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Abstract, The notion of a phase space in classical mechanics is of course 
well known. The extension of this concept to field theory however, is a chal­
lenging endeavor, and over the years numerous propositions for such a gen­
eralization have appeared in the literature. In this contribution we review a 
Hamiltonian formulation of Lagrangian field theory based on an extension 
to infinite dimensions of J.-M. Souriau’s symplectic approach to mechan­
ics. Following G. Zuekerman, we state our results in terms of the variational 
bicomplex. We present a basic example, and briefly discuss some possible 
avenues of research.

1. Introduction

It appears it was H. Bacry [3] who first noted that one can find the equations of mo­
tion of (spinning) elementary particles by studying Hamiltonian systems on coad­
joint orbits of the Poincare group. By doing so, he realized that it is natural and 
important to introduce phase spaces not just as a set of p's and q's equipped with 
the canonical form dqtAdpi, but as non-trivial symplectic manifolds. His work was 
put in a general context by J.-M. Souriau in his ground-breaking Structure des Sys- 
temes Dynamiques [18]. This treatise is the first complete treatment of mechanics 
which fully utilizes the language and techniques of symplectic geometry.
It is now widely recognized that a fructiferous approach for treating dynamical 
problems with a finite number of degrees of freedom, is to model them as Hamil­
tonian systems on (in general non-trivial) symplectic manifolds [2, 7, 12, 13]. It 
is less clear how to proceed when considering field theory. A completely rigorous 
point of view based on manifolds modelled on Banach (or Frechet) spaces would 
perhaps be the approach of choice, but to pursue such an endeavor is very delicate:
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results proven along these lines rely heavily on geometry and on hard nonlinear 
analysis, as J. Marsden’s lecture notes [12] testify.
A more formal approach to the Hamiltonian structure of (systems of) evolution 
equations is summarized in P. Olver’s treatise [16] (see also [15]): one gives up 
the manifold description of phase space, and replaces the symplectic form by a 
“Hamiltonian differential operator.” This point of view has been developed and 
applied with great success in integrable systems, giving rise, for instance, to the 
important structure of a “bi-ham iltonian system,” which appears to encode the in­
tuitive meaning of integrability for partial differential equations of evolutionary 
type.
If one is interested in the formal properties of evolution equations (e.g. , conser­
vation laws, symmetries, recursion operators [15]) it is natural to use this second 
point of view. On the other hand, if one is interested in the canonical quantiza­
tion of a dynamical system [21], or in understanding bifurcations and the structure 
of the space of solutions [12, 13] one most probably needs to possess a detailed 
understanding of the structure of the phase space of the system at hand.
How do we construct phase spaces in field theory? The most common approach to 
field theory starts with a Lagrangian. One can then use a method due to Dirac [8,9] 
and extensively studied in the 1970’s and 1980’s [2,4,9] to obtain a physical phase 
space equipped -  at least in the classical version of the method -  with canonical 
variables reminiscent of the p's and q's of classical mechanics [5, 8]. By doing so, 
one loses covariance, a fact usually seen as an imperfection from a physical point 
of view [5, 14]. From a geometrical point of view, the description of the phase 
space through canonical coordinates appears incomplete while one would like to 
present it in an intrinsic, global fashion.
A way to repair these shortcomings, and to move from a Lagrangian point of view 
to a Hamiltonian picture, is to stay “in between” the formal versions of the Hamil­
tonian formalism [8, 15, 16], and its completely rigorous symplectic version [12]. 
One may attempt to obtain a covariant, coordinate-free description of the phase 
space, as a first step to a description of the dynamics a la Marsden, say, and also 
as a previous step to canonical quantization [21]. This was accomplished by G. 
Zuckerman -  using formal arguments rooted in the rigorous theory of the vari­
ational bicomplex -  in a beautiful and not so well-known paper [22] written in 
1986. He appears to have been the first in explaining, in full generality, how to 
build phase spaces in a covariant way, using directly the Lagrangian and not going 
through Dirac’s theory of constraints.
Several special cases of Zuckerman’a analysis appeared before [22], notably in 
Souriau’s treatise [18], and in fact in the work of J. Lagrange himself (Mem. Cl. 
Sci. Math. Phys. Inst. France (1808) p. 1). Also of great interest are the paper 
by C. Crnkovic and E. Witten on the covariant description of phase spaces for
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Yang-Mills and general relativity [5], the subsequent analysis by C. Cmkovic of a 
general first order Lagrangian theory, superstrings and a general first order theory 
in superspace [5], N. Woodhouse’s discussion of first order Lagrangian field theory 
appearing in [21], and S. Sternberg’s analysis of the formal variational calculus of 
Gel’fand and Dikii [19].
In this contribution we review some aspects of G. Zuckerman’s fundamental paper 
[22], This is indeed an exciting area of research, and much remains to be done! In 
fact, the original motivation for the present article was work by Y. Nutku [14], in 
which he uses ideas from [5] to study the Hamiltonian formulation of the impor­
tant Monge-Ampere and Korteweg-de Vries equations. This paper is organized as 
follows: Section 2 is on symplectic and presymplectic manifolds following [17], 
The variational bicomplex is studied in Section 3, and Zuckerman’s construction 
is explained in Section 4. We finish in Section 5 with a simple example and a 
discussion on work to come.
The Einstein summation convention will be used throughout.

2. Hamiltonian Systems and Presymplectic Manifolds

We review the relation between Hamiltonian mechanics and what is called here 
Souriau reduction, that is, the understanding of the equations of motion as a (per­
haps local) description of the leaves of a foliation of a presymplectic manifold [18]. 
The manifolds appearing in this section are all finite-dimensional unless otherwise 
explicitly stated. All maps, vector fields and tensors are assumed to be of class 
C 00.

2.1. Presymplectic and Symplectic Manifolds

We begin with a two-form w o n a  manifold M . We say that uj is a presymplectic 
form on M  if it is closed and of constant rank on M . If the presymplectic form uj 
is non-degenerate, that is, if the rank of uj is equal to dim(M ), we say that (M, uj) 
is a symplectic manifold and that uj is a symplectic form on M . From now on, 
the adjective “presymplectic” will be applied exclusively to closed two-forms of 
constant rank strictly less than dim(M).
A standard example of symplectic manifold is the cotangent bundle T*M  of an 
arbitrary manifold M  [2], In coordinates, if (q1) is a coordinate chart on M , and 
aq =  (q1, . . . ,  qn ,p i , . . .  ,pn) is an element of T*M , then uj0 =  dql A dpi is 
a symplectic form on T*M . The symplectic manifold (T *M ,ujq) is called the 
canonical phase space of the configuration space M .
If (M i , uji) and (M 2 , uj2 ) are symplectic manifolds, <p : M \ —» M 2 is a smooth 
symplectic mapping if <p*uj2 =  uj\. If, in addition, o  is a diffeomorphism, then 
( M \ , uji) and (M2 , 816 said to be sympleetomorphie.
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The local characterization of (pre)symplectic forms is given by Darboux theo­
rem [2],

Theorem 1. Suppose that uj is a non-degenerate two-form on a 2n-dimensional 
manifold M . Then duj = 0 if and only iffor any m  G M  there exists a chart (U, f )  
about m  such that 4>{m) =  0 and

u\u  =  drc* A dyt (1)

in which 4>\u =  (x 1, . . . ,  x n, y i , . . . ,  yn). More generally, if  (M , uj) is a (2n +  k)- 
dimensional presymplectic manifold with rank(iu) =  2n, for each m  G M  there is 
a chart (U, tb) about m  such that

uj\u =  dq1 A drj

in which tb\u =  (q1, • • •, qn , r±, . . . ,  rn, w1, . . . ,  wk).

2.2. Hamiltonian Systems

Let (M, uj) be a symplectic manifold and let H  : M  > IR be a smooth function 
on M.  The triplet ( M , uj,H )  is called the Hamiltonian system on (M ,uj) with 
Hamiltonian function H  and phase space (M, uj). The evolution of the system is 
given by the flow of the vector field X h  uniquely determined by the equation

i x HuJ = dH.  (2)

That Equation (2) does encode Hamilton’s equations is a consequence of Dar- 
boux’s result:

Proposition 1. Let (M , uj) be a symplectic manifold and (q1, . . . ,  qn,pi,  ■ ■ ■ ,pn) 
canonical coordinates (i.e. given by Darboux’s theorem) on M , and let H  : M  —» 
R. be a smooth function on M . Then, the equation i x HuJ =  dH  implies that

X H
dH  dH
dpi ’ dq1

Thus (q(t),p(t)) is an integral curve o f X h  if  and only if

dq1 _  dH  dPt _  dH
dt dpi ’ dt dqi

2.3. The Space of Motions

It is not always straightforward to find a symplectic description of a mechanical 
system [2, 7, 18]. As stated in the Introduction, it is not uncommon to consider 
systems described by a (singular) Lagrangian [8], and to find canonical formula­
tions for them by means of the Dirac constraint algorithm [2, 4, 5, 8, 9, 14, 21]. 
The final result of this algorithm is a presymplectic manifold (M, uj). Given such 
a data, the corresponding phase space is constructed as follows:
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For each v e  M  set ker„ uj =  {Zv e  TVM ; i z vuj = 0}, and define the distribution 
of vector spaces

kertu = ( J  kerv uj.

v€M
Since uj is of constant rank, the dimension of ker„ uj is independent of v and ker uj 
is a sub-bundle of the tangent bundle T M .  Moreover, if Z, Y  are vector fields 
on M  such that Z(v)  and Y(v)  belong to ker„ uj for all v e  M ,  then, i\z,y \^  =  
Lz(iyuj) ~  iyiLzuj)  =  0 — iy(d(izuj)  +  izduj) =  0, and so [Z,Y](v) e  kerv uj 
for all v c M.  Frobenius’ theorem [2,13] then implies that the distribution ker uj is 
integrable, that is, there exists a foliation =  { £ a}a€A of M  satisfying ker uj = 
T (M ,  $ uj), in which

T ( M , $ W) = ( J  U  TmCa
a£Am£Ca

is the tangent bundle of <T>U...

Definition 1. Let (M, uj) be a presymplectic manifold. The space o f motions Um 
o f (M , lj ) is the set o f leaves o f the foliation that is, Um  = M j  ker uj.

Henceforth, the presymplectic manifold (M, uj) will be also called the evolution 
space (M, uj). The procedure of constructing the corresponding space of motions 
U m  will be referred to as Souriau reduction, after the fundamental contributions 
to the subject made by J.-M. Souriau [18].
The space U m  is a manifold if and only if (see [10,13,21] and references therein) 
for every v e  M  there exists a local submanifold T,v of M  such that T,v intersects 
every leaf of the foliation ^  in at most one point (or nowhere), and TVT,V © 
TV(M,  $[,;) =  TVM.  The submanifold T,v is called a slice or local cross section 
for It follows that if U m  is a manifold, its dimension is equal to dim(M) — 
dim(ker uj).

The next theorem, which goes back at least to Souriau [18], see [2, 7, 12, 13, 21], 
is the main result on this subject:

Theorem 2. Let (M , uj) be a presymplectic manifold, and assume that the space o f 
motions Um  is a manifold. Then, Um  can be equipped with a symplectic structure 
uj such that tt*uj =  uj, in which w : M  —» M /  ker uj is the canonical projection 
from M  onto U m -

As stated above, it is not unusual to model a mechanical system on an evolution 
space (M , uj) [4, 8]. J.-M. Souriau [18] contends that the true phase space for 
the system is the symplectic manifold ( U m , uj) constructed in the last theorem. 
A very interesting application of this point of view is H. Kiinzle’s discovery [10] 
of a presymplectic description of a spinning particle in a gravitational field: this 
paper appears to be the first deep physical application of Souriau reduction. Later,
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S. Sternberg and his coworkers formulated a program to reduce classical mechanics 
to the construction of presymplectic manifolds and the corresponding spaces of 
motion [7],
We now explain the name “space of motions”.

2.4. From Hamiltonian Systems to Presymplectic Manifolds and Back

Souriau’s original discussion on the connection between the space of motions and 
Hamiltonian systems is in [18, p.128-132]. Here we follow [17].
Lemma 1. Let ( M , uj,H)  be a Hamiltonian system on the symplectic manifold 
(M, la). Define N  = M  x  R., and set O =  p\uj +  (p fd if) A (p|dt), in which 
pi : N  —» M  and P2 : N  —» R are the canonical projection maps. Then, (N, O) is 
a presymplectic manifold.

Indeed, it is elementary to check that for each (m, t) e  N , ker(TO ^ fl =
a

{aXjy(m) +  a — ; a  £ R}, so that the dimension of ker(m tj O is equal to 1
for all (m, t) g N . Note that if m(t)  is an integral curve of X h  and one sets 
n(f) =  (m(t) ,f ),  then clearly n'(t) G kern(tj O for all t. Following Souriau [18], 
we identify the motions o f the system described by (M , lu, H ) with the leaves o f the 
foliation induced by the integrable distribution ker O. Of course conversely, after 
choosing charts, we recover, up to parameterizations, the integral curves of X h -

Lemma 2. Let (M , uj, H ) be a Hamiltonian system on (M , uj), and let (N , O) be 
the presymplectic manifold defined in Lemma 1. The integral curves o f the Hamil­
tonian system (M , uj, X h ) can be obtained, up to parametrization, by projecting 
the leaves o f the foliation $ q into M.

These two lemmas imply the following result:

Proposition 2. Identify the leaves o f the foliation $ q with the integral curves o f 
X h - The space o f motions Um =  iV /kerfl, in which N  and O are defined in 
Lemma 1, is a manifold. Moreover, the original symplectic manifold (M , uj) and 
(Um , H) are symplectomorphic.

Proof: The idea of the proof is that the foregoing discussion implies that £  £ Um 
can be described as a curve (m(t) ,t ),  in which m(t)  is an integral curve of X h - 
We can then define the map A : Um —> M  by \ ( £ )  =  m(0).
More rigorously, we use coordinates: the flow box theorem [2] says that for each 
m  g M  there exists an open set Um C M  and a smooth map F  :  Um x I  —» M,  
in which I  =  (—a, a), a > 0 or a =  oo, such that for each v £ Um, the curve 
cv : I  —> M  given by cv(s) = F(v,  s) is the integral curve of X h  passing through 
v. Now, since the leaves of N  through u £ Um are precisely the integral curves of
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X h , the submanifold E =  Um x {0} is a slice for the foliation $n- Thus, Um is 
a manifold, and for (u, 0) e  E, we simply define the function A as the projection 
A (u, 0) =  u. This is of course a bijective smooth symplectic map. □

Thus, we are justified in considering the phase space of a dynamical system as the 
space of classical solutions of the system at hand. This observation is at the core 
of the generalization of Souriau’s point of view to Lagrangian field theory [5, 21, 
22]: in this infinite dimensional context, one defines the phase space of the theory 
precisely as the space of classical solutions to the equations of motion.
We can also start with an evolution space (M, u>) and build symplectic manifolds 
(P,fl) containing (M , uj). A short discussion of this fact is in [17]. We now 
turn to field theory. We first review the construction of the variational bicomplex, 
following mainly [1],

3. The Variational Bicomplex

3.1. Geometry of Infinite Jets

Let 7T : E  —» M  be a trivial fiber bundle in which M  is the space of independent 
variables x 1, 1 < i < n , and the typical fiber is the space of the dependent variables 
ua , 1 < a  < m. We also let J kE, k > 1, be the bundle of &-jets of local sections 
of E.
The infinite je t bundle of E, J°°E  —» M , is the inverse limit of the tower of jet 
bundles M  < E  ■ ■ ■ < J kE  <— J k+1E  <— • • • under the standard projections 
7if : J kE  —» J lE, k  > I. We denote by tt|°  : J°°E  —» J kE  the canonical projec­
tion from J°°E  onto J kE.  Locally, J°°E  is described by canonical coordinates 
(x *, ua , u f  ufli2'"ik, • • •), 1 < h  < *2 < • • • < ik < n, obtained from the
standard coordinates on the finite-order jet bundles J kE,

< u k( s m  = Q ^ ( P ) ,  < i2u k( * m  =  ••• w

in which p e  M  and j k(s) is the k-jet of the local section s : (xl) ^  (xl , sot(x1)) 
of E.
Any local section s : (xl ) ^  (x1, sa (xl )) of E  lifts to a unique local section j°°(s) 
of J°°E  called the infinite prolongation of s. In coordinates, j 00 (s) is the section

f)
dx li . . .  dxl>=

A  function /  : J°°E  —> R. is smooth if it factors through a finite-order jet bundle, 
that is, if /  =  fk  o tr£°, for some function fk  : J kE  R.
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A vector field X  on J°°E  is a derivation on the ring of smooth functions on J°°E. 
In local coordinates, vector fields are formal series of the form

x  =  A * w +  £  (5)k> 0 *i—
l< i1<---<ik <n

in which Ai, B f  are smooth functions on J°°E . We say that a vector field X  
given by (5) is tt̂ - vertical if all the coefficients Ai vanish. Vector fields X  on M  
can be canonically prolonged to vector fields pr°°X  on J°°E  by setting

pr°°X(j°°(s)(p)) • /  =  X(p)  ■ (J o f ° ( s )) (6)

for smooth functions /  on J°°E  and p e  M . This operation defines the Car- 
tan connection C on J°°E: the horizontal lift of a vector field X  on M , also 
called the total derivative in the X  direction, is simply pr°°X . Locally, hori­
zontal vector fields are linear combinations of the total derivatives D j ,  in which
Dj = pr°°(d/dx3),  that is,

D, = dxi
+ uuq

duc
+  u.nj du°

+  u.%ii2j dul +
*1*2

(7)

The prolongation operation (6) satisfies pr°°[X 1 ^X 2 ] =  [pr°° A i , pr°° A 2] for all 
vector fields A'i and A\> on M , and therefore the Cartan connection is flat.
Differential forms on J°°E  are the pull-backs of differential forms on J kE  by the 
projections 7t£°. Any differential A>form uj on J°°E  may be written in canonical 
coordinates as a finite linear combination of terms

A dx*1 A • • • A dxip A d u f1 • A • • • A du?g , (8)

in which p +  q =  k  and A is a smooth function on J°°E.
A  differential form lo on J°°E  is called a contact form if j°°(s)*u> =  0 for all 
local sections s of E. The set of contact forms determines an ideal J  in the ring of 
differential forms on J°°E . Locally, the contact ideal 1  is generated by the basic 
contact one-forms

K  < K < —ik ida;5 w
j

for all k > 0, and it is not hard to check that the exterior derivative of 0“ ik is 
given by d0“ =  J2j ^  A 0“ . Contact forms are important because they
provide a dual description of the Cartan connection, as the set of all vector fields 
X  on J°°E  satisfying ixx> = 0 for all one-forms uj e l .
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3.2. The Variational Bieomplex

To define the variational bicomplex we bigrade the differential forms on J°°E: 
A p-form on J°°E  is of type (r, s), in which r  +  s =  p, if uj( X i , . . .  X p) =  0 
whenever either a) more than s of the vector fields X \ , . . .  X p are tt̂ - vertical, or 
b) more than r  of the vector fields X \ , . . . X P are horizontal. In coordinates, a 
p-form uj is of type (r, s) if it can be written as a finite sum of terms of the form

^  d V  A . . .  A d x -  A 0“V ,  A ■■■ A . (10)

Let QP(J°°E) denote the set of p-forms on J°°E , and Qr,s( J ODE)  denote the set 
of p-forms of type (r, s). Then,

q p (jo° E ) =  0  Qr,s( J oc‘E ).
r+ s= p

The exterior derivative splits, d : Or's(J°°£ )  -» Or+1's(J°°£ )  ® Slr'a+1(J°°E), 
and we can write d =  d #  +  dy, in which d #  : {lr,s(J°°E)  —» {lr+1's(J°°E), 
and dy : Qr,s(J°°E)  —» Qr,s+1 (J°°E)  are the horizontal and vertical exterior 
derivatives, respectively. The equation d2 =  0 implies that d% = df, =  0 and 
dtfdy -)- d y d n  =  0. In local coordinates, d #  and dy are computed as follows:

d h !  = £ < z w ) d ^
i

( i i )

d y / du1 duf *
(12)

d ff(d ^ ) =  0, d H 0 f ^ tk =  E  d^J A 0 f ^ tkJ (13)
3

dy(da:1) =  0, dy0“ =  0. (14)

Thus, for example, dyrc* =  0 and dy«“ =  0“ ifc.
The variational bicomplex of E  is the double complex (fl*'*(J°°E), dn ,  dy) 
of differential forms on the infinite jet bundle J°°E . In detail, writing il*"* for 

E), this important bicomplex looks like follows:

f  d v Td v Td v Td v

fi°>2 dn .
f i 1-2

dH, d h . o n_1 ,2 dH, f i n '2

f  d v Td v Td v Td v
d h . < iu d h d h U d h

T Td v Tdv Tdv

JO o o d h
f i 1’0

d h d h JO 3 1 J-* o d h On’°0
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If the fiber bundle E  ' M  is simply R.m+n —» R” , all the sequences appear­
ing in (15), both horizontal and vertical, are exact. This important result has been 
proven by several researchers, notably I. Anderson, L. Dickey, F. Takens, W. Tul- 
czyjew, T. Tsujishita, and A. Vinogradov. Original references appear in [1,22],

4. Hamiltonian Formalism for Lagrangian Field Theories

We fix a fiber bundle w : E  —» M  and let J°°E  be the infinite jet bundle of E. 
The space f ln,1( J ODE)  possesses a distinguished subspace £ n+1(E) of all source 
forms on J°°E: we say that a differential form uj e  f ln,1( J ODE)  is a source form 
if in any local system of coordinates (x1 ,ua ) on E,

uj =  P0( x \  ua , u f , . . . ,  uf% ik) du13 A da:1 A • • • A da:n

or, equivalently, if uj = Ppix1, ua , u f , . . .  , u f  ik)913Adx1 A- ■ -Adxn. An intrinsic 
characterization of the space of source forms is in the first two references of [1], 
Their importance is due to the following

Lemma 3 ([1, 22]). Assume that uj e  Qn,1(J°°E). Then, uj can be written 
uniquely as

uj = uj\ + dff-q (16)
in which uj\ 6 £n+1(E) is a source form and q G Qn-1,1( J°°E).

Suppose now that we fix a Lagrangian density A G f ln'0(J°°E),  so that in local 
coordinates (xl , ua ), A =  L(x t ,ua , u f , . . . )  da:1 A ••• A da:n, see [1, 16], The 
vertical exterior derivative dyA belongs to Q,n,1(J ODE), and the last lemma implies 
that one can write

dyA =  E (  A) +  duq  (12)
uniquely, in which E (A) is a source form (essentially the Euler-Lagrange operator 
evaluated at L, that is, E (A) =  Ea (L)dua A dx1 A ■ ■ ■ A dxn, in which

E J L )  = -  Dt
dL

+  DiDj
dL

dvadua \ 9 u f

see [1,16]) and q G ^ - ^ ( J ^ E ) .  We define U(A) G O ""1'2(J°°E)  by

U (A) =  dy»7. (18)

The differential form U(A) is Zuckerman’s universal current [1, 22], We observe 
that dy[/(A) =  0, and that, less trivially, d#C/(A) vanishes on solutions uOL(x’1) to 
the Euler-Lagrange equations. Indeed, on solutions to E a(L) =  0, equation (17) 
becomes dyA =  duq,  and therefore

0 =  dydyA =  d y d n q  =  — dffdyq  = —diy(/(A). (19)
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After G. Zuckerman [22], we say that the differential (n — 1 ,2)-form U(X) is a 
conserved current for the Euler-Lagrange equations Ea (L) =  0:

Definition 2. Fix a form X e  f ln,0(J°°E) as above. A differential form K  G 

Qn~1,r}(J°°E), q > 0, is a conserved current fo r the Euler-Lagrange equations 
E J L )  = 0 if

d h K  =  0
whenever ua (xt ) is a solution to the equations E a(L) = 0.

The conserved currents of Definition 2 are a generalization of the standard conser­
vation laws of field theory. Usually conservation laws are defined as differential 
forms K  G f ln~1,0(J°°E)  which are closed on solutions, see [1, 2, 16] and refer­
ences therein. The importance of these new conserved currents, also called higher- 
degree or form-valued conservation laws, has been recognized only recently [1], 
Of course, Definition 2 extends to arbitrary systems of partial differential equa­
tions. Thus, for example, it is a straightforward exercise to check that the canonical 
symplectic form ujq =  dql A dpi is a form-valued conservation law for Hamilton’s 
equations.
The following definition replaces the space of motions of Section 2:

Definition 3. a) The solution variety S l associated with a Lagrangian L is the set 
o f all local smooth sections

ib : (x1) i-» (x l,ua (x1))

o f the bundle E  such that is a solution to the Euler-Lagrange equations
E a (L) =  0.
b) For each ib G S i, the tangent space T ^S l at ib is the set o f all vector fields

**= + + AiAsG“42 +  (20)
on the infinite jet bundle J°°E  such that Ga (ib) (the pull-back o f Ga by the sec­
tion ib G S l ) satisfy the Jacobi equations, that is, the linearization o f the Euler- 
Lagrange equations at ib.

Zuckerman’s main result [22] is the following:

Theorem 3. For any Lagrangian density X =  L d x 1 A dx2 A • • • A dxn G 

Qn,o f j°°E),  consider the associated differential forms q G O.'11-1,1 (J°°E) and 
U (A) G 0,n~ 1,2(J°°E) defined in (17) and (18), respectively. Then, U(X) is a 
conserved current for the Euler-Lagrange equations Ea (L) = 0. Moreover, 
a) Suppose that C is a compact, oriented (n — 1)-dimensional submanifold o f M. 
Define differential forms 9q and uq on S l as follows: For any solution ib G S l
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and any two vectors Slip, S2ip 6 T ^S l ,

ec (ip)-Siip = J tb*(iSl^r]) and ujc (ip) ■ (Slip, S2ip) = J ip* (iSl^ i S2̂ U  (X)).
(21)

Then, the one-form 0c and the two-form uq satisfy ljc =  d %  and d ljc =  0. 
b) The two-form uq does not depend on the submanifold C.

The two-form ujc is the (pre)symplectic form on the space o f solutions S l we were 
trying to obtain. The important question of when ujc is in fact symplectic will not 
be treated here. It is briefly considered in the last work of [5], in [19] and in [22], 
Some general remarks on this issue can also be found in [20].

5. An Example

We consider the simple example of a Lagrangian density of the form [20, 21 ]

A =  L(xi, ua , u f )  d x 1 A • • • A dxn .

Set v  =  da:1 A • • • A da:n, and i^ =  (—1)* da:1 A • • • A da:1-1 A da:l+1 A • • • A da:n. 
One has

( BT BT \
a ^ 6 a + a ^ 6 f ) h u  = Ea{V}6ahu+

and, on the other hand, one easily computes

3L

3L

dH( ^ 0aAV = B uf 1C  +  A

Buf 1

3L

0? + A
3L_
B u f

t\v

Buf
A v.

Thus, dyA can be written as dyA =  E a (L)0a A y +  dap  in which
3L

V = dul
-0a A Vi (22)

0c(tp) ■ Sib = ip* (isipp)

The “presymplectic potential” 0c defined in equation (21) now reads

in which Sib is given by (20). This formula, found here from general principles, 
coincides with the ones Woodhouse [21, p. 132] and Crnkovic [5] found by formal 
manipulations. The corresponding (pre)symplectic form ujc becomes

ujc (ip) ■ (Siip,S2ip) = (  t p * ( X ) )  ^
JC> c  BubBuf

r s ~ i p  S ~ i p  S~1C£][L?i C?2 — J

+
32L  

8uf B u fJ L
[(DjGf)Gf  -  (DjG§)Gf]
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in which Sipi and Sip2 are vectors in T^Sp  as in (20).
Finally, we would like to remark that even though some work in the area has ap­
peared in the literature (see for example [14, 20]) no complete, rigorous exposi­
tion of Zuckerman’s ideas seems to be available (except for a review of [22] by 
P. Deligne and D. Freed [6]). Also, as pointed out by Nutku [14], the Lagrangian 
methods do not much appear in integrable systems, the exception being the in­
triguing paper [19] by S. Sternberg. We wonder if the analysis of [19] can be 
generalized to other integrable hierarchies, and also if Zuckerman’s approach can 
be related to the Hamiltonian operators of [15, 16].
Acknowledgments. The author is most grateful to Dr. Ivailo M. Mladenov for invit­
ing him to participate in the 2003 Varna conference.
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