000,143000

4. Discussion

As a discussion we will make the following notes:

1. This work aims to prove the possibility to consider the fluid motion sep­
arately. The splitting concept is well developed in the hydrodynamic cal­
culations and final proof is the quality of solutions. Here the situation is 
different: we introduce the idea to separate the different physical aspects 
of fluid flows -  adveclion and diffusivily. This is one of the moments in 
the speculation of the model -  if this kind of the splitting is correct? The 
tradition is to describe the motion as integrated system -  including all know­
ing facts. Unlike this tradition here we distinguish these two main physical 
behaviors of the fluid motion as prerequisite.

2. Calculated curves, presented in Fig. 3, posses a stable behavior in large 
interval of Re -  from laminar flow to flows with extremely high developed 
turbulence, and the shape of curves follow the typical form known from the 
experiments with increasing Re.

3. This model gives some qualitative correct results known from the basic tur­
bulence phenomenology [7], Relation (4) shows that the energy of instabil­
ity, accepted in this work as accumulated along the trajectories in the pro­
cess of friction, increase with velocity. According to above considerations
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the emergence of eddies is related with critical level of accumulation of en­
ergy determined by (4). This means that after the beginning of the channel 
in the transition regimes there is laminar part that consequently decrease 
with increasing of Re.

4. It is important to mention also the numerically obtained result connected 
with time-spatial discretization of the main (dynamically described) flow. 
Different attempts was used to model it. The better results are obtained in 
the simplest way of the discretization with respect to time and space. It 
turned out that the discretization is constant independently of the velocity 
and the place in the channel. As we noted before here we have evaluated 
the size of the fluid particles. This means that the trajectories have some 
constant behaviors in the flow and makes this construction more reliable. 
Of course in the case of flows with arbitrary geometry at the boundaries the 
size of the trajectories will be different in the different part of the flow.

5. As for the time discretization the situation is more important. The constancy 
of the time discretization can be connected with the well known and very 
complicated phenomenology in the transition regime -  alternative changing 
of the laminar and turbulent behavior of the flow. This fact is easy to explain 
from the point of view of the above presented model. After the discharg­
ing of non-conservative energy some time is necessary to produce the next 
portion of it and then the new eddies in the central line (and in closest tra­
jectories, usually) can emerge. Let us underline that the constancy of time 
and space results from the numerical experiments and therefore can not be 
accepted as a primary requirement of the model.

6. Even these preliminary results show that the predicted interval between 
1800 and 1900 Re, in which the first eddies emerge is correct.

5. Conclusions

This work introduce the concept of the flow splitting in two parts with different 
physical behavior -  dynamical and statistical. Dynamical flow is described by 
means of a Burgers type equation. The statistical flow distribute accumulated from 
the dynamical flow dissipative energy via mechanism that simulate some turbu­
lence phenomena in the channel flows. An important flow characteristics are intro­
duced (as time and spatial structure) that can be connected with turbulence behav­
ior. Despite the strong idealization of the turbulence and controversial speculations 
made in the presented model, we consider the obtained results as interesting and 
challenging for further study.
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