
Second International Conference on
Geometry, Integrability and Quantization
June 7-15, 2000, Varna, Bulgaria
Iva'ilo M. Mladenov and Gregory L. Naber, Editors
Coral Press, Sofia 2001

SYMPLECTIC LEAVES OF W-ALGEBRAS FROM THE 
REDUCED KAC-MOODY POINT OF VIEW

Z. BAJNOK and D. NOGRÂDI

Institute for Theoretical Physics, Roland Eötvös University,
Pâzmâny sétâny 1/A, H-1117 Budapest, Hungary

Abstract. The symplectic leaves of W-algebras are the intersections of 
the symplectic leaves of the Kac-Moody algebras and the hypersur­
face of the second class constraints, which define the W-algebra. This 
viewpoint enables us to classify the symplectic leaves and also to give a 
representative for each of them. The case of the W2 (Virasoro) algebra 
is investigated in detail, where the positivity of the energy functional is 
also analyzed.

1. Introduction

W-algebras have attracted a great interest since their first appearance [1] thanks 
to the fact that their quantized versions [2], (the extensions of the Virasoro 
algebra with higher spin currents), are relevant not only in the classification 
of two dimensional conformal field theories but also in describing various 
statistical physical models. For a review on W-algebras and their application 
see [3] and references therein. Later it was shown in [4] that the Toda models 
(which carry the W-algebras as symmetry algebras) are Hamiltonian reductions 
of the Wess-Zumino-Witten (WZW) models. Under the reduction procedure, 
which can be implemented by second class constraints, the symmetry algebra 
of the WZW model, namely the Kac-Moody (KM) algebra, reduces to the 
symmetry algebra of the Toda models, the W-algebra.
The quantization of W-algebras started by a free field construction [2], and then 
the BRST method [5] was adopted to produce their quantum counterparts. None 
of the approaches mentioned however, are relied on the classical geometry of 
W-algebras and loose useful information in this way. The aim of this paper 
is to reveal the classical geometry of W-algebras, more precisely to analyze
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their symplectic leaves, which can be used to quantize them via geometric 
quantization [6], later. Since this problem has its own mathematical relevance 
there were some efforts in this direction previously.
In the simplest case, which corresponds to the Virasoro algebra the program 
mentioned above means the investigation of the coadjoint orbits of the Virasoro 
group [9]. The classification of these orbits are well-known [7-13]. Although 
only in [11] the authors give explicit representative for each class. Moreover, 
they also investigated the positivity of the energy functional on the orbits, which 
is relevant for finding the highest weight representations at the quantum level. 
In the next simplest case, namely in the case of W3 the orbits were classified 
in [12], while the case of Wn was considered in [10].
In this paper I will show that the symplectic leaves of W-algebras are the 
intersections of the symplectic leaves of KM algebras and the hypersurface 
determined by the second class constraints. This approach not only provides a 
unified viewpoint for the orbit classifications obtained previously but also gives 
explicit representative for each orbit. Let us note that a Lagrangian realization 
of this idea was applied in one particular case, namely in the case of some 
special orbits of the Virasoro algebra in [13].
The paper is organized as follows. In Section 2 I give the definition of the 
WZW phase space with its Hamiltonian and review how it is connected to the 
symplectic leaves of its symmetry algebra the KM algebra. By means of these 
I classify the symplectic leaves and provide a representative for each of them. 
In Section 3 I show how the W-algebras arise as reductions of the system above 
and how this fact can be used classifying their symplectic leaves. At each stage 
the results are demonstrated via S L ( 2,M).

2. The Phase Space of the WZW Model and the Symplectic 
Leaves of the KM Algebra

The Hamiltonian formulation of the WZW theories is the following. Take a 
maximally non-compact Lie group G (this is necessary in order to carry out 
the reduction) and define the phase space to be

Mwzw  =  {(öS J) ! 9 £ L G , J  G Lg} ,

where LG denotes the loop group of G, that is the space of the smooth maps 
from S 1 = {e lx ] x  <E [0, 2n)} to G and Lg is its Lie algebra. It is equipped 
with the Poisson brackets:

{g(x),g(y)} =  0, {Ja(x),g(y)} = tag(y)ô(x -  y ),
{Ja(x), Jb(y)} = f cabJc{y)5{x - y )  + kKabö'(x -  y ) ,
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where the current is decomposed as J(x)  =  J a{x)ta \ ta <G g, [ta, t b] =  / y c, 
and the indices are lowered and raised by the Cartan metric nah =  trace(tatb) 
and its inverse Kah, respectively, and S(x — y) represents the 2ir periodic delta

function: 8{x)
1

2jt E n x The second line contains the defining relations

of the KM algebra at level k. If we introduce

J  = - 9  1Jg + kg V  ,

then the Hamiltonian takes the following simple form:
2tt

Hwzw = ^  j  dxTr(J(x)2 + J ( x )2) . 
o

In light cone coordinates, x± = x  ±  t, it generates the flow:

d_J(x , t )  = 0, kd+g(x,t)  =  J ( x , t ) g ( x , t ) . (1)

The most general solutions are J ( x , t ) =  J ( x +) and g(x , t ) =  g(x+)g(x_). 
The symmetries of the model consist of local transformations, h(x+) 6 LG:

g(x+) ->• h(x+)g(x+ ) ,
J ( x +) —> h(x+)J( x+)h~1(x+) +  kh'(x+)h~1(x+)

and global transformations, h e G:

g(x+) ->■ g(x+)h, J ( x +) ^ J ( x +).

Observe that the local transformations are generated by the conserved KM 
currents J ( x +) and are nothing but the coadjoint action of the centrally extended 
loop group on its Lie algebra and left translation on itself. Note that if A y  0 
what we will suppose in the sequel, we can absorb k into the definition of J , 
that is, we change J  to J / k  and analyze all the orbits in one turn by substituting 
k = 1 in the formulae from now on.
Now the key point in analyzing the coadjoint orbits is the fact, that there 
is one-to-one correspondence between the currents J ( x +) and the elements 
g(x+) with g(0) =  e property via the equations of motions (1). This means 
that instead of analyzing the coadjoint action on J ( x +) we can analyze the 
much simpler action on g(x+). Of course we have to modify the action in 
order to ensure g(0) =  e. This can be achieved by combining the local and 
global transformations in the following way:

g(x+) -»■ h(x+)g(x+)h(0)“1 ,
J ( x +) —» h(x+)J( x+)h~1(x+) +  kh'(x+)h~1(x+).
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According to this action we can split any transformation as

h{x+) =  (/a(0), h(x+) M 1 (0)),

where h(0) is a constant loop, h(x+)h~1(0) G LlG and LlG consists of those 
loops which starts at the identity.
Thus topologically we can write the loop group as LG  — G x LlG. The group 
structure is a semi-direct product: (a, g)(b, h ) =  (ab, g Ada h).
Remember that we have split the original periodic g(x , t ) as g(x,t)  =  
g(x+)g(x_). Consequently g(x+) is not necessary periodic, but only quasi- 
periodic

g(x+ +  2tt) =  g(x+)M  , M  = g(2tt) .
M  is called the monodromy matrix. Under a loop group transformation 
g(x+) —>• h(x+)g(x+)h(0)_1 the monodromy matrix changes as M  
/i(0)M/i(0)-1 which means that the conjugacy class of the monodromy ma­
trix is an invariant of the orbit. It is in fact the only invariant, since if and 
M2 are conjugated M2 =  hM ih -1 and g, corresponds to Mi then gih~1g2 1 
is periodic and maps g2 to g1. Note however, that an orbit corresponding to 
a conjugacy class is not necessarily connected. Its connected components are 
labelled by H0(LG) =  II1(G!) that is by the fundamental group of G. 
Concluding, the connected components of the coadjoint orbits of the centrally 
extended loop groups are characterized by the conjugacy class of the mon­
odromy matrix and the discrete invariant labelled by the fundamental group 
of G.
In order to analyze the topology of the orbit we need to determine the stabi­
lizer of a given J. Clearly h(x+) will stabilize a given J ( x +) if and only if 
h(x+)g(x+)h(0)-1 =  g(x+) holds. This means that h(0) must stabilize the 
monodromy matrix, h(0) G HM =  {g G G ; gM g -1 — M},  moreover h G G 
completely determines the stabilizing h(x+) as h(x+) =  g(x+)hg(x+)~1. The 
topology of the orbit is

L G / H m = G x ÜG/Hm = (G/ H m ) x Ü G ,

where in the last equality we used the fact that L G / H M is a principal HG 
bundle over H / M  which turns out to be trivial.

2.1. The Example of the S L ( 2,R) WZW Model

The coadjoint orbits are labelled by the conjugacy classes of SX(2,1R) and 
by a Z =  U1(SL(2,R))  valued discrete parameter. For each conjugacy class 
we present a representative and then give its stabilizer group. Furthermore we 
determine that particular g(x+) which gives rise to this monodromy matrix and
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compute the corresponding J ( x +) = g{x+)'g 1(x+). We proceed from case 
to case:
1. Elliptic case:

M  = 

H m =

9{x+) =  

J(x+) =

cos(27tuj) — sin(27ru;) 
sin(27ro;) cos(27to;)

cos(q:) — sin(o;)\ _ 
sin(cr) cos(a) )  ’

cos(u;x+) — sin(o;a:+) 
sin(cca:+) cos(cvx+)

0 — UJ 
uj 0

a  G (0, 27t]
(2)

These correspond to the leaf labelled by n — 0. In order to move to the 
n-th leaf we multiply g(x+) by

rj, _  /cos(nx+) —sin(nx+) 
n \sin(na:+) cos(na;+)

which amounts to shift uj to lü +  n in (2).
2. Exceptional case

M  = 11 1 0 
0 1 T) = ±  1, H m = SL{  2,

This can be recovered from the elliptic case by taking cu =  n e Z f o r ?7 =  l 
and uj — n  +  1/2 G Z +  1/2 for g — —1.

3. Hyperbolic case

M  = r, ( eT  J L )  V = ± 1 , H m =  (  ( “ J L )  ;0 e~Zb7T)  1 ’

The corresponding g(x+) and currents are

a o | .

g(x+) = T?

J ( x +) n

0 e
0 -1  
1 0

0
— bx a

\  ^ /cos(2nx+) sin(2nx+) \
)  \sin(2nx+) — cos(2nx+)y

where similarly to the previous case n G Z for g — 1 and n G Z  +  1/2 for
g = —1.

4. Parabolic case

M  =  g 1 0 
q 1 g =  ± 1 , q =  ±1 H m =

1 0
a 1 a G
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1 0 
15 ,(*® + ) -^n  (  qx_

V 2tt

J ( æ+) =  « ( “ - 1)  +  ± |  sin(2nx+) 
cos2(nx+)

- sin2(nx+)
 ̂ sin(2na:+)

Here, as before n G Z for rq =  1 and n G Z +  1/2 for i) =  —1.

3. The Definition of W-Algebras and their Symplectic Leaves

In order to give a self-contained description of W-algebras we collect the main 
results of [4]. For simplicity we restrict ourselves to the case of the SX(n, M) 
WZW model. The generalization for other groups is straightforward. Impose 
the following constraints on the KM current:

=  Joe ~  x{Ja) =  0

J'c o n s t

where x (Ja)
1 if a E A_
0 if a € <&_ \  A_

( *  ...................
1 * ........... *

*1—1

o

*

o o * /

where (A_) denotes the set of negative (simple) roots of sl(n,R).  These 
constraints are first class so they generate gauge transformations, which are 
nothing but the KM transformations generated by the currents associated to the 
positive roots. One possible gauge fixing is the so-called Wronsky gauge:

Jgf ~

(  0 W 2 W3 . . .  Wn\
1 0 ...........  0
0 1 0 . . .  0 5

\ 0  . . .  0 1 0 /

where the W-s  are gauge invariant polynomials of the unconstrained KM cur­
rents. The resulting phase space carries a Poisson algebra structure, which is 
inherited from the WZW phase space and can be computed either by com­
puting the Poisson brackets of the gauge invariant quantities or by using the 
Dirac bracket. The resulting Poisson algebra, which closes in general only on 
polynomials of the fields

{ W „ W 3} =  Ptj(W)
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is called the W-algebra associated to the group SL(n,  1R) and is denoted by 
Wn. It always contains the Yirasoro algebra:

{W2{x), W2{y)} = - \5'"ix ~y ) ~ ‘2W2(y)ö,(x -  y) + Wz(x)ö(x -  y)

and there exist such combinations of the remaining generators that are primary 
fields of weights 3, 4 , . . . ,  n with respect to this Yirasoro algebra. Having fixed 
the gauge, the equations of motions (1) forces g to be of the form

.. y><r1}\

9 =
• *'n

V fpl fp2 ■ ■ 4>n /
where any of the ipi-s satisfies the following n-lh order differential equation:

4 n) -  w w !* '”  -  w , 4 r 3)---------w n. , i / ( -  w n4h = o .

Moreover, any infinitesimal W-transformation generated by Q, —
2tt

dx€i(x)Wi(x)  can be implemented by appropriately chosen field-dependent

KM transformation Jimp(W):

f  0 {Qt , W 2} {Qi, W3} . . .  { Q ^ W n} \
0 0 ................  0
0 0  0 . . .  0&iJgf

V o 0 0 0

[Jimpi Jgf \ +  Jimp •

/

The left hand side defines the tangent vector to the W-symplectic leaf which, 
as a consequence of the KM implementation, is also a tangent vector to the 
coadjoint orbit of the loop group. This shows that the W-symplectic leaves can 
be obtained by considering the intersection of the coadjoint orbits of the loop 
group with the gauge fixed surface.
This viewpoint allows one to classify the W-symplectic leaves: We have the 
conjugacy class of the monodromy matrix as an invariant and the üx (G) valued 
discrete topological invariant. This classification is not the finest one however, 
since we also have to count the number of the connected components of the 
intersection surface. We may not have any intersection, or we may have one 
connected component or more than one. This analysis turns out to be very 
complicated and we cannot cope with the general case, that is why we proceed 
from case to case. Note however, that instead of analyzing the intersection 
problem at the level of J  we can analyze it in the language of g (since we
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know that they are uniquely connected). This amounts to classify the homotopy 
classes of nondegenerate curves in Mn or equivalently in MPn_1. This problem 
was investigated in [10].

3.1. The Example of the Virasoro Algebra

Let us focus on the SL (2,M) case. Parameterizing the current as J

\ ) the constraint reads as J_ =  1 and the gauge fixed form isj -  —JnJ

Jgf -
0 L
1 0 L = J+ + Jq — Jq .

The Poisson bracket is simply

{L(x) ,L(y)}  = -  y) -  2L(y)ô'(x -  y) + L'(x)S(x -  y )

which is just the defining relation of the Virasoro algebra. Thus the coadjoint 
orbits of the Virasoro group can be obtained by analyzing the intersection of 
the coadjoint orbits of the loop group (previous section) and the gauge fixing 
hypersurface. As in the case of the KM algebras it is transparent to work at 
the level of g. The gauge fixing forces g to be of the form of

where ip" — Lipl =  0

that is all the ip-s satisfies the Hill equation. From the previous section it 
follows that instead of analyzing the coadjoint orbits of the Virasoro group we 
can analyze the conformally nonequivalent solutions of the Hill equation or 
equivalently the homotopy classes of nondegenerate curves in the plane.
It can be shown in the general case, that if the KM orbit has intersection with 
the gauge fixed surface then the intersection is necessarily connected. In other 
words we do not have new invariant compared to the KM case, and the only 
thing we have to check for each connected orbit whether the intersection exists 
or not.
We can parameterize the representative of the KM currents listed in the previous

section for any leaf having n =  0 as J 0 =  ( 1 ■ ) with constant j - s. The
\J+ - Jo  J

representative, Jn, on the n-th leaf can be obtained by acting with Tn as

Jn =  TnJ0Tn 1 +  T'nTn 1
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/  j 0cos(2nx+)
— j i  sin(2n x +)

n +  J 2 +  jo sin(2n x +) 
\  +  j 1 cos(2nx+)

- n  -  j 2 +  jo sin(2n x +) \  
+  j 1 cos(2 n x +)

—jo cos(2nx+)
+  j i  sin(2na;+) /

where j± = j i  ± j 2- Now if R  2 =  n + j 2 +  jo sin(2n x +) +  j 1 cos(2nx+) > 0 
then

is periodic and is in the trivial homotopy class as a loop. It maps Jn into the 
gauge fixed form and gives

L  =  C +  2n(n2 +  C )R 2 +  3n(n2 +  C +  2njs)R4 ; 
where C =  -  dot J  =  j 02 +  j \  -  j \  .

Now let us proceed form case to case:
1. Elliptic case: the intersection exists for n > 0 and we have the following 

representative of the orbit

L = —(n +  to)2 , to E (0,1), to /  -  .

The stabilizer subgroup is S 1.
2. Exceptional case: this case can be recovered from the elliptic by putting 

to = n or co = n + l /2  where t i e Z .  In the first case however, only n > 0 
is allowed and the stabilizer is the whole SX(2,M).

3. Hyperbolic case: conjugating the current J  — b Q  ^  with the con­

stant Q  ^  one can arrange that R~2 = (n — 1) +  (b2 +  1) cos2(nx+) +

(bcosnx+ +  sinnx+)2 > 0 holds. The intersection exists for n > 0 and 
we have

L = b2 +  2n(n2 +  b2)R2 +  3n 2{b2 +  2bn — n 2)R4 .

The stabilizer subgroup is R.
4. Parabolic case: we have intersection for q — — 1 if n > 0 and for q — 1 if 

n > 0. Since R  2 — n +  ^  cos2(nx+) > 0 the representative of the orbit 
is

L = n3 2R2 — 3 [n  +
2tt

R 4

and the stabilizer subgroup is M.
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2tt

The positivity of the energy functional, E  =  J L(x+) d x +, is necessary to
o

obtain highest weight representation for the Virasoro algebra since the energy 
in a quantum theory is bounded from below.
In the local analysis we demand that 5E =  0 and 58E  > 0 in order to have a 
minimum for the energy. Since

27r 27r
öeE  = j  e(x+){L(x+), L(y+)} dy + = -  J e(y+)L'(y+) dy+ , 

o o

(we have dropped the total derivatives!) it is clear that only constant L can 
give local minimum of the energy. The second variation

2tt

S,S,E = S,(E + 6,E) = -  f  +  j  ( e " ) 2)

0

shows that L > — |  is necessary. The global analysis is much more involved. 
The result is the following. The lowest energy is on the exceptional orbit for 
u; — 1/2 with stabilizer S L ( 2,R). So it is a good candidate for the classical 
vacuum. The energy has a minimum also on the elliptic orbits for n — 0 and 
uj < 1/2. On the hyperbolic orbit for n — 0 it has a minimum. Moreover, 
surprisingly on the orbit corresponding to q — —1 and n — 1 in the parabolic 
case the energy is bounded from below, however this lower bound is never 
reached. This indicates that the representation obtained by quantizing this orbit 
is not of the highest weight type similarly to the case for quantizing the cone­
like coadjoint orbit of the group S L ( 2,M).
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