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Abstract. The Maxwell-Bloch equations with one quadratic control 
about Ox  i axis are introduced and some of their dynamical and geo­
metrical properties are pointed out.

1. Introduction

The Maxwell-Bloch equations with one control about O x1 axis can be written 
in the following form:

/
Xi =  X2 +  Ui

<x2 = x 1x 3 (1.1)
x 3 = —x 1x 2 .

\

In all that follows we shall employ the quadratic feedback:

Ui =  - k x 2x 3 (1.2)

where k G R is the feedback gain parameter. We shall refer to the system (LI), 
(1.2) as the controlled system.
The goal of our paper is to point out some geometrical and dynamical properties 
of this system.
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2. Controlled System and Poisson Geometry

In this section we shall point out some properties of the controlled system (1.1), 
(1.2) from the Poisson geometry point of view.

Theorem 2.1. The controlled system (1.1), (1.2) has Hamilton-Poisson real­
ization.

Proof: Indeed, let us consider on R3 the Poisson structure given by the matrix:

(2.1)

" 0 - X 3 X2
n_ = x 3 0 0

_ - x 2 0 0

H  given by:

H (x i , x 2,x 3) = 1 2 
2 Xl +

k 9 — x i  
2 2

Then we have succesively: 

n_ • V H  =
0 —x 3 x 2
x 3 0 0
x 2 0 0

—kx2x 3 +  x 2
X\X3 

—X\X2

'x2 — kx2x f ~xf
XiX3 = x 2

—X\X2

(2.2)

as desired. LI

Remark 2.1. The Poisson structure (2.1) is in fact a minus-Lie-Poisson struc­
ture. Indeed, let

T 'O' 'O'
0 O

i
to 1 ; e3 = 0

o 0 1 
_ .1.

be the canonical basis ofM 3. I f  we define now the bracket [•,•] on M3 by:

M ei e2 e3

ei 0 e3 - e 2

—e.3 0 0

e3 e2 0 0

then (M3, [•,•]) is a Lie algebra denoted by M3_]. It is in fact a Lie algebra of
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type VII in Bianchi classification and it is isomorphic to the Lie algebra of the 
Lie group E (2,R). Moreover; an easy computation shows us that II_ is in 
fact the minus-Lie- Poisson structure on (e(2,R))* (R3

Remark 2.2. It is not hard to see that the function C given by:

C (xu x 2,x z) = f x \  + x 23) 

is a Casimir of our configuration (R3, II_).

(2.3)

Remark 2.3. Since H  and C given respectively by (2.2) and (2.3) are constants 
of motion the phase curves of our controlled system are intersections of the 
surfaces:

and

H  =  constant

C =  constant.

Theorem 2.2. The controlled system (LI), (L2) may be realized as an 
Hamilton-Poisson system in an infinite number of different ways.

Proof: It is not hard to see that the triples (R3, {•, -}ab, Hcd), where: { / ,  g}ab =  
- v c a6. ( V /  x  Vg), V f,g  G C°°(R3,R); =  aC +  bH ; Hcd = cC +  dH ;
a, ft, c, d G R, ad — bc = 1, are Hamilton- Poisson realizations of the controlled 
system (1.1), (1.2). □

Remark 2.4. The above theorem telles us in fact that the traijectories of motion 
are unchanged if we replace H  and C by SL(2,R) combinations of H  and C.

Theorem 2.3. The dynamics (LI), (L2) is equivalent to the dynamics of a 
perturbed pendulum.

Proof: It is clear that
2 C — x \  +  x\

is a constant of motion. If we now take:

f x 2 =  y/2C cos 0 
\  x 3 = y/2C sinö,

then we have: 

Hence:
x 2 =  —ÔV2C sinö =  —9x:

• x ix 3
u = --------- =  —x 1
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Differentiating again we obtain:

9 = —V2C  cos 9 +  Ck sin 20 ,

as required. □

Remark 2.5. In the particular case k =  0, we refined some results from [1],

3. Stability Problem

It is easy to see that equilibrium states of our system are:

( M ,0, 0 ) ,  M g M;

^0, AT ̂ ^ , AT G M, k G M, k O5

( 0, 0, M ) ,  M g M.

We can now prove:

Theorem 3.1. The equilibrium states (M, 0, 0), AT G M arc nonlinear stable.

Proof: We shall make the proof using the energy-Casimir method, see for 
details [2] or [4]. Let us consider the energy-Casimir function:

Hv ( x i , x2, x 3) = f x 2 + xl )  + t p ( f x \ +  ^ x l  + x^ \ ,
where p  G C°°(M,M). Then we have:

i) DH^ =  x 2ôx2 +  x 3ôx3 +  f ( x 1ôx1 +  kx2Sx2 +  Sx3).
Hence

D i ^ ( M ,0, 0) = 0 ,

if and only if:

< K > = 0 '
ii) D 2HV = (Sx2)2+(ôx3)2+ if(xiôx1+ kx2ÔX2+ôx3)2+ÿ>((ôx1)2+k(Sx2)2). 

Hence:

M 2  ̂ {M 8x1 + Sx3)2 .

If we choose now the function p  such that:

D 2HV(M, 0,0) =  (Sx2)2 +  (Sx3)2 +  M
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and

■ ? ( ^ 2) > 0 ,

then the second variation at the equilibrium of interest is positive definite 
and so the equilibrium states:

(M, 0, 0), I g R

□

are nonlinear stable as required. Such a function r: is given for instance 
by:

2

Similar arguments lead us to:

Theorem 3.2. The equilibrium states

i) unstable if k > 0;
ii) nonlinear stable if k < 0.

M g K, fceM,  are:

Theorem 3.3. The equilibrium states (0,0, M ), M  £ R are:
i) unstable if M ( 1 — k M ) >  0;

ii) nonlinear stable if M  < 0 and 1 — kM  >  0.

4. Integrability Via Elliptic Functions and Numerical Integration

Let us start with our controlled system (1.1), (1.2). Then we have:

Theorem 4.1. The equations (1.1), (1.2) may be integrated via elliptic func­
tions.

Proof: We have:
2 H  — 2x3 =  x \ +  kx  g 

and
2C — x \ — x \ .

Therefore:
x \ =  2H  — 2Ck +  kxl — 2x3 , 

which leads us finally to:

(ig) =  (2H  — 2 Ck  +  kxl ~  2^3)(2C — X3),

and this may be integrated via elliptic functions, see for details [3]. □
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Let us observe now that the Hamiltonian vector field X H splits as follows:

x H = x Hl + X H2 +  X Hs ,

where

H 1(x 1, x 2, x 3) =  - x \  ;

H 2(x !,X 2 , x3) = ^ x \  ; 

H3(x ! , X 2,X3) =  x 3 .

Their flows are respectively given by:

'Xl(t)~ 'i 0 0
x 2(t) = 0 cos Xi(0)t sin x i(0
x 3(t)_ 0 — sin xi (0)t cosx i(0

'xi ( t y "1 —kx3(0)t 0" 'æi(O)'
x 2(t) = 0 1 0 x 2(0)
x 3(t)_ 0 '0 1. .^3(0).

'xi ( t y '1 t O' 2n(0)'
x 2(t) = 0 1 0 z 2(0) .
X3 (t)_ 0 0 1. ^ 3(0).

'xi(O)'
x 2(0)

.^3(0).

Then the Lie-Trotter integrator, [6] can be written in the following form:

x
x

n+1 _1 — 
n+1 _

x™ +  t [1 — kx3( 0)]x%
xV> cos x 1 (0)t +  X3 sin x 1 (0)t (4.1)

x 3+1 =  — x% sin x\ (0)t +  X3 cos x \ (0) i .

We can now prove:

Theorem 4.2. The first order integrator (4.1) has the following properties:
i) It is a Poisson integrator;

ii) Its restriction to the coadjoint orbits (Ok,Wk)> where:

and

Ok =  { ( x i , x 2, x 3) G M3 I x \ +  x \ =  k} ,

üük — ~ (x3 d x1 A dx2 — x 2 d x1 A dx3) , 
k

gives rise to a symplectic integrator; 
iii) It doesn’t preserve the Hamiltonian H  given by (2.2).
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Proof: The assertions (i) and (ii) are consequence of the fact that X Hl, X H2, 
X H, are Hamiltonian vector fields and so their flows are Poisson ones and 
their restrictions to the coadjoint orbits are symplectic. The same results can 
be obtained directly by a long computation or using eventualy MAPLE V.
The last assertion is a consequence of the fact that:

{Hu H 2} _ ^  0 

and

{HU HS} _ ^  0 .

□
Remark 4.1. In the particular case k =  0, we refined the results from [5]. 
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