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Abstract, In the Batalin-Vilkovisky field-antifield formalism a classical 
mechanical system is described by a solution of the classical master equation.
The quantization of this general gauge theory in the Lagrangian approach can 
be accomplished in closed form [2], The AKSZ-formalism is a geometrical 
construction of such a solution as a QP-manifold [1], This can be extended 
and applied to topological quantum field theories.

1. Introduction

After a short review including the main topics of general gauge theory and the 
notion of fields and antifields in the Batalin-Vilkovisky formalism I will introduce 
the geometrical approach to these problems. This is the formalism of Alexandrov, 
Kontsevich, Schwarz and Zaboronsky (AKSZ) which constructs in a geometrical 
way the solutions of the master equation which are of physical interest by the use 
of QP-manifolds [1]. A special QP-manifold, E  =  H T*X  x Ilg x g*, which leads 
to the Batalin-Vilkovisky action of an irreducible theory with gauge invariance will 
be constructed and discussed in detail.

2. General Gauge Theory

2.1. Canonical Formalism

The non-abelian Yang-Mills theory is the most familiar example of a gauge struc­
ture. In this case, when a choice of basis is made, the structure constants of the un­
derlying Lie group determine the commutator algebra. The Jacobi identity, which 
expresses the associativity of the Lie group, must be satisfied.
Now I will recall the canonical formalism in a compact notation [11], Consider 
a system whose dynamics is governed by a classical action 5o[</>], depending on 
n different fields <pl with i =  1 , . . . ,  n =  n + +  n_, where n+ is the number
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112 Beatrice Bucker

of bosons and n_ is the number of fermions. In general i can label space-time 
indices of tensor fields, spinor indices of fermion fields or distinguish between 
different types of generic fields. Let e(4>'t) =  tj denote the statistical parity, i.e. the 
Grassmann parity of <pl . Each <pl is either a commuting bosonic field with parity 
ei =  0 or an anticommuting fermionic field with e* =  1 , so one has (p1 (x)<^ (y) =  
(—1 )eiej(jP {y)(j>l{x) according to the Koszul sign rule. This has to be taken into 
consideration whenever two indices are interchanged. Here the new variables are 
introduced at the classical level.
Assume that the action S q [<p] is invariant under a set of m, m  < n, of non-trivial 
gauge transformations, which read in infinitesimal form

5<pl = where a  =  1 , 2, . . . ,  m.

This is the compact notation, where ea is an infinitesimal gauge parameter with 
parity ea =  0,1 and the are generators of gauge transformations with parity 
e(T^) = ei + ea (mod 2). Later on the gauge parameters will be turned into 
ghosts [9] and the generators into the generators of a underlying Lie algebra of a 
QP-manifold, which will be constructed in the AKSZ-formalism (see section 4.5). 
Let 5o,i [4>] denote the variation of the action with respect to (jf

drS
dp1 4>o

restricted to a stationary point 4>q. The index r  denotes the right derivative, the 
distinction between left and right derivatives is necessary in the context of Grass­
mann algebras with fermionic and bosonic variables. The statement that the action 
is invariant under gauge transformations of the form Sp"1 =  Tplea means that the 
Noether identities hold

So,iK  = o.
Now consider the commutator of two gauge transformations of this form

[Si ,S2]4>J = Si(S2(f>J) — 62(614^ )  

= S i(T 30s l)  -  62^ )

with
O 0*21?

$ i(T 3el) = — ( T j e f ) ^  =  + T 30 1 dTa ft' £ At _  P .-- T1'1-di0 - S2 •

[ S u h W  = T ^ T 30e le f  -  T ^ T ^ s l  

= (raJT 30 -  ( - 1 P 2 •

It follows that



Geometrical Approaches to the Quantization of Gauge Theories 113

The commutator of two gauge transformations is also a gauge symmetry of the 
action, so it has to satisfy the Noether identity

-  ( - l y ^ T ^ T i )  =  o.
Then the most general solution to the Noether identities implies the following im­
portant relation among the generators

T L A  -  ( -1  T a€0T l 3T l = 2t ; j20 +  S0iJE%  (1)

for some gauge structure tensors and E 1̂ .  In the cases which will be consid­
ered here the will be the structure constants of a Lie algebra, not depending on
the fields, and the F'r:‘j  vanish, so our algebra is closed. Then the bracket relation 
reads

1 (  9 T I tJ  
2 1 a #  ^ ( - i ) '

dT l . __ ‘1 1 (2)

2.2. BRST Formalism

Variational principles lead to the classical Poisson bracket on the phase space 
{ql ;Pi}- Gauge transformations G are local symmetry transformations Sqt ,Spi; 
they leave the Hamiltonian invariant

SH = {H ,G } = 0.

The original phase space must be extended by one degree of freedom for each 
symmetry transformation. In the BRST formalism [5, 20] the solutions of the 
constraints will be identified with the cohomology classes of a nilpotent operator 
Q. The construction of Q and the extension of the phase space will be done with 
ghosts. Define the generalized Poisson bracket

O FdG  O FdG  d iF d iG  dtF  dtG
1 , 1  dq1 dpt dPt dq1 +  1 j dBa dwa dwa dBa

on the extended phase space {ql ;pi;Ba; ira}, where q1 are the coordinates, pi their 
conjugate momenta, and Ba the ghosts with their conjugate momenta 7ra . F ,G  are 
functions on this space. The BRST operator Q generates ghost dependent symme­
try transformations of the classical phase variables Snq1, Snpi. Now define BRST 
transformations for the ghosts and require nilpotence, Sq =  0.
Let F  be a gauge invariant physical quantity. F  has to be BRST invariant, i.e.

Sn F  = - { Q ,F }  = 0

and is said to be BRST-closed. The non-!rivial solutions

F0 = 5n F1 = - { t t ,F 1}
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are called BRST-exact. Hence Fq depends on the ghosts, it is non-physical and 
must be divided out. This defines the BRST cohomology

H ( $ n )
ker Sq 
imSn '

With the requirement of BRST invariance one can construct an effective Hamilton­
ian in the extended phase space

He« = H q -  Snip

which consists of the classical part modulo a BRST-exact term. The latter acts only 
in the non-physical sector, ip is a function with ghost number gh[ip\ =  — 1 , called 
a gauge fermion. It ensures a zero ghost number of the whole Hamiltonian. Here a 
variable with negative ghost number enters for the first time, from now on it will be 
called an antighost. The construction of an equivalent BRST invariant Lagrangian 
is straightforward

Left =  Lq — Snip.
It is quite natural to construct with these variables an effective action on a doubled 
configuration space for fields

S eS [ $ A -,$*A ] = S 0 +  j  d t  S n $ J {A _Jhp

where is the restriction to the physical hypersurface. The “antifields”
are the sources of the BRST variations of the fields

Sn$A = ( - 1 )£A ss
■A

This leads to the Batalin-Vilkovisky field-antifield formalism [2, 3], which is pre­
sented in the next section. For more details see [12, 151.

3. The Batalin-Vilkovisky Formalism

3.1. Fields and Antifields

Introduce a system

za =  with A = 1 , . . .  ,N  and a =  l , . . . , 2 iV

of fields with Grassmann parity

J 0 boson 
[ 1 fermion

and antifields with opposite statistics e*A =  + 1  (mod 2), which carry ghost
number

gh[$^] and gh[$^] gh[<f>A] -  1 .
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The collection of fields and antifields for an irreducible theory is

^  =  and $*A = m C * J

with a  =  1 , . . .  ,m  for m  gauge invariances. In the space of fields and anti­
fields, one can define a bracket relation, the so-called antibracket or the Batalin- 
Vilkovisky bracket

(F  c )  = dr£d lG _ _  dr£d iG _ = d r F ^ d iG

with

<"* =  ( - 5 $  f )  ■ «■* =  -«*■■ £ ( f * ^ )  =  + 1

It is analogous to the generalized Poisson bracket with the replacement

eF ----> ep +  1, eG ----► eG +  1.

The antibracket carries the ghost number 1

gh[(F,G)] =  g h (F )+ g h (G ) +  l

and has odd statistics

e[(F, G)] =  ep +  eG +  1 (mod 2).

It is graded antisymmetric

(F, G) =  - ( - i ) ( £F + i)fe+ i)(G )F )

fulfils a graded Jacobi identity

((F, G), F )  +  (—1)^F+1^ £G+£H^((G, H ) ,F )  + ( - l ) ^ +1^ F+eaHXH,F),G)=0

and a graded Leibniz rule

(.F ,G H ) = (F, G )H  +  ( -1  Y F£aG (F ,H ).

Therefore (•, •) defines a so-called odd symplectic structure (see Section 4.2). Its 
properties are

and

(F, F )  = 0  for any fermion

(B,B) = 2 drB  dtB  
d $ A a$*i

# 0 for any boson,

which is opposite to the expectation for the Poisson bracket. The functions on the 
space of fields and antifields form together with the Batalin-Vikovisky bracket a 
graded algebra, as do the functions on phase space in the case of the generalized 
Poisson bracket.
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3.2. The Master Equation and its BRST Symmetry

Start with a functional which has the dimension of an action, zero
ghost number gh[<S] =  0 and even statistics eg =  0. The classical master equation 
requires that the Batalin-Vilkovisky bracket of this bosonic functional vanishes,

(S, S ) = 2
drS  diS
d $ A

=  0.

Not every solution of the master equation produces a dynamical system, only the 
proper solution is of interest. This kind of solution contains the original action 
and is obtained with the ghost number restriction, and boundary conditions which 
guarantee the postulates of a gauge theory.
The proper solution for an irreducible theory with a closed gauge algebra reads

S[$, $*] =  S0[4>] +  & 7 lC a +  +  • • • (3)

with the boundary conditions 5[$ , $*]|#«=0 
cal limit and

didrS
84>*dCa $*=o

= S q 14>], which guarantee the classi-

T l{y)

which reflect the Noether identities. For the commutator relation (1) a shift in the 
Grassmann parity due to the shift in the antibracket is taken into account. The 
reason for and consequences of this shift can be found in [6] in the chapter about 
graded algebras. The master equation (S , S) =  0 is a very compact notation, 
with certain requirements it determines all gauge structure equations. The proper 
solution S  is unique up to canonical transformations and the addition of trivial 
pairs.
The Batalin-Vilkovisky bracket between a field and an antifield is

The canonical transformations for fields and antifields are

*•' , * •' *•' _  £(§ A,F )  +  O(s-)

$*A ^ $ * A = $*A + e{$*A ,F )  +  0 ( e 2)

which preserves the antibracket up to the order of e2

(%a , ¥ b ) = 4  + o {e2).

The proper solution S  has classical BRST-symmetry, which is a substitute for the 
gauge invariances

Ss F  = (F , S) with F  = F [$ , $*]
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where the generator 5s for the symmetry is S, the proper solution itself. The 
transformation rules are

r *.a 9 iS  diS  1%re, +i )d rS
= T ^-r  and 6S$*A = = ( - 1)1 AA d $ A K d $ A

The symmetry of the action is guaranteed by the master equation

5s S  =  0 ^  (S ,S )  = 0.

5s is a nilpotent graded derivation

52sF  = 0
5s (FG) = F(5SG) +  ( -1  Y a (5s F)G  

as follows from the properties of the antibracket, which imply

((F, S), S ) = - ( ( 5 ,  S ) ,F )  +  ( -1  f F+1((S, F), S ) (Jacobi identity)
=  —((S ,S ) ,F )  — ((F, S ) ,S )  (antisymmetry).

This leads to

and therefore

{{F ,S ),S ) = -± { { S ,S ) ,F )  = 0

52sF = ( ( F ,S ) ,S ) = 0 .

4. The AKSZ Formalism

The Alexandrov-Kontsevich-Schwarz-Zabronsky formalism [1] reflects the geom­
etry of the master equation. The solution S  of the classical master equation 
(S , S) =  0, which specifies a classical mechanical system, can be geometrically 
considered as a OP-manifold. This is a supermanifold N , equipped with an odd 
self-commuting vector field Q, [Q,Q] =  0 and an odd symplectic structure uj, 
which is Q-invariant. F (N )  will denote the Z2-graded algebra of functions on this 
supermanifold. First I will introduce the concept of supermanifolds in this context 
and use the definition of DeWitt [8].

4.1. Supermanifolds

An m-dimensional manifold M  is a topological space provided with a collection 
of ordered pairs (Ui,ipi). The Ui are a family of open sets which covers M

Ut c  M, UtUt = M

and ipi is a homeomorphism onto a subspace of R.m,

<Pi : Ui C M  — ► U't C Rm
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The coordinate functions are

ipi : M  — > Rm
P '— > ( x1( p ) , . . . , x m (p))

where the x 1 are the coordinates in M . For U i fl U j  /  0, pi o p j 1 is differentiable.
A (m, n)-dimensional supermanifold M  is a space provided with a collection of 
ordered pairs (Ua , 4>a )- The Ua  are subsets of M  with the property

UA C M,  Ua Ua  = M

and o,i is an one-to-one mapping onto an open set in R™ x R” , the commuting 
and anticommuting subspaces of a Grassmann algebra A ^

(t>A : UA C M  — ► U'A C 1 ^  x R£.

The coordinates on a supermanifold are defined by

4>a : M  — > R™ x R"

p ^ { q \ . . . , q m- , e \ . . . , e n).

For Ua PiUb  /  $,4>a *s differentiable. The main difference to ordinary man­
ifolds is that the underlying space M  is not topological, e.g. on the supermanifold 
no distance exists.
A Grassmann algebra is generated by anticommuting generators £

£“£b +  £6£“ =  0, with (£“)2 =  0.

An element of the Grassmann algebra can be represented as

z = c0 + ca£“ +  — ca6£“£6 +  —ca6c£“£6£c H-----

a so-called supemumber. This can be decomposed into terms with an odd or even 
numbers of generators

z = q + e

with

9 = c° + + • • •, e =  Cae  +

i.e. in commuting c-numbers Rc, Cc and anticommuting a-numbers Ra, C„

A m = Rc ©

where only Rc forms a subalgebra.
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4.2. The Geometry of the Master Equation

A symplectic structure on a supermanifold N  is defined as a closed, non-degenerate 
2-form

lu =  -  dzau;ab(z) dzb

with the local coordinates

{z1, . . .  , z n) in N , with parity ea = e(za).

The sympleetie structure can be even or odd with respect to the Z2-grading of
X ( N ) .

In the even case the degree of the symplectic form is

deg u ab =  ea +  eb (mod 2)

^ab = ( - l ) {€a+lK€b+1)UJba

while an odd symplectic structure satisfies

deg u>ab =  ea +  eb +  1 (mod 2)

=  ( - i Y a£b+1ujba.

The change of sign in dza dzb = — (—l) e°e(> d zb dza is according to the Koszul 
sign rule. Define a bracket for functions f  ,g <E X ( N )

Q\ g)
dr f^ a b dl9 
dza d zb'

In the even case it corresponds to the generalized Poisson bracket, because its 
degree is 0. In the odd case the bracket equips the algebra with a grading e(v ) =  1, 
like the BV-bracket. In general it will be called an odd Poisson bracket. The odd 
case is the one of main interest, because it produces the BV-bracket.
Associate to each /  e  !F(N) a vector field A'/, defined by

( j \ g ) = X f {g) for all g e  F(N) .

For an even bracket X j  has the same parity as / ,  while in the odd case X j  has the 
opposite parity to / .  The connection between the symplectic form, the vector field 
and the bracket is

iXfU = d /
( f ,g)  = : X f (g) = bX f bXg >̂.

The fundamental construction of a QF-manifold is given by the following defini­
tions.
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Definition 1. The supermanifold N , which is considered in this context, can be 
constructed by associating to an ordinary manifold E its tangent bundle T E and 
reversing the parity o f the vector fields in the fiber. This is a simple turning o f 
even (bosonic) vector fields into odd (fermionic) vector fields by a change o f the 
corresponding variables, the result is denoted by N  = H TE. The construction is 
also possible with the cotangent bundle, which leads to N  = TIT* E.

Definition 2. A Q-manifold is a supermanifold N  with an odd self-commuting 
vector field Q

d
Q =  *n local coordinates, with deg Qa = ea + 1 (mod 2)

[Q,Q\ = 0 ^ Q 2 =  0

where Q denotes the first order differential operator corresponding to the vector 
field Q. Then [Q, Q) =  2Q2 =  2(QbdbQa)da, so a Q-structure is the choice o f a 
differential on T(N) .

Definition 3. A P -manifold is a supermanifold N  with an odd symplectic struc­
ture UJ

uj =  - d zaujab(z) dz b, deg ujab = ea + eb+ l  (mod 2).

Proposition 1. There exists a Lie algebra homomorphism

( f , g ) ^ [ X f , X 9]

which maps an odd Poisson or BV-bracket o f functions into a super commutator 
bracket o f vector fields.

Definition 4. A vector field X  can be represented in the form X f  iff u  is X -  
invariant, i.e.

£ , x =  0.
Then X  and uj are said to be compatible.

Cart an's magic formula for the Lie derivative is

L x  =  d tx  +  tx-d

so
Lx'uJ =  dixuJ +  i-xditJ

and
L x j U  = d {lXj u ) =  d2/  =  0 

since dw =  0 because uj is a symplectic form, and t x f u) 
f  and a Hamiltonian vector field X /.

d/  for a Hamiltonian
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Definition 5. A QP-manifold is a supermanifold with a compatible Q- and P- 
structure, i.e. the supermanifold is equipped with an odd self-commuting vector 
field Q and an odd symplectic structure uj which are compatible, Cqlo = 0.

The conclusion is that if
lqu =  d S

for some function S, then Q is a Hamiltonian vector field and S  is a Hamiltonian. 
This function S  is even and fulfils (S , S)  =  0, so every solution to the classical 
master equation determines a QP-structure and vice versa. The main point is 
that the geometrical structure, the QP-manifold, produces solutions of the master 
equation, which does not have to be solved in the usual way. This geometrical 
construction includes the algebraic structures and is a natural generalization of the 
concept of Poisson manifolds and Lie algebroids to describe gauge theory [18,21],

4.3. The Tangent and Cotangent Bundle as QP-Manifolds

The most important examples for Q- and P-manifolds are the tangent and cotan­
gent bundle with reversed parity in the fibers, H T N  and HT*N. The base manifold 
N  is allowed to be a supermanifold.
Starting with a ordinary manifold N , the bundle IfTiV is a supermanifold with a 
natural Q-structure

a
QnTN = f1a-r,—  with the coordinates x a in No xa

and the coordinates r f  in the fibers of HTN.

The action of Q on the coordinates is as follows

QnTNXa = = Vb$b = Va

Q nTN(QnTNXa) =  QnTNiJa =  =  ® = ’> Q jitn  =  0

so Qiitjv is a nilpotent operator.
On the cotangent bundle TIT* N  a natural P-structure can be defined in an analog 
way

^nr*iv =  da:ada:* with the coordinates x a in N
and the coordinates x* in the fibers of ITT* N .

The matrix elements can be taken as the matrix elements of the canonical 
symplectic form, such a coordinate system can always defined on the cotangent 
bundle [17],
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These fundamental structures will play an important role later on, because the rep­
resentation is the same when N  is a supermanifold. Moreover, the Q- and P- 
structures can in general be made compatible (see section 4.6), so the tangent and 
the cotangent bundle can always be viewed as a QP-manifold.
The functions on ITJW can be identified with the differential forms on N . so the 
Q-structure is the deRham differential operator, Qiit n  =  djeRham-

U(HTN, Q)  =  ~  M(N,  ddeRham) =  ^
im Q  im d

A submanifold Y,  which is a restriction to the fixed points of Q, can be identified 
with the original base manifold N

Y  = { m e  ITJW; Q(m) = 0} ~  N  C ITIW

so the homology groups Hm of Y  are trivial.
Let M  be an arbitrary Q-manifold and let Hm =  0, Vm e Y,  then one can find a 
local coordinate system such that Q =  „ in a neighborhood of every m  e  Y.
In a neighborhood of Y  one can identify M  ~  117 W. Moreover, if M  is a manifold 
the identification can be done globally [1], The main point is that under certain 
conditions an arbitrary Q-manifold is endowed with the fundamental Q-structure 
in the convenient coordinate representation.

4.4. Actions on Q-Manifold

If a group G acts freely on a Q-manifold M

a : G x M — ► M

preserving the Q-structure, then one can define a Q-structure on the quotient space 
M/ G,  where functions on the quotient space can be identified with G-invariant 
functions on the original Q-manifold M.  The map

Q : G-invariant functions on M  — >- G-invariant functions on M / G

specifies a Q-structure on M /G .
Let M  = HTG, where G is a Lie group which acts in a natural way on I1TG

a : G x  UTG  — ► HTG.

Functions on the quotient space H TG /G  ~  Ilg can be identified with G-invariant 
functions on H TG  and one gets in this way a Q-structure on Ilg, with

<3n, =

where the are the structure constants of the Lie algebra g. They fulfil:

fits = - f j L  and -f[ap-flh = 0 for 1116 Jacobi idcn,i,y-
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The explicit form for the Lie bracket is not necessary here, only the general prop­
erties are needed. To show that Qng is a nilpotent operator, we need the graded 
Leibniz identity

-JL c/3c7 =  ( i y a^ cl3®c '

which gives rise to a minus sign, since the parity of the c’s are odd:

< ? n /  =  /«“/<->■ 2 L 7  = / i / c >

=  s i ^ c ' f a A c 1 -  

=
=  2 =  0.

This equation vanishes by an antisymmetrization of the relevant indices because of 
the Jacobi identity for the structure constants

/ [ 1 4  =  0.

In this way Q is a nilpotent operator

Qn$ =  0-

If we define a G-manifold X  as a manifold with an action of a Lie group

a : G x X  — > A'

then the product manifold X  x IJTG has a natural Q-structure, since X  is endowed 
with a trivial Q-structure. Then G acts on X  x IJTG

a : G x X  x  n  T G  — ► X  x IITG.
v...... s'.......y
product Q-mf.

Now we are able to introduce a Q-structure on the quotient space of the product 
space, i.e. X  x W TG jG  ~  X  x  Tig

Q x xllg —-----— , where Q2 =  0 is to be proved.
dx‘ dd

The first term comes from the trivial Q-structure on X ,  keeping in mind the general 
form Q =  rf-Q§3- and take T£(x)  as vector fields on X  corresponding to the gen­
erators of the Lie algebra ta e  0. The second term is the well-known Q-structure 
of Ilg:

QxxngC5 =  QngC5 Q x x  ngc<J =  0-
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So QxxHg with respect to cs is equal to zero:

With the Lie algebra homomorphism from Proposition 1 one gets a graded Lie 
bracket for odd vector fields, thereby follows a commutator relation for the T “

Comparing the relation (4) for vector fields with the bracket relation (2) for the 
generators of the gauge algebra, one sees that the Q-structure is only nilpotent 
when the Noether identities are satisfied, or the Noether identities are satisfied 
when the Q-structure is nilpotent.

4.5. Construction of the Extended Action

Start with a Q-manifold M  and a P-manifold HT*M , keeping in mind, that every 
supermanifold N  has a natural P-structure on HT*N. The Q-structure on M  
induces a Q-structure on HT*M , while the P-structure on H T*M  is Q-invariant, 
Cquj =  0, so H T*M  is a Q P-manifold. It holds that every compact P-manifold 
is of the form nr* iV , [1],
Apply the construction to the Q-manifold M  =  X  x ng , where X  is a G-manifold 
and g its Lie algebra. On

(4)

and the above formula turns with the substitution 5a into

/

n:T*M  = U T*(X  x ng) =  H T*X  x ng x 0* =  E
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one obtains a QP-structure

8 8 T a 8 8  8
Q *  =  ~ V P S + K & c V x ?  (5)8xb 8x 9c“ del

uj =  dzaujaf)dzb, with za = (x a, c“ ; x*, c*) (6)

with the coordinates x a in X , the base G-manifold; x* in the fibers of IIP* A'; c“ 
in the Lie algebra with reversed parity Ilg and c* in the dual of the Lie algebra g. 
This Qe  is also nilpotent.

QEx h = T bca

QE{QEXb) =  QE( Q x x n 6x b) =  Q x xjjsxb =  0 

where Qx x Hq =  0 implies QEx b = 0

Qe cs = }% cacs

Q e (Qec5) = Q e (Qh6cs) = Qn0c<y =  0 

where Q n0 =  0 implies Q%cs = 0

8 T a 8 T a
Q e x * = - x *a^ - c aSch = - x l ^ c a = - x „ Ls-cs

8 xb ~a 8xc “ ~a 8 xc

Qe (Qe < )  =  8T‘

ffi’T a rrdjy.^ u ^ 5=  — Ta c x * - — c° +  x l
“ a 5a:aaa:c d 

~ d x a

8 xb 5a:’
a r f  „ & if s

8xc

8 xc

8xa 8xc 

cac5x l  + f l ^ c ^ x l  

b\

- / I
8 T a a J3~rr~* asC^CX
d xc

-  Q ^ ( Q x x IIBx )x *a 

where Q | xn 0 =  0 implies Q%x*c =  0.

For the last contribution one gets

Q ec*5 = -  « T |  +  2c * J ^ ) 5 Ps = —(x*aT f  +  2c * J f ^ )
,rpb. dT\ 8 T a■ X/ -L

Qe (.Qec1) = -

+ 2 « T %  + 2 c lJ S X )S lf l ,c -
fi'T’b 8 T a

= -  n < ? * - § £  + <  a # c“ r ‘ -  +  2< r « f i x

+ K f S X f l x
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*v"

With the commutator relation (4) the first term cancels against the second; the last 
two terms cancel against each other by antisymmetrization and use of the Jacobi 
identity for the structure constants. Then

with ghost number zero, gh[So] =  0 and even Grassmann parity, e,g0 =  0, which 
fulfils the master equation (Sq, Sq) = 0 !
For the calculation of lquj =  dSo we need the the product t which is a pairing 
between the tangent space and its dual, respectively between a vector field and 
p-forms

Q%cs =  0 and Q% =  0.

This Q on E  =  U T*X  x Ilg x g* leads by lquj =  dSo to an action

t : X(M)  x 9P(M)  — > 9P~l (M)
(X,uj)  l--- >• / \ =  X-lUJ =  uj{X)

defined by

(lx ^) {X u • • . , X P- 1) =  ( X ju>)(Xu  . . . ,  Xp- i )  
=  u)(X, X \ , . . . ,  Xp-i ) .

The coupling between a vector field and an one-form is defined by

{ , ) : T *M  ® TXM  — > R
U’.A T

which reads in the usual basis

(u>,X) = uj(X)

ujpX^C =  ujpX  ̂ e R.
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For the case of a coupling between a two-form and two vector fields, there is a 
determinant to calculate

=  uj1{X1) m { X 2) — ^ i {X2)^2{X\ ) .

So the P-structure uj (6) which is a two-form, has to couple with two vector fields, 
one of which is our Q-structure (5), the other one is arbitrary, let us call it X .  The 
only terms which contribute come from

u  =  dxadx* +  dc“ dc; 

M ( X )  = (dxadx*a)(T*c<

ra J3

d d_  x * a ca 
dxa a d xb d x l X)

+  (dc“ dc*)C/|7c ^ —  -  (x*aT% +  2c * J ^ ) —  X ). 

The first term leads to

^ x a ^ )  dxa(X')\ a ( dxa( lk )  da;a(X )N

FC * U e ( * )  W
T “c“ det

dx*a { £ , )  dx*a(X )/
-  X ,

=  V d x X X ) - K ? 5 . f ( - S l ) d x J X ) = T Z c ' ‘dx:(X)  + x i j £ ' ? d x « ( . X ) .d xb
The second one gives a contribution

/ f ^  det
(dca ^ J  dca( X Y

vdc&G&j dc*(X);

-  « T |  +  2c*J^c<) det
^dc’

\

dc*

d4  ( £*  ) dc* (X)

dc“ (X )N

/
=  f ^ c M c U X )  -  « J f  +  2 c * / |7cT ')(-5 |)dc“ (X) 

=  /J l /c ^ d c *  (X) +  (x*aT« +  2 c * / |yc'*)d^(X ).

In summary we have

d T a■ -1- r*
lqlo = T*ca dx*a +  x t - ^ c ad xa +  f ^ c ^ d c l  +  (x*aT* +  2 c % f^ ) d c a = dSQ 

where
r)Rn r)Rn r)Rn f),%

°-dc“
dS0 l , dS0 l a dS0 l „ 55c

dSo =  t—- da: +  ——da: +  —— dc +  - —
dx* dxa det d xa
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with the partial derivatives from (7) 

dSn
dx*a
dSQ

— rpa a  
^ a^  5

_  fa  (3 -v 
J ^

9 S o =
d xb Xa d xa
dSo
dca

= x*aT* + 2 c % f^E
dc*UL̂ a

So an action of the form (3),

S[$, $*] =  Sol4>] +  </>*T“G“ +  C * J ^ C pC^ +  •••

the well-known Batalin-Vilkovisky action was derived. This was done by the con­
struction of the space

E  = UT*X  x ng  x g* 

as a Q F-manifold, which leads to an action

So = x*aT*ca +  4 / l / c ^

which can be identified as the Batalin-Vilkovisky action with the comparison of the 
coordinates and fields with the respective Grassmann parities and ghost numbers.

Coordinates Fields Ghost number Parity
x" c  A' field 4> 0

oII

x* e  n r* x antifield r - 1 €a ~  €a +  1 — 1
CQ e n g ghost c 1 ^a — 1
Ca e  0* antighost c* -2 ea =  ea +  1 =  0

So all the familiar structures of a gauge theory are achieved. The QF-manifolds 
can be viewed as a fiber bundle for gauge theories, where the algebraic structure 
reflects the Noether identities, which generate the symmetries.

4.6. Outlook

A more general solution can be created with an arbitrary extension s of the above 
action

S  = s +  So =  s(x)  +  x*aT*ca +  c*
where s is an G-invariant solution on H T X ,  which leads to a G-invariant solution 
on X  with s =  s(x).  This is the classical part, a solution of the master equation. 
All in all the BV-action functional for an irreducible theory with mo gauge invari­
ances was created in a geometrical way with fields of the form =  {x a , c“ } and 
the corresponding antifields =  {a:*, c* }.
Given a manifold N  with an even symplectic structure a, then IfFiV is a Q- 
manifold and IfF*jV a F-manifold. The F-structure on M  = H T N  = HT*N  
is Q-invariant, so M  is a Q F-manifold.
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On M  = U T*N  one has the standard P-structure

ujjit*n  =  dxadx*

and the non-standard Q-structure

a „d o ab . a
<?nr.v = - 2a ” ( . r W — - . r „ — ,rt —

which leads to an action
S  =  x aaah(x)x l

where the x a are the coordinates on N  and the x* are the coordinates in the fibers 
ofirr*jv.
On the other hand, one has on M  = IIT N  the standard Q-structure

QnTN =
and a non-standard P-structure

^ iitjv =  dxad(cra6C6)

with the coordinates x a on N  and =  aahx l  on HTN.  In general the P-structure 
can be expressed as

(  N
u  =  d f -tn (x W 2 ' ' '  rfndxH

\n=l

where O is a symplectic structure.
Small deformations of QP-manifolds of the form M  =  IITiV =  H T*N  lead to a 
description of all structures. On M  IIT N  one has the advantage of a standard
Q-structure, but the P-structure has to be deformed into

UJ ----* uJt =  it) — tCgda.

On M  = IIT*N  one has a standard P-structure, which leads to the BV-bracket 
and the master equation (S , S) =  0, with infinitesimal deformations s of S  one 
obeys

Qs = 0 ^ s  = ( S J )  = Q f.

In this way one can deform the algebraic structure due to [10, 19], different ap­
proaches lead to a more general quantization [4, 16] or quantization schemes for 
special models [7,13,14].
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