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Abstract. The reductions of the integrable N -wave type equa­
tions solvable by the inverse scattering method with the generalized 
Zakharov-Shabat system L and related to some simple Lie algebra g 
are analyzed. Special attention is paid to the Z2  and Z2  x Z2 -reductions 
including ones that can be embedded also in the Weyl group of g. The 
consequences of these restrictions on the properties of their Hamiltonian 
structures are analyzed on specific examples which find applications to 
nonlinear optics.

1. Introduction

It is well known that the N-  wave equations [1-6]

are solvable by the inverse scattering method (ISM) [4,5] applied to the gen­
eralized system of Zakharov-Shabat type [4,7,8] :

where \) is the Cartan subalgebra and E a are the root vectors of the simple Lie 
algebra g. Indeed (1) can be written in the Lax form, or in other words, it is

i[J,Qt] - i [ I , Q x] + [[I,Q],[J,Q]]=0, (1 )

L(A)4/(

a £  A +
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the compatibility condition

[L(X),M(X)]=0 , (4)

where

A) =  ^ i-^  +  [I, Q(x,t)\  — a/ J  A) =  0, l e i ) .  (5)

—^
Here and below r =  rankg, A+ is the set of positive roots of 0 and a, b e 
Er are vectors corresponding to the Cartan elements J, I  e  f). The inverse 
scattering problem for (2) with real valued J  [1] was reduced to a Riemann- 
Hilbert problem for the (matrix-valued) fundamental analytic solution of (2) 
[4,7]; the action-angle variables for the A-wave equations were obtained in the 
preprint [1] and rederived later in [9]. However, often the reduction conditions 
require that J  be complex-valued. Then the solution of the corresponding 
inverse scattering problem for (2) becomes more difficult [10,11].
The interpretation of the ISM as a generalized Fourier transform and the ex­
pansions over the “squared solutions” of (2) were derived in [8] for real J  and 
in [11] for complex J. They were used also to prove that all N -wave type 
equations are Hamiltonian and possess a hierarchy of Hamiltonian structures 
[8,11] {H^k\  Çî^},  k =  0, ±1, ± 2 , . . . .  The simplest Hamiltonian formulation 
of (1) is given by { H ^  = H 0 +  H mt, where

OO
J  dx  <Q, [I,Qz\) ,
OO

(6)

TT _ C°
mt 3

OO
1  dz<[J,Q],[<3,[/,Q]]) , (7)

— OO

(-, •) is the Killing form and the symplectic form is equivalent to a canonical 
one

fi(°) =  Y  /  dx ([J ,SQ(x, t ) ]ASQ(x, t )^  . (8)
—  OO

The constant c0 will be fixed up below. Physically each cubic term in Hint 
depends on a triple of positive roots such that = ay +  a k and shows how 
the wave of mode i decays into j-th and k-th waves. In other words we assign 
to each positive root a  an wave with an wave number ka and a frequency coa 
which are preserved in the elementary decays, i. e.

^a, "F kak , T •
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We shall show how one can exhibit new examples of integrable TV-wave type 
interactions some of which have applications to physics. The integrability of a 
rich family of TV-wave type equations and their importance as universal model 
of wave-wave interactions was demonstrated in [12]. Our approach allows to 
enrich still further this family.
Our studies are based on the reduction group GR introduced by Mikhailov 
[13] and further developed in [14-16]. More recently the Z2 and Z2 <S> Z2 
reductions of the TV-wave type equations were investigated [17-20]. In [18,19] 
we point out that GR can be embedded in the group of automorphisms of 0 
in several different ways which may lead to inequivalent reductions of the 
TV-wave equations.

2. Preliminaries

The main idea underlying Mikhailov’s reduction group [13] is to impose alge­
braic restrictions on the Lax operators L and M  which will be automatically 
compatible with the corresponding equations of motion (4). Due to the purely 
Lie-algebraic nature of the Lax representation (4) this is most naturally done 
by imbedding GR as a subgroup of Aut g — the group of automorphisms of 
0. Obviously to each reduction imposed on L and M  there will correspond a 
reduction of the space of fundamental solutions 6,j, =  {Tf-r. t. A)} of (2) and 
(5).
Some of the simplest Z2-reductions of TV-wave systems (see [2-4]) are related 
to outer automorphisms of g and 0 , namely:

(7i(4t(x, t, A)) — A ^ { x ,  t, Ki (A))A]_1 =  t, A), «u(A) =  ±A*, (9)

where A x belongs to the Cartan subgroup of the group 0:

A 1 =  exp(i7riVi), (10)

and H 1 G f) is such that a(iTi) G Z for all roots a  G A in the root system A of 
g. The reduction condition relates the fundamental solution 'Tf.c, L A) G 0  to 
a fundamental solution A) of (2) and (5) which in general differs from
\k(x, t, A).
Another class of Z2 reductions are related to outer automorphisms, e. g.:

C2 A)) =  A 2'$fT(x,t-,K2( \ ) )A~1 =  4'-1 (x,t, A), «2(A) =  ±A, (11)

where A 2 is again of the form (10). The best known examples of NLEE 
obtained with the reduction (11) are the sine-Gordon and the MKdV equations 
which are related to g ~  sl(2). For higher rank algebras such reductions to 
our knowledge have not been studied. Generically reductions of type (11) lead
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to degeneration of the canonical Hamiltonian structure, i. e. =  0; then we 
need to use some of their higher Hamiltonian structures (see [8,11]).
One may use also reductions with inner automorphisms like:

C3(^(x , t ,  A)) =  A 3^*(x , t , K 1(X))A~1 = ÿ ( x , t , \ ) , (12)

C4(^f(x, t , A)) =  A 4^ ( x ,  t, k2(X))A^1 — \k(a;, t, A). (13)

Since our aim is to preserve the form of the Lax pair we limit ourselves by 
automorphisms preserving the Cartan subalgebra 1). This conditions is obvi­
ously fulfilled if A k, k — 1 , . . . ,  4 is in the form (10). Another possibility is to 
choose A t , . . .  , A 4 s o  that they correspond to a Weyl group automorphisms. 
The reduction group GR is a finite group which preserves the Lax representation 
(4), i. e. for each gk e GR

Ck(L(Tk(A))) =  r,kL{A), Ck{M{Vk{X))) =  gkM ( A). (14)

Gr must have two realizations: (i) GR C Autg and Ck E Autß; (ii) GR C 
ConfC, i. e. Tk(A) are conformal mappings of the complex A-plane. Below 
we consider specially the cases GR ~  Z2 or GR ~  Z2 <8> Z2.
The automorphisms Ck, k =  1 , . . . ,  4 listed above lead to the following reduc­
tions for the matrix-valued functions

U (x , t, A) =  [ J, Q(x, t )] — A J, 

of the Lax representation:

Ci (UHk1(\))) = U(X),  

C2(Ut (k2(X))) = - U W ,  
C3(U’ (k1(X))) = -U(X) ,  
Ci(U(K2(A))) =  U(X) ,

V(x , t ,  X) =  [I, Q(x,t)] — XI,  (15)

C liv H M  X))) = V(X),
C2(V t (k2(A))) =  -1 /(A ), (16)
C3( V ( Kl(X))) =  -V (X ), 
C4(V(K2(X))) =  V(X).

2.1. Cartan-Weyl Basis and Weyl Group

Here we fix up the notations, the normalization conditions for the Cartan-Weyl 
generators of 0 and their commutation relations, see [21]:

[Ea,E _ a\ = H a ,

for a  +  ß E A 
for a  +  ß  ^  A U {0} .

\hk, E a] (cr, Gk^Ea , 

[Ea, E ß] = G aßEa+ß ( 17)
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If J  is a regular real element in f) then we may use it to introduce an ordering 
in A by saying that the root a G A+ is positive (negative) if (a, J) > 0 
((a, J) < 0 respectively). The normalization of the basis is determined by:

E  =  E  (E E  ) =^  — a  ^  oc 5 —a  a  / (a, a) ’
N - a,~ß =  —Efa ß̂ , V̂q.,/3 =  =t(p +  1) ?

(18)

where the integer p > 0 is such that a  +  sß  G A for all s =  1 ,. . .  ,p and 
a  +  (p +  l )ß  A. The root system A of g is invariant with respect to the 
Weyl reflections S a; on the vectors y G Er they act as

Say = y ~  7----- rcr, a  G A . (19)(a, a)

5 a generate the Weyl group W0 and act on the Cartan-Weyl basis by:

Sa(He) = AaHßA~' — Hs„ß ,
Sa(Eß) = A aEßAax = n a!ßESaß , =  ± 1 .

In fact W Q is the group of inner automorphisms of g preserving the Cartan 
subalgebra 1). The same property is possessed also by Adh automorphisms: 
choosing C — exp(mHß) we get from (17):

CHaC~x = H a , C E aC~x =  e2̂ a^ /2E a , (21)

where c G Er is the vector corresponding to H s G f). Then the condition 
C 2 =  11 means that (a, c) G Z for all a  G A.

3. Scattering Data and the Z2 -reductions

In order to determine the scattering data of the Lax operator (2) we start with 
the Jost solutions

lim iß(x, \ ) é XJx =  11 , lim </>(x, X)eiXJx = 11 , (22)
x — ►oo x ^  — oo

and the scattering matrix

T{A) -  (ip(x, A))“ V (x, A). (23)

Here we limit ourselves with the simplest nontrivial case when J  has real 
and pair-wise different eigenvalues, i. e. when (a, ay) > 0 for j  =  1 , . . . ,  r, 
see [8]. Since the classical papers of Zakharov and Shabat [7,22] the most 
efficient way to solve the inverse scattering problem for L{A) is to construct 
the fundamental analytic solutions (FAS) x ±(x,A) of (2) and then to make
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use of the equivalent Riemann-Hilbert problem (RHP). To do this we have to 
use the Gauss decomposition of T ( A):

T(A) =  T - ( \ ) D +( \ ) S +(\) = T +(X)D-(X)S- (X) , (24)

where ‘hat’ above denotes the inverse matrix 5  =  S' 1 and

S'±(A )= exp  Y  s±aW E ±
a£&j-

T ±(A) =  exp £  t±“(A)£±
a £ A x

D +( A) =  exp "Y
i=i

H i Y  rr
( \ ^ 3 5
\ a j ’ a j )

D  (A) =  exp Y
3 =  1

2rfj(A)
/ \ E  j i(ttj , CVjf )

H - = w 0{H,).

(25)

(26)

Here the superscript +  (or —) in T)±(A) shows that D+(A) (or Dj (A)) are 
analytic functions of A for ImA > 0 (or ImA < 0) respectively and w0 is 
the Weyl reflection that maps the highest weight oT in R(ujJ  ) into the lowest 
weight uj~ of R ( Y )  (see [21] f°r details). Then we can prove that

X± (x, A) =  <f)(x, X)S± (X) = ip(x, A)TT(A)D± (A) (27)

are fundamental analytic solutions (FAS) of (2) for Im A ^  0. On the real axis 
X+(x , A) and x~(x , A) are linearly related by

X+(æ, A) =  A)C?o(A), G0(A) =  ,S+(A)S-(A), (28)

and the sewing function G0(A) may be considered as a minimal set of scattering 
data provided the Lax operator (2) has no discrete eigenvalues. The presence 
of discrete eigenvalues Â r means that some of the functions

D f ( A) =  (cof  I D ± (A) I ujf) =  exp (d f (x f )  ,

where Y  are the fundamental weights of 0 and co~ — w0(cc+), will have 
zeroes and poles at A^, for more details see [23,19]. Equation (28) can be 
easily rewritten in the form:

£+ (x, A) =  £- (x, X)G(x, A), G(x, A) =  e~iXJxG0(A) eiXJx . (29)

Then (29) together with

lim ^ ( x ,  A) =  11 (30)
A — >oo

can be considered as a RHP with canonical normalization condition.
The solution £+(x, A), £~(x,X) to (29), (30) is called regular if ^+(x, A) and 
£~(x, A) are nondegenerate and non-singular functions of A for all ImA > 0
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and Im À < 0 respectively. To the class of regular solutions of RHP there 
correspond Lax operators (2) without discrete eigenvalues. The presence of 
discrete eigenvalues A  ̂ leads to singular solutions of the RHP; their explicit 
construction can be done by the Zakharov-Shabat dressing method [22], for 
the case of orthogonal algebras see also [19].
If the potential Q(x,t)  of the Lax operator (2) satisfies the N - wave equation 
(1) then S ± (t, A) and T ±(f, A) satisfy the linear evolution equations

d S'± dT±
i — - A [ / ,5 ±(t,A)] =  0, i —  -  A[J,r±(t,A)] =  0 , (31)

at at
while the functions D ± (A) are time-independent. In other words D f { A) can 
be considered as the generating functions of the integrals of motion of (1). 
Each reduction on L  imposes restriction also on the scattering data. If L 
satisfies (14) then the scattering matrix will satisfy

Ck(T(Tk(X) )= T(X ) ,  A e l .  (32)

Equation (32) is valid only for real values of A. If the reduction is of the form 
(9), (11) and (12) then for the FAS and for the Gauss factors S ± (X), T1±(A) 
and D ±(A) we will get:

S+(X) = A 1 ( s - ( A * ) ) A r ‘ , T+(X) = A 1 ( f - (A , ) ) t t x r 1,

D+(\) = A l ( d - ( \ ' ) ) ' a ^ , F(X) = A 1 (F(X‘ )Ÿ A 2' , (33)

S+(X) = A 2S - ( - X ) A ^ , T +(A) =  A 2T - ( - X ) A 2' ,

D+(\) = A 2D - ( - \ ) A 2 1, F ( A) =  A2F (-A )A 2- ' . (34)

S ±(A) =  3)3 (S±(-A*)), A y , T ±(X) = A 2 (T±( - X ' ) f  A , 1,

D ±(\)  = A 3 (D± ( - y ) ) ' A 2 1, F(X) = A 3 ( F ( -X- )T  A 2l , (35)

where Ai  and A :i are assumed to be elements of the Cartan subgroup of © 
while A 2 corresponds to the w0 element in the Weyl group.
We will also make use of the integral representations for df  (A) allowing one 
to reconstruct them as analytic functions in their regions of analyticity C±. In 
the case of absence of discrete eigenvalues we have [8,11]:

°o

V j (x ) =  2^ /  ln(^+ lT +(ti)T ~(ti)\u+) , (36)
— oo

where |cu+) is the highest weight vector in the corresponding fundamental rep­
resentation R{w~j) of g. The function Vj{A) as a fraction-analytic function of
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A is equal to:

4 (A ), for A G C+
V 3{\) ( 4 ( A ) - d J“ (A))/2, for A e l ,

—dj, (A), for A e C .for A £ C_ ,
(37)

where df(X)  were introduced in (26) and the index f  is related to j  by 
wo{oij) — The functions Vj{ \ )  can be viewed also as generating func­
tions of the integrals of motion. Indeed, if we expand

and take into account that D ±(A) are time independent we find that dVj k /dt  = 
0 for all k — 1 , . . . ,  oo and j  — 1, ,r.  Moreover it can be checked that V Jjk 
expressed as functionals of q(x, t ) has kernel that is local in q, i. e. depends 
only on q and its derivatives with respect to x.
From (36) and (33-35) we easily obtain the effect of the reductions on the set 
of integrals of motion:

for the reductions (33), (34) and (35) respectively.
In particular from (40) it follows that al integrals of motion with even k become 
degenerate, i. e. V jt2k =  0. The reduction (39) means that the integrals T)jk  
become purely imaginary. Finally, if we have chosen the reduction (35) from 
(41) it follows that V ^ 2k are real while V jt2k+1 are purely imaginary.
We finish this section with a few comments on the simplest local integrals of 
motion. To this end we write down the first two types of integrals of motion 

i and V.j -2 as functionals of the potential Q of (2). Skipping the details (see 
[8]) we get:

OO

Oj (A) =  E 2,m A-‘ , (38)
k=1

(39)

(40)

(41)

OO

(42)
—  OO

oo ooJ àx{Q ,[H ^ ,Qx\ ) - i  J dx([J,<2],[Q, [#/,£?]]>,
—  OO —  oo

where HJ  =  2HJJj / ( a j7 ay ).

(4 3 )
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The fact that V j;i are integrals of motion for j  =  1 , . . . ,  r, can be considered 
as natural analog of the Manley-Rowe relations [1,3]. In the case when the 
reduction is of the type (9), i. e. pa =  saq*a then (42) is equivalent to

L
a >  0

2(a, a)(ujj,a) 
( a ,  a )

da; sa\qa(x)\2 — const (44)

and can be interpreted as relations between the densities |ga |2 of the ‘particles’ 
of type a. For the other types of reductions such interpretation is not so obvious. 
The integrals of motion V j2 are related directly to the Hamiltonian of the 
AT wave equations (1), namely:

_  _  2(oy,6)
Vj, 2 — 2i

T>(A), F ( A) (45)

where V(X) — dV/dX  and F{À) =  XI is the dispersion law of the AT wave 
equation (1). In (45) we used just one of the hierarchy of scalar products in 
the Kac-Moody algebra (see [24]) § =  0 0  C[A, A-1]:

{(X(\ ) ,Y( \ ) ) )k =-ResXk+1(b+(X)X(\ ) ,Y(X)) ,  X { \ ) , Y ( \ ) e g .  (46)

4. Example: AT-wave Systems Related to B 2-algebra

Let us illustrate these general results by an example related to the B 2 algebra. 
This algebra has two simple roots an — e1 —e2, a 2 — e2, and two more positive 
roots: «1 +  a 2 = e1 and an +  2a 2 = ei +  e2 =  a max. When they come as 
indices, e. g. in qa, we will replace them by sequences of two integers: a  —► kn
if a = kcti +  n a 2; if a = —(kaj  +  n a 2) we will use kn.
The reduction K U \ \ * ) K ~1 =  U(A) where K  is an element of the Cartan 
subgroup with K  =  diag(si, s2, 1, s2, Si) and sk = ±1, k = 1,2, extracts the 
real forms of B 2 ~  so(5). So cq =  a*, « =  1,2 and qa must satisfy:

PlO =  —s2SlÇio ; Pol =  — s2?01 5 Pli =  — s lÇll ? Pl2 =  — s l s2?i2 • (47)

Thus we get 4-wave system which is described by the Hamiltonian H  — H0 +  
T7int with:

Ho — — dx Ol -  b2)(q10ql0 -  qio,xQio) + 262(ç0i Çoi,* -  7oi,x?ov
(4 8 )

+  2&i(gnç[1 — +  (&i +  b2){qi2ql2 — qi2,x<li2)
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H;in t

oo

— oo
[s2 (gi2 ÇÏiÇoi +  Ç12Ç11Q01) +  (Qi i QoiQio +  Q11Q01Q10)] ?

where k — aib2 — a2b1, and the symplectic 2-form:

(2(0) = i J  dx [(at -  a2)Sq10 A 5ql0 +  2a25q01 A Sq^
—  OO

T  2üiôqn A Squ { cl 1 T~ 0-2)^512 A Sqi2\ 5

The corresponding wave-decay diagram is shown in Fig. 1.

(49)

Figure 1. Wave-decay diagram for the so(5) algebra 
To each positive root of the algebra kn =  k a i +  n a 2 we 
put in correspondence a wave of type kn. If the positive 
root kn =  k'n' +  k"n" can be represented as a sum of two 
other positive roots, we say that the wave kn  decays into 
the waves k'n' and k"n".

The particular case Si =  s2 =  1 leads to iV-wave equations on the compact real 
form so(5, 0) so(5, M) of the i?2-algebra, see also [19,25]. The choices S! =
—s2 =  — 1 and Si =  s2 =  — 1 lead to AT wave equations on the noncompact 
real forms so(2, 3) and so(l, 4) respectively.
Let us apply a second Z2-reduction to the already reduced system of the pre­
vious subsection. We take it in the form w0{U{—A)) =  U(A) which gives 
ai = a*, bi = b* and:

Q10 — ~ s i s2Qio -, Q01 — ~ s2Qoi -, Q1 1  — ~ s iQu 5 Qi2 — ~ s i s2Qi2 • (50)

This gives the following 4-wave system for 4 real-valued functions:

i(ax -  a2)qio,t ~  i(&i -  62)910,* +  2/cgn g01 = 0,
ia2Qoi,f — i^Qoi,* +  ^(ÇnÇi2 +  Ç11Ç10) =  0 ,
io-iQiM -  iM n,* +  K{q12q01 -  q10q0i) = 0 , 

i(ai +  a2)q12>t — i(&i +  b2)qi2jX — 2/ççnÇ0i — 0 .

Since w0{J) — — J  the Hamiltonian structure { H (0>. Q(0) [ becomes degener­
ated and we must consider the next Hamiltonian structure in the hierarchy.
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It is known that the j-type discrete eigenvalues of L are located at the zeroes 
6 C± of the functions D f ( A) [8, 19]. If we assume that L  has only two 

eigenvalues A^, of type j  then we can write

DI W  = ÙÎ W  • DI W  = . (52)

where D f ( A) have no zeroes in C±. Then the first reduction which is of the 
type (33) ensures that the eigenvalues must be pair-wise complex conjugate, 
i.e. Aj~ =  (A+)*. The second reduction of the type (34) leads to Aj~ =  —A+. 
Therefore if L has only two eigenvalues of type j  and both reductions are 
imposed this means that Xf  =  ±i£i where £i > 0 is a positive real number. 
However, if L has two pairs of eigenvalues AjtS k =  1,2 there is another 
nontrivial way to satisfy both reductions simultaneously:

Xf = Pi ±  iÇi, Aj =  Pi ±  iCi,

where pi, are real positive numbers. Therefore when both reductions are 
effective the operator L may have two different types of eigenvalue configura­
tions and to each such configuration there corresponds a reflectionless potential 
for L  and soliton solution for the TV-wave system.
Such configurations have been well known for the sine-Gordon equation [4, 
5] where we have: (i) topological solitons related to the purely imaginary 
eigenvalues ± i(k and (n) the breathers related to the quadruplets of eigenvalues.

5. Hierarchy of Hamiltonian Structures of iV-wave Equations and 
Reductions

The generic N -wave interactions (i. e., prior to any reductions) possess a hier­
archy of Hamiltonian structures which is generated by the so-called generating 
(or recursion) operator A =  (A+ +  A_)/2 [8]:

( d z
i "ckc +  P° '

+ i [q(x)J± (i -  Po) [q(y), z{y)]}  V
x

P0S  =  a d j1 • adj -S , (I±S)(x) = J d y S(y)
±oo

5 (5 3 )
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where q(x, t ) =  [J, Q(x,t)\.  The hierarchy of symplectic forms is given by:

00

U(fc) =  \  ([J,ôQ(x,t)\  / \A kôQ(x, t )^  , (54)
—  OO

Using the completeness relation for the “squared” solutions which is directly 
related to the spectral decomposition of A we can recalculate OJk) in terms of 
the scattering data of L with the result [8]:

=  ^  /  d \ \ k ( n + ( \ ) - n 0 (\))
(55)

U±(A) =  ( D ± ( \ )T* ( \ )Ô T*( \ )D ±(\) / \ S ±(X)ÖS±(X)) .

Therefore the kernels of differs only by the factor Xk; i. e., all of them can 
be cast into canonical form simultaneously. This is quite compatible with the 
results of [1,2,9] for the action-angle variables.
Again it is not difficult to find how the reductions influence Using the 
invariance of the Killing form, from (55) and (33-35) we get:

fi+(A) =  (fiö(A*)r,  (56)
îî+(A) =  f ië(-A),  (57)

« J M  =  W ( - A  *))•■ (58)

Then for fl ^  from (33), (34) and (35) we obtain:

Q(fe) =  -  , (59)

Q(k) =  ? (60)

Q(k) = ( _ X)fc (Q(k)y _ (61)

respectively. Like for the integrals V hk we find that the reductions (33) and 
(35) mean that each can be made real with a proper choice of the constant 
c0 in (8).
Let us now briefly analyze the reduction (34) which may lead to degeneracies. 
We already mentioned that T>jj2k =  0, see (40); in addition from (60) it follows 
that =  0. In particular this means that the canonical 2-form is also 
degenerated, so the N -wave equations with the reduction (34) do not allow
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Hamiltonian formulation with canonical Poisson brackets. However they still 
possess a hierarchy of Hamiltonian structures:

n<i) ( i f ’') =V,F<‘+1)’ (62)
where Vgf ^ fe+1) =  AVqH ^ \  by definition VqH  =  (ÔH)/(ôqT(x,t)).  Thus 
we find that while the choices [Q(2k\  H ^ }  for the iV-wave equations are 
degenerated, the choices {f^2fe+1), iT(2fe+1)} provide us with correct nondegen- 
erated (though non-canonical) Hamiltonian structures, see [8, 11, 13].

6. Conclusion

Here we have analyzed how can be imposed one or two Z2-reductions on the 
TV-wave type equations related to the simple Lie algebras and what will be 
the consequences of these reductions to the Hamiltonian structures and to the 
structure of their soliton solutions. A list of all nontrivial Z2-reductions for 
the low-rank simple Lie algebras (rank less than 4) can be found in [18]. The 
reductions that lead to a real forms of g are discussed in [20]. The classification 
of the Z2 x Z2-reductions is under investigation. We note also that the explicit 
construction of the dressing factors for the symplectic and orthogonal algebras 
requires modifications of the Zakharov-Shabat dressing method [19]. This 
leads to new types of reflectionless potentials and soliton solutions.
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