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Abstract. Quantum holography is a well established theory of mathe­
matical physics based on harmonic analysis on the Heisenberg Lie group 
G. The geometric quantization is performed by projectivization of the 
complexified coadjoint orbit picture of the unitary dual G of G in order 
to achieve a geometric adjustment of the quantum scenario to special 
relativity theory. It admits applications to various imaging modali­
ties such as synthetic aperture radar (SAR) in the microwave range, 
and, most importantly for the field of non-invasive medical diagno­
sis, to the clinical imaging modality of magnetic resonance tomography 
(MRI) in the radiofrequency range. Quantum holography explains the 
quantum teleportation phenomenon through Einstein-Podolsky-Rosen 
(EPR) channels which is a consequence of the non-locality of phase 
coherent quantum field theory, the concept of absolute simultaneity of 
special relativity theory which provides the Einstein equivalence of en­
ergy and Fitzgerald-Lorentz dilated mass, and the perfect holographic 
replication process of molecular genetics. It specifically reveals what 
was before unobservable in quantum optics, namely the interference 
phenomena of matter wavelets of Bose-Einstein condensates, and what 
was before unobservable in special relativity, namely the light in flight 
(LIF) recording processing by ultrafast laser pulse trains. Finally, it 
provides a Lie group theoretical approach to the Kruskal coordinatized 
Schwarzschild manifold of quantum cosmology with large scale ap­
plications to general relativity theory such as gravitational instanton 
symmetries and the theory of black holes. The direct spinorial detec­
tion of gravitational wavelets emitted by the binary radio pulsar PSR 
1913+16 and known only indirectly so far will also be based on the 
principles of quantum holography applied to very large array (VLA) 
radio interferometers.
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1. Introduction

All mathematical descriptions of quantum fields are inherently based on dy­
namical symmetries in a wide geometric sense [19,49]. Similarly, in general 
relativity theory exact solutions of the Einstein field equations cannot be found 
except in spacetime manifolds admitting a high degree of symmetry. Quantum 
holography is based on the projectivization CP2 under its standard Kähler met­
ric of the complexification of the symplectic affine plane R © PL Recall that a 
Kähler manifold is a complex manifold which is equipped with a Hermitian 
metric on its holomorphic tangent bundle, whose imaginary part is a closed ex­
terior differential (l,l)-form, and which thus defines a symplectic structure on 
the complex manifold itself. The standard construction of complex projective 
plane

CP2 =  (C3 -  {0}) / c x

provides the prototype of a two-dimensional compact Kähler manifold which 
is a compact Hodge manifold [65]. Because its standard symplectic structure 
follows in a natural way from any planar coadjoint orbit Ö of the unitary dual 
G of the Heisenberg nilpotent Lie group G [54], the following statement by the 
Nobel prize winner Abdus Salam on the importance of group theory in physics 
is highly relevant for the appreciation of the Lie group representational approach 
[52] to phase coherent optics and microwave radar imaging, quantum optics of 
Bose-Einstein condensates, relativistic astrophysics of gravitational wavelets, 
molecular genetic information processing, clinical MRI, quantum information 
theory, and phase coherent quantum field theory.

Throughout the history of quantum theory, a battle has raged between 
the amateurs and professional group theorists. The amateurs have main­
tained that everything one needs in the theory of groups can be discovered 
by the light of nature provided one knows how to multiply two matrices.
In support of this claim, they of course, justiably, point to the successes of 
that prince of amateurs in this field, Dirac, particularly with the spinor 
representations of the Lorentz group. As an amateur myself, I strongly 
believe in the truth of the non-professional creed. I think perhaps there is 
not much one has to learn in the way of methodology from the group the­
orists except caution. But this does not mean one should not be aware of 
the riches which have been amassed over the course o f years particularly 
in the most highly developed of all mathematical disciplines — the theory 
of Lie groups. My lectures then are an amateur’s attempt to gather some 
of the fascinating results for compact simple Lie groups which are likely 
to be of physical interest. I shall state theorems; and with a physicist’s
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typical unconcern rarely, if ever, shall 1 prove them. Throughout, the em­
phasis will be to show the close similarity of these general groups with 
the most familiar of all groups, the group of rotations in three dimensions.
In 1951 I had the good fortune to listen to Professor Racah lecture on 
Lie group at Princeton. After attending these lectures I thought this is 
really too hard; I cannot learn this; one is hardly ever likely to need all 
this complicated matter. I  was completely wrong. Eleven years later the 
wheel has gone full cycle and it is my turn to lecture on this subject. I am 
sure many of you will feel after these lectures that all this is too damned 
hard and unphysical. The only thing I can say is: I do very much hope 
and wish you do not have to learn this beautiful theory eleven years too 
late.

In the Heisenberg group geometric quantization procedure, the role of the spinor 
representation will be played by the metaplectic representation to of the meta- 
plectic group M p{2, M) which leaves fixed the points v f  0 along the longi­
tudinal direction of the one-dimensional timelike center C ^  G [66]. In the 
associated center-time splitting, the complexification of C is embedded into the 
complex projective plane CP2 which permits to attach to each planar coadjoint 
orbit

o  = a , v g p x

the negatively curved eigen time shell of the Milne explosion cosmos of global 
expansion parameter v. Each eigen time shell is located within the light cone 
of the Minkowskian spacetime manifold.
In the relativistic hodogram associated to the quantum hologram via the eigen 
time shell, the non-linear Einstein composition of global radial velocities

Vi +  v2 ----------
1 +  vxv2

corresponds to the chain rule of cross-ratios in CP2. Specifically, the composi­
tion law applied to any radial velocity Vi — v, v < 1, and the velocity of light 
v2 — I preserves the limiting velocity of light v2 — 1. The group of Lorentz 
transformations is then considered as a Lie group of rotational collineations 
of the complex projective plane CP2 which acts on the conformally invariant 
two-dimensional sphere

Y^ttM .S2 ^  CP2 ,

of the sandwich trace configuration of mirrored pairs of planar coadjoint orbits

( a ,  o - o . v e  R x .
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Figure 1. The Milne cosmos displaying three stages of an expanding curved space 
The transversal sections of the negatively curved eigen time shells within the light cone 
t — 0 are circular and reflect the natural symplectic structure of the planar coadjoint 
orbits Ou (y /  0) of the Heisenberg nilpotent Lie group G. Note that the symplectic 
structure gives rise to the orthogonality involution of conjugate lines in the complex 
projective metric plane CP2, and therefore to the four focal points of the elliptic, 
hyperbolic and the single focus of the parabolic motions, the focal points being the 
intersections of the isotropic tangents to the one-dimensional central projective quadric. 
The two real or imaginary foci determine the other two, as the non-cyclic intersection 
points of the isotropic lines going through the given foci. Both pairs are symmetric 
with respect to the center. Similarly, the focus of a parabola lies on its axis. The planar 
section through the Milne cosmos reveals the same isotropic lines as in the Minkowski 
world. The world trajectories form a pencil of timelike lines.

The Lorentz group implements a timelike orthogonality involution correspond­
ing to the natural involution of

0

under the logarithmic scale of the real Heisenberg Lie algebra. The loga­
rithmic scale is compatible with the Kähler metric of the compact complex 
manifold C P2 [65], The associated center-time splitting induces projectively
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as Möbius transformations the Lorentz transformations of symmetric matrix

/ 1 v \
\ / l  — r -  y  1 —  v 2

V 1
V \ / l  — V2 y/1 — V2 /

The Lorentz matrix is written in natural units where the speed of light is one 
and v denotes a real number such that v < 1. Scaling the global radial velocity 
v to the velocity of light c yields the real matrix

t 1 v \

y C2 J l  — V2 je1 J 1 — V2 jc2 )

Due to the factor 1/c2, the scaled matrix lacks the property of symmetry for 
« /  0. Under the logarithmic scale on the one-dimensional timelike center 
C c—̂ G, the symmetry of the orthogonality involution will be restored by the 
Einstein equivalence of energy £ and Fitzgerald-Lorentz dilated mass

m 0
m  =  , \v < c ,

yj 1 — V2/c 2

where m 0 denotes the rest mass (see below).
Due to the fact that every first order cocycle of every non-trivial element of the 
unitary dual G forms a coboundary, the Lorentz group respects the Stone-von 
Neumann theorem of quantum physics [46,54], hence the sandwich trace con­
figuration of mirrored pairs of planar coadjoint orbits (Ö,,, ö - v), or the Hopf 
fibration to be discussed below. Up to reflections, the Lorentz transformations 
actually are the only rotational collineations of CP2 which respect the isotropic 
lines, the phase angles, and the Stone-von Neumann theorem. This can be 
seen from the asymptotic cone of the dilated two-dimensional sphere

\j2n\v\ . §2 CP2 ,

which isotropically linearizes this conformally invariant two-dimensional 
sphere of R3 as well as the half-density associated to the logarithmic scale. 
It follows that the compatibility with quantum physics nicely characterizes the 
group of Lorentz transformations of special relativity theory and the reflections 
as the group of automorphisms of the sandwich trace configuration. Therefore, 
the metaphor of the sandwich trace configuration as a visualization “more geo- 
metrico” of the group representational induction process forms a system draft
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(Entwurf) in the sense of Immanuel Kant’s critique of the pure reason visual­
izing the épistémologie horizon of human knowledge and its immanent system 
conceptions.

Figure 2. Visualization of the shear associated to a Lorentz transformation and the 
relativistic Doppler filter bank effect of multirate signal analysis or subband coding. In 
contrast to the group of Galilean transformations, the group of Lorentz transformations 
respects the Stone-von Neumann theorem of quantum physics as the group of rotational 
collineations of the complex projective plane CP2. The center-time splitting yields the 
Einstein equivalence of energy £  and Fitzgerald-Lorentz dilated mass m  by means of 
the Third Keplerian Law of planetary motion, and the relativistic Doppler filter bank 
effect.

Projectivization of the planar coadjoint orbits ( 0 V, 0 - U) and affine depro-

Dandelin-Quételet construction of the First Keplerian Law of planetary mo­
tion. In contrast to the group of Lorentz transformations, the Galilean group 
violates the symmetries of the sandwich trace configuration because it relates 
the one-dimensional timelike center C ^  G to the time 1 e 1  but conversely 
not the time axis R to C. Due to the missing timelike orthogonality involution 
of the center-time splitting, the group of Galilean transformations of velocity 
matrix

jectivization of the conformally invariant provides the

does no respect the Stone-von Neumann theorem as a limiting case of the 
group of Lorentz transformations nor does it provide the Einstein equivalence of
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energy £ and Fitzgerald-Lorentz dilated mass m. The Galilean transformations 
conflict with Maxwell’s laws of electrodynamics as well as quantum mechanics. 
The cocompact lattice Z3 G suggests to conceive G as a principal circle 
bundle over the two-dimensional compact torus T2 — M2/Z 2. The compact 
nilmanifold G/ Z3 suggest to conceive CP2 as a complex projective (hyper-) 
plane of the compact Kähler manifold of circles CP3. Then each complex 
projective line of the linear manifold of circles CP2 forms a pencil of circles.

2. The Real Heisenberg Lie Group and Lie Algebra

A central role in the study of the cotangent bundle T*R2 is played by the 
real Heisenberg Lie group G. The three-dimensional connected and simply 
connected Heisenberg nilpotent Lie group G forms the non-split central group 
extension

M. <] G — > M © IR .

The concept of central extension is of fundamental importance in the theory of 
loop groups.
The standard presentation of G is given by the multiplication law (gi,g2) 
gxg2 of unipotent matrices with real entries

/ I  X\ / I  x 2 2̂2\  / I  +  x 2 Z\ +  z2 +  X\y2
0 1 y1 0 1 y2 =  0 1 2/i +  2/2

\ o  o  i  /  \ o  o  i  /  V o  0  1
All the eigenvalues of the elements g G G are equal to 1, the neutral element 
of G is given by the unit matrix

1 0 0 \
o i o ,
0 0 1/

and the inverse g-1 G G obviously reads

1 x z 
0 1 y 
0 0 1

1 —x —z +  xy
0 1 - y
0 0 1

The point to note is that, in the standard presentation, G forms a linear su­
perposition of transvections which allow a geometric adjustment of the world 
lines or photon trajectories of the experimental setup to the convex light cone 
[32], Due the transvectional interpretation of the elements of G, the geome­
try of the Heisenberg nilpotent Lie group G is compatible with the rotational 
collineations of CP2 forming the Lorentz group.
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Using ultrafast laser pulse trains, the compatibility of quantum holography with 
special relativity theory has been experimentally confirmed by LIF recording 
processing [1-5,64], In relativistic astrophysics, the indirect spinorial detection 
of gravitational wavelets emitted by the “visible” 59-ms radio pulsar of the 
binary neutron star system PSR 1913+16 [35] represents another important 
proof of the compatibility of quantum holography with relativity theory at large 
scales [41].
Allied to the simply connected Lie group G is the three-dimensional real 
Heisenberg Lie algebra g of nilpotent matrices

/0 a c\
10 0 6 1 , a, b, c e K..
Vo 0 0 /

In terms of the Lie bracket of g, the commutator of the canonical basis of g 
allows to formulate the Heisenberg uncertainty principle as a duality equation

/0 1 0\  /0 0 0 
0 0 0 , 0  0 1 

VO 0 0/  \0 0 0

0 0 1\  
0 0 0 
0 o 0/

Connecting g and G there is the exponential map
expG : g — > G

which forms a global diffeomorphism such that the identity

expG
0 a c 
0 0 b 
0 0 0

1 a c +  \a b  
0 1 b
0 0 1

holds. The adjoint action of G on the Heisenberg Lie algebra g is defined by 
the adjoint representation

Adg -.G — > GL(q)

so that the adjoint orbits of G are formed by the bundle of lines parallel to 
the one-dimensional center but different from the center of g. Notice that the 
generic adjoint orbits are one-dimensional and therefore cannot be symplectic 
manifolds. By duality they can be represented as singletons.
The contragredient representation to the adjoint representation

AdG : G — > G L(ff)

gives rise to the coadjoint action of G on the vector space dual g* of the real 
Heisenberg Lie algebra. Thus, the adjoint and coadjoint actions are not iso­
morphic, and in particular there exists no invariant non-degenerate symmetric 
bilinear form on the three-dimensional real vector space g.
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The cotangent bundle T*G of G admits the representation

T*G =  G x g * .

For any element g 6 G and linear form v 6 c* (c is the Lie algebra of C ), the 
element Ad*G{g)(v) £ 0* is determined by the rule

M ' G{g){v ) (X )  =  v ( K A a ^ i X ) )

for all vector fields X  £ 0. Thus the coordinate form v £ c* generates the 
invariants and the Casimir functions which are constant on the coadjoint orbits 
or invariant under the coadjoint action Ad<A

3. Geometric Quantization

Research into Lie group representation theory is motivated by the dynamical 
symmetries inherent to the geometry of basic physical principles. A major 
source of the unity of Lie group representation theory is the philosophy of 
the coadjoint orbit method also known by the more fashionable term geomet­
ric quantization. It has been observed, however, as a technical point that the 
coadjoint orbit method is almost exclusively a method of interpretation, a way 
of organizing information on Lie group representation theory into a coherent 
pattern. It has been emphasized that the overall coherence of the coadjoint orbit 
technique provides little in the way of technical tools for proofs or explicit com­
putations. Thus, for example, several of the major results of Harish-Chandra 
on unitary linear representations of semisimple Lie groups have found elegant 
interpretations in terms of the coadjoint orbit method. These interpretations 
have actually provided no shortcuts to Harish-Chandra’s proofs of the repre­
sentational results [34], However, this angle of mathematical view is not wide 
enough, and too technical. It is exactly the capability of efficiently organiz­
ing quantum information which makes the complexified and then productively 
completed coadjoint orbit picture of the Heisenberg nilpotent Lie group G 
such a valuable tool of constructing appropriate substrates or hypostases for 
quantum holography, as well as the semantic interpretation of the coherently 
recorded amount of quantum information. Therefore Salam’s impressing ap­
peal to learn Lie group theory for physical applications as soon as possible [52] 
should include the challenge to get acquainted with the simple and actually not 
“unphysical” aspects of the coadjoint orbit method in order to classify the iso- 
morphy classes of irreducible unitary linear representations for a wide category 
of Lie groups.
Because the phenomenon of time occurs only in the representations of the real 
Heisenberg nilpotent Lie group G as the points v  /  0 on the real dual c* 
of the Lie algebra of the one-dimensional timelike center C G and the
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real time axis of the complex representation space, it is important to classify 
the isomorphy classes of irreducible unitary linear representations of G. The 
classification of the unitary dual G follows from the coadjoint orbit picture of 
G in the vector space dual of the real Heisenberg Lie algebra g G Explicitly,

/ I  x z \  / I  0 —x \
Ad*G 0 l t /  U  0 1  y \ .

\0  0 1 /  \0 0 1/

Identify the linear forms v  G 0* (v ^  0) with their central control gradient 
drifts. Due to the Pfaffian linear form Pf(.) G c* which defines the Plancherel 
measure 2\v\dv  on the timelike center C G, the natural symplectic forms

Aov — v • dx A dy

associated with the oriented planar coadjoint orbits

Ov =  k d G(G)(v) , ! / 6 l x

of G exhibit the real variable i  as a local spatial frequency. Its symplectic 
conjugate is then the phase variable y of the polarization state. Both variables 
characterize a local accessible quantum state. Its spectral data including the 
angular momenta can be recorded by the flat manifolds ö v.
In the relativistic hodogram associated to the quantum hologram via the nega­
tively curved eigen time shell attached to the planar coadjoint orbit Ou (is ^  0) 
of global angular frequency

2tt
^ = y = P f ( A 0J ,  T V  0 ,

the global radial velocity associated with Ov is defined by

v =  tanli7tv =  — itan(i7Tip ,

which is in accordance with the Einstein composition law deduced from the 
chain rule of cross-ratios in the complex projective plane CP2. It follows 
|u| < 1, and the Doppler identities

1 ! 1 v =  — arctanh v =  —
7r 27r

Then the Laguerre phase formula of the geometry of the complex projective 
plane CP2 implies that the hodograph of the Keplerian planetary motion, which 
forms the orbit inside the planar hodogram, represents a circle with radius 
inversely proportional to the angular momentum. This velocity director circle 
is actually defined by the central character of G according to the assignment
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n o *\
C 3 0 1 0 ^  e2™z , V  =  Pf(Ao ).

VO 1 1 /

The synthetic generation of a one-dimensional projective quadric via an orthog­
onality involution of conjugate lines in the complex projectice metric plane CP2 
[47] establishes that the velocity director circle, together with its orientation, 
determines uniquely the orbit of the Keplerian planetary motion as well as the 
axial direction of its Laplace or Runge-Lenz vector [61] pointing towards the 
periastron. Any oriented circle which lies in some plane containing the invo­
lution center can occur as a velocity director circle in the planar hodogram. 
The circles pass through the conjugate cyclic points {i, i} of the complex pro­
jective metric plane CP2 ^  CP3. Due to the affine classification of the one­
dimensional, double point free, central quadrics inside CP2, the corresponding 
orbit is associated either with an elliptic, hyperbolic, or parabolic motion ac­
cording as the involution center lies inside, outside, or exactly on the velocity 
director circle. Their asymptotes are the tangents through the center at the 
absolute projective quadric

$°oo ^  CP1 ,

and form double lines of the line involution at the center with respect to the one­
dimensional projective quadric. They represent the conjugate diameters of the 
diameter involution which determines the focal points of the one-dimensional 
central projective quadric in CP2 by the orthogonality involution of conjugate 
lines in the complex projective metric plane CP2. The intersection of the 
asymptotes is the unique focal point of a circle. It coincides with its center, the 
center of the diameter involution. Each ellipse which is not a circle, and each 
hyperbola has four tangents and therefore four focal points. The case of the 
parabolic motion is distinguished by the fact that the axis of the orthogonality 
involution, the line at infinity of the complex projective metric plane CP2 
which joins the conjugate cyclic points {i, i}, represents a tangential line [47]. 
In any case, the angle between two radial velocity vectors, as measured around 
the velocity director circle, is equal to the phase angle between corresponding 
position vectors.
These important facts on the projective geometry of the Kepler problem have 
been discovered by Sir William Rowan Hamilton (1805-1865) in 1846 when 
he studied an alternative for solving dynamical problems [29-31,44]. They are 
straightforward within the coadjoint orbit picture of the unitary dual G of the 
Heisenberg nilpotent Lie group G and permit an inclusion of special relativity 
into geometric quantization.
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In polar coordinates of the negatively curved eigen time shell

r  — t  sinh v  , t  = r  cosh u

which is located within the light cone of the Minkowskian spacetime manifold 
with vertex at the singular plane u — 0 of “collapsed” singletons, the eigen 
time parameter r  satisfies the Minkowskian condition

t2 = t2 -  r 2 .

It is obviously invariant under timelike orthogonality involution with the one­
dimensional center C ^  G under the logarithmic scale of the real Heisenberg 
Lie algebra g.
The planar coadjoint orbits ö v belonging to

Ad^(G)

coincide with the symplectic leaves of the Poisson structure of C°° (g*) with 
Poisson bracket

(  d£dg_ _
V da db db da

a,b,c  6 M

for complex-valued functions f ,g  E C°°(g*). The symplectic affine leaves 
are slicing up the real dual g* and form the symplectic affine spinorial sub­
strate or synchronized hypostasis of the spatio-temporal filter bank imple­
mentation of phase coherent optics, quantum optics of the matter wavelets of 
Bose-Einstein condensates, astrophysics of gravitational wavelets , quantum 
information processing, and phase coherent quantum field theory. As quantum 
hologram planes, the spectral data slices come in mirrored pairs of absolute 
simultaneity

( a , e u ) ,  ^ k x

according to the following non-locality theorem which refers to the concept of 
complex anti-Hilbert space ( [57]). Each single point in T*M x {0} forms a 
leaf
The following result of global Frobenius reciprocity type justifies to associate to 
the planar coadjoint orbits O,, (u f  0), of the unitary dual G of the Heisenberg 
nilpotent Lie group G the compact Kähler manifold CP2.

Theorem. (Antisymmetric Entanglement) Let G denote a simply connected 
nilpotent Lie group. The following properties of the Schrödinger represen­
tation p G G and its allied filter bank operators are equivalent: 

i) The coadjoint orbit Op forms a symplectic affine linear variety of subband 
coding in the real vector space dual g*/
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ii) I f the one-dimensional identity representation I  is vaguely contained in 
the tensor product representation p®a for a £ G, then a =  p is the 
contragredient representation of p £ G acting on an everywhere dense 
vector subspace of the complex anti-representation Hilbert space o f p. 

The planar coadjoint orbit pairs of absolute simultaneity {ö v, ö _ v) repre­
sent the symplectic affine spinorial substrates for the spectral detection of the 
wavelets of simultaneity [32] at frequencies v f  0. Due to the Laguerre phase 
formula of the geometry of the complex projective plane CP2, the synchro­
nization of the planar phase clockwork of the pair of slices and
their attached eigen time shells by the symmetry of reflection is in accordance 
with the concept of absolute simultaneity of special relativity theory. The non­
locality can be approved not only by the quantum teleportation phenomenon 
through EPR information transmission channels but also by quantum optical 
interference experiments performed with the matter wavelets of Bose-Einstein 
condensates [6]. In this case, for the spatially coherent wavelets divided by 
a virtual double slit in a Einstein-Bose bubble of dilute Rb-atomic vapor, the 
phase in one arm of the interferometer uniquely determines the phase of the 
other one. The phase coherency of the matter wavelets does not depend upon 
the distance of the virtual slits of the magnetic trap controlled by radiofrequency 
waves.
Corollary. The element p £ G is square integrable modulo its kernel if and 
only if each element a £ G for which I  is vaguely contained in p ® a  must be 
equal to p.
The square integrability modulo kernel suggests to emphasize the probabilistic 
background of the Stone-von Neumann theorem [43], the positive definiteness 
of the kernel distribution allied to the global Frobenius reciprocity theorem 
[36,37,46], and the Omstein-Uhlenbeck semigroup of the Bargmann-Fock 
representation of G [54],

4. The Stochastic Realization of the Longitudinal Spectral Flow

The preceding result opens the window to the stochastic aspects of the uncer­
tainty principle of quantum information detection, and specifically to the un­
biased probability estimate of spatial Lévy stochastic processes [8,14,24,46]. 
Due to the logarithmic scale of the real Heisenberg Lie algebra g, the prin­
ciple of maximum Cramér-Rao bound [27] applied to these coherent Markov 
stochastic processes of stationary independent increments along the line bundle 
of adjoint orbits of G allows to deduce the Schrôdinger evolution equation of 
quantum physics by means of a compromise in the competition between mini­
mizing the Fisher information about the particle’s measured position and max­
imizing its kinetic energy £ — <f>, where «T denotes a real-valued, non-temporal,
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potential energy function. In the gauge defined by the Bohr-Sommerfeld quan­
tization procedure, the Schrôdinger equation [14] provides the probability law 
of a square integrable wave function ijj such that the probability amplitude

minimizes the Fisher information [27] of the longitudinal spectral flow

In the information channel the spectral flow realizes a longitudinal Lévy sto­
chastic process of infinitely divisible smooth probability law p(s)ds  [50,28], 
subject to the mean kinetic energy constraint. Note that the Fisher information 
reflects the quadratic dilation in the longitudinal direction of 0 and therefore 
is different from the differential entropy. The quantum statistical concept of 
Cramér-Rao estimator appears to be a more sensitive measure of curve shape 
and smoothness than the concept of Shannon entropy. Its quantum information 
theoretical background is able to replace the “incomprehensible” first deriva­
tion of the Schrôdinger evolution equation discovered by Erwin Schrôdinger in 
1926, three years after Louis de Broglie modeled a particle as a wavepacket 
in 1923. The new derivation of the Schrôdinger equation is based on the 
non-trivial characters, or non-trivial “singular” unitary linear representations 
of dimension one of G, visualized by the collapsed singletons of the pointed 
singular plane v — 0 inside the real vector space dual g* [14].
In classical probability theory, the Lévy-Hincin formula describes all contin­
uous normalized conditionally positive definite functions on the real line M 
[28,46]. Due to the stochastic definition of p — w |, the Lévy-Hincin spec­
tral trace formula for the characteristic exponent, applied to the catenation of 
the longitudinally driving Lévy stochastic process with a Polish space of right 
continuous paths with left limits, and the reflected longitudinal Lévy process, 
provides a stochastic realization of the sandwich trace configuration of mirrored 
pairs of planar coadjoint orbits, including the spatio-temporal phase gradient 
and augmented by an independent pure-jump martingale [53] which represents 
the channel noise. Thus quantum statistics permits to overcome Wolfgang Ernst 
Pauli’s “difficult dimensional transition 3 —► 4”. The random signals associated 
with the uniquely determined Lévy decomposition [8] into a Brownian motion 
with drift, a compound Poisson stochastic process, and a martingale, which is 
created by the standard cascade of slices, undergo a matched filtering process. 
At optical frequencies, the coherent wavelets associated to the compound Pois­
son stochastic process are generated by the field of a laser above threshold. In
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this stochastic framework of geometric quantization, Niels Bohr’s complimen­
tary principle of quantum physics adopts a simple geometric meaning within 
g*, and the Schrödinger equation exhibits to be complimentary to the Lorentz 
invariant Klein-Gordon equation (Section 12 infra).
In the context of phase coherent quantum field theory, two remarks are in order:
1. A consequence of the stochastic modality that is of methodological as well 

as historical importance is the fact that the Keplerian laws of planetary 
motion can be deduced independently of Newton’s gravitational law. This 
consistency was well known to the philosopher Georg Wilhelm Friedrich 
Hegel (1770-1831), but most of the post-Newtonian physicists and philoso­
phers like Karl Raimund Popper have not been aware of this astrophysical 
insight [48]. Indeed, central projective homogenization of the Lévy inten­
sity measure provides the Third Keplerian Law. This result provides a new 
probabilistic perspective “more geometrico” of the gravitational law.

2. The trace of the longitudinal evolution operator associated to the 
Schrôdinger equation leads to the Landsberg-Schaar identity for quadratic 
Gaussian sums

valid for positive integers p and q [7,15]. In number theory, this identity 
which includes the Maslov index plays a central role underpinning key 
results relating to the quadratic reciprocity law in terms of Legendre symbols

for odd integers p and q, and characters. An alternative way of establishing 
the Landsberg-Schaar identity depends upon path integration of the longitu­
dinally driving Lévy stochastic process and the reflected longitudinal Lévy 
process [16]. Shor’s algorithm for quantum computation actually suggests 
a close interrelation between number theory and quantum information.

5. The Hopf and the Contragredient Hopf Fiber Bundle

The stereographic projection

p > 0, q > 0

7 : §2\{north pole} — ► Ö

known already to Ptolemy as a conformal mapping endowes the complex pro­
jective line §2 =  CP1 ^  CP2 with the curvature form of the linear connection
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P  of the S1 principal fiber bundle

7r: § 3 =  {(w1,w2) 6  C2; |uq | 2 +  \w2\2 =  1} — > § 2 =  CP1 

with S' action
(w1,w2) .z =  (w1.z, W2.z) .

Then the exterior differential 1-form P  on S3 with values in the Lie algebra 
T iS1 =  iM of the one-dimensional torus group T =  P /Z  takes the form

1
P  = — (wi dw1 — Wi drei +  w2 dw2 — w2 dw2)

and Q. =  d P  is the closed exterior differential (l,l)-form

Q = — ( dtüi A dü)i +  dw 2 A dw 2)

on S3 with values in T-|S' =  zM. Let Ù denote the exterior differential (1,1)- 
form on S2 =  CP1 so that Q =  7t*Ù. Let Ù denote an exterior differential 
(l,l)-form on C so that

7*Ü =  Ü
holds. Then the mapping

7 o 7r: §3 -  {{w1,w2) ; W2 /  0} — > C

takes the explicit form of a homogeneous coordinatization

7 o 7r(w7i, W2) =  —  ,
W2

and therefore projects every circle on the unit sphere s 3 f— C2 onto a circle 
or line in the complex plane C. It follows that S3 forms a circle bundle over 
CP1, and that Ü is given by

= du; A dw)
u L — Ö •

(1 +  \w\2)

Moreover, it follows from the surface integral

s2
that the Chem class of the Hopf bundle takes the form

Ci (Hopf bundle) — — 1.

By choosing a copy of C inside the skew-field H of Hamiltonian quaternions, 
the one-dimensional torus group T =  S1 can be identified with a subgroup of 
§3. The fibers of the Hopf bundle
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s 1 — ► §3
I

correspond to the places where the ratio w1/ w 2 is constant. The fibers over 
the north and south poles are the longitudinal axis and the central circle. All 
but two of the fibers of the Hopf bundle are located on the foliating tori lying 
over the lines of latitude on the unit sphere S2 ^  E 3 [10] as Villarceau circles. 
On each torus the fibers run around once in each direction of the Villarceau 
circles. The base manifold §2 may be regarded as the space of fibers in the 
sense that the projection n establishes a bijection between the set of fibers and 
the base. Moreover, the topology on the base manifold indicates the mutual 
disposition of the fibers in the sense that two fibers are near each other when the 
corresponding base points are near each other. The space of fibers is made up 
of two two-dimensional compact discs glued together by a diffeomorphism of 
their boundaries, which is just the unit sphere §2 ^  E 3. Therefore the group of 
Lorentz transformations as a group of rotational collineations of CP2 respects 
the Hopf fibration as well as the Bohr-Sommerfeld quantization procedure. In 
terms of Johannes Kepler, “Geometria est archetypus of pulchritudinis mundi”. 
In a similar vein, the S1 action §3 x S1 — > §3 defined by the assignment

and the contragredient stereographic projection

7 : §2\{south pole} — > O-i

as a conformal mapping combine so that the transformation

707r : §3 -  {(tui, w2) ; «7 ^  0} — > C 

arises. The coordinate chart compatibility

provides the contragredient Hopf bundle of principal linear connection

(w1,w 2)-z 1 =  (wt-z \ w 2.z 1)

- P :  TE>3 — ► iE

It follows
Q — — dP  — —Q — duq A dw^ +  dw2 A dw2 ,

Ü — -Q  —
d w A d w

(1 +  |ie|2)2

so that
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via the surface integral

yields the Chern class
s2

1 ,

Ci (contragredient Hopf bundle) =  +1 .

north pole fiber

Figure 3. A cutaway perspective view of the Hopf fibration on §3 ^  R4 
The fibers on the three compact tori which consist of Villarceau circles lying over the 
equator, and the q=45 degree parallels of the unit sphere §2 ^  R3 are visible. The fibers 
over the north and south poles, the longitudinal axis and the central circle, are also 
shown. The space of fibers is made up of two two-dimensional discs glued together by 
a diffeomorphism of their boundaries, which is just the sphere §2. Therefore the group 
of Lorentz transformations as a group of rotational collineations of CP2 respects the 
Hopf fibration as well as the Bohr-Sommerfeld quantization procedure. Remarkably, 
the Hopf fibration corresponds to Kant’s absolute épistémologie metaphor of knowl­
edge and visualizes Pauli’s “difficult dimensional transition 3 —► 4”. It leads to the 
“representatio” of the phenomena in the sense of Kant’s épistémologie philosophy of 
the phenomenon of time, and to the épistémologie metaphor of the “globus intellectu- 
alis” introduced into philosophy by Francis Bacon. In terms of Kepler, “Geometria est 
archetypus pulchritudinis mundi”.
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On the foliating tori lying over the lines of latitude on the unit sphere §2 R3,
the fibers run around in the opposite direction than the Villarceau circles of the 
Hopf bundle. Note that the Hopf fibration forms a visualization of Pauli’s 
“difficult dimensional transition 3 —> 4”. In special relativity, the dimensional 
transition 3 —>• 4 is projectively performed by considering the Lorentz transfor­
mations as a group of rotational collineations of the complex projective plane 
CR2.
The Chern class involution of the non-isomorphic Hopf fibrations of S3 C2 

over the complex projective line CP1 =  S2 with fiber type S' C is in­
duced by the winding numbers {—1,+1} of the respective Villarceau circles. 
It reflects the basic antisymmetry of the compact Kähler manifold CP2, imple­
mented by the antisymmetric entanglement theorem as well as the concept of 
absolute simultaneity of special relativity. It forms the basis of the spin echo 
technique of MR spectroscopy and the clinical MRI modality because it permits 
to overcome the decoherence tendency of “hot” organisms.
Ironically enough, the basic antisymmetry of the complex projective plane CP2 

provides also the quantum mechanically derivation of the Einstein equivalence 
[58]

£ =  me2 , 

of radiation energy

m 0

£ — h u ,

and associated mass

v < c

Of course, h = 2ivh denotes Planck’s universal constant. The proof depends 
on the timelike orthogonality involution of the Lorentz transformations and is 
based on the Third Keplerian Law of planetary motion to introduce the concept 
of mass m  via an appropriate gauge [11]. At rest, in a spacetime splitting so 
that v =  0, the energy is £ = m 0c2.
A familiar but incorrect version of the Third Keplerian Law of planetary motion 
asserts that the period is proportional to the |  power of the mean distance from 
the origin. It is noteworthy that the period of such a periodic orbit depends 
only on the energy £. Therefore the Third Keplerian Law can be derived “more 
geometrico” also from the Lévy intensity measure.
The spectral detection by laser interferometry of the emitted gravitational 
wavelets needs to optically measure relative changes of length at the order
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of 10-21. This distance corresponds to the diameter of a hydrogen atom rel­
ative to the distance between Earth and Sun. The photon recycling technique 
uses the beam splitter and mirrors of a Michelson interferometer as test masses 
for the gravitons of spin 2. The Chern class involution provides an enhanced 
signal amplitude within the laser interferometer. As in the photon entanglement 
experiments, the directions of polarization with the conjugate isotropic lines as 
a reference frame are determined by the Laguerre phase formula of the geom­
etry of the complex projective plane CP2. Due to its interpretation in terms of 
the radial relativistic Doppler filter bank effect of multirate signal analysis or 
subband coding, the preceding reasoning demonstrates that the Laguerre phase 
formula is at the interface of quantum physics and the special theory of relativ­
ity. In particular, Planck’s hypothesis concerning the existence of the universal 
constant h is a direct consequence of the Third Keplerian Law of planetary 
motion. It confirms that this interface is a fascinating topic of projective metric 
geometry and mathematical physics with highly interesting relations to Kant’s 
epistemology, and the épistémologie metaphor of the “globus intellectualis” in­
troduced into philosophy by Lrancis Bacon. In geophilosophy, the earth is not 
one element among others but rather brings together all the elements within 
a single embrace while using one or another of them to deterritorialize ter­
ritory. Movements of deterritorialization are inseparable from territories that 
open themselves, and the process of reterritorialization is inseparable from the 
earth which restores territories. Territory and earth are two components with 
two zones of indescernibility: Deterritorialization from territory to the earth, 
and reterritorialization from earth to territory.
Lightlike straight lines represent information transmission channels. They pro­
vide the Lorentz transformations as a Lie group of rotational collineations 
the actions of which on the conformally invariant two-dimensional sphere
^ 2 n \u \ . §2 are based on the Litzgerald-Lorentz contraction. The relativis­
tic hodographs represent the traces of the rotational collineations of CP2.
A direct consequence of these relativistic reasonings is the gravitational red 
shift. The laboratory experiment by R. V. Pound and G. A. Rebka Jr (1960) as 
well as the maser experiment performed in a rocket by R. F. C. Yessot (1979) 
are in good agreement with the theoretically derived results.

6. The Metaplectic Representation

The two-fold covering group M p{2,M) of the real symplectic or special real 
linear group Sp(2,M) =  S L (2,M) exists because the fundamental group of 
S L (2, M) is the cyclic group Z. It contains the central subgroup Z2 isomorphic
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to the cyclic group Z/2Z of order 2 such that

M p( 2 ,R )/Z 2 =  Sp( 2,R)

and M p{2, R) is a non-trivial extension of Sp(2, R) by Z2 in the sense that it 
is not the direct product Sp(2,R) x Z2. One may regard the standard repre­
sentation p of G as a representation of the semidirect product of M p(2, R) and 
G.
The metaplectic representation u> of the metaplectic group

Z2 — > M p(2,R)
4

Sp( 2, R)

acts on the standard complex Hilbert space L2(R) as an irreducible unitary 
linear representation. Its normalization action is defined via the covariance 
identity

(V (à) p(g)cv (â) 1 =  p (a(g))

for all elements g G G where the basepoint projection à ^  a maps the meta­
plectic group M p (2,R) onto the base manifold Sp(2,R) =  5L(2,R). The 
point to note is that it is this mapping which indicates in the quantum telepor­
tation problem that antisymmetrically polarization-entangled photon pairs can 
reproduce quantum information transmitted instantaneously to a remote loca­
tion via EPR information transmission channels because to (à) where a  are 
phases in the subgroup 50(2 , R) of the group of automorphisms 5L(2,R) of 
G allows to perform instantaneously changes of the polarization state by an­
tisymmetric continuous phase shifts in the relativistic trajectories of a photon 
pair interferometer which preserves the moments. The fact that

Z/2Z — ► Mp{ 2,R)
I

5L(2, R)

forms a two-fold covering group of the real symplectic group Sp(2,R) — 
S L (2, R) implies via the Maslov index [58] a violation of Bell’s inequality for 
certain states of polarization.
Antisymmetrically polarization-entangled photon pairs cannot perfectly clone 
the information which has been transmitted [9] so that there is an aspect of 
undecidability in the transmission of quantum information to remote locations 
via EPR information transmission channels. Due to the non-cloning theorem, 
quantum physics is not in conflict with relativity theory, even for tachyons.
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Figure 4. Visualization of the global Frobenius reciprocity 
Quantum teleportation in a photon pair interferometer which preserves the moments. 
The EPR source spatially separates the quantum teleportation system into two remote 
subsystems. The photon trajectories of the left hand subsystem represent the preparing 
procedure of the spectral object. It allows to perform phase shifts by the action of the 
metaplectic representation w. The left hand side subsystem forms the cohomological 
aspect of the chirality experiment. Calcite crystals (C) are acting as double refracting 
polarizers which separate horizontally and vertically polarized photons. The photon 
trajectories on the right hand side represent the sandwich trace configuration of mirrored 
pairs of planar coadjoint orbits (0,y, 0 - u) which permit to acquire the phase shifts. 
The right hand side subsystem forms the cohomotopic aspect of the experiment. Both 
sides are non-locally coupled by the antisymmetric entanglement process of photonics 
(BS = beam splitter, D = detector).

In the quantum teleportation experiment, a transmitter, traditionally called Alice, 
is given a quantum state unknown to her. She also has one photon of a photon 
pair prepared in an EPR state by path entanglement. She performs a Bell 
measurement on the combined system consisting of the unknown state and her 
EPR photon, and then transmits the result of the measurement via a classical 
information channel to the receiver Bob, who has the second of the EPR photon 
pair. Depending on the result of the measurement, Bob performs one of the 
four possible unitary linear transformations on his photon and it will now be in 
the unknown state. If the preparer does not inform Alice about what quantum 
state he has prepared then there is no way she can find out what the quantum 
state actually is.
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7. Microwave Holography: Synthetic Aperture Radar Imaging

The synthetic aperture principle based on a small antenna simulating a larger 
one, can be regarded as a subcase of the broader range Doppler principle 
which is one of the basic pillars of microwave radar technology and relativistic 
radial measurements of the pulsar clockwork. The function of the antenna is 
to coherently detect the signal impinging on each element and to superimpose 
these signals by respecting their phases. For microwave SAR, the echo received 
at a particular aperture location results from energy transmitted from that known 
location in the aperture, that is, more information is received by the SAR 
hardware than for a real aperture radar (RAR) system [63]. It has been observed 
by Carl Wiley of the Goodyear Corporation in 1951 that the resolution for a 
microwave SAR is finer than the resolution for a RAR of equal aperture. His 
design is today referred to as squint mode SAR [20].

Figure 5. Simplified block diagram of a coherent radar system 
The oscillator group provides coherent signals via mixers which are indicated by the 
symbol <g>. In the receiver, the phase delay of —90 degrees implements the symplectic 
structure of the coadjoint orbit of holographic imagery fIF =  intermediate frequency, 
fRF — radio frequency, COHO = coherent oscillator, LO = local oscillator, STALO = 
stable local oscillator). The two output channels of the receiver feed A/D converters.

The most famous microwave holograms were formed without the process being 
thought of as a holographic method. Regarding the microwave SAR imaging 
process in combination with optical processing as microwave holography turns
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out to be immensely useful [38,40], If the record is treated as a photonic 
hologram [39], and illuminated with a beam of phase coherent radiation, the 
customary true and conjugate image fields obtain. Each field is an optical 
reconstruction, miniaturized by the scaling procedure, of the original radar 
field sensed by the radar receiver. Each image point is an optical image of an 
original object point which had been microwave radar illuminated, and having 
resolution corresponding to the full aperture generated by the scanning antenna. 
Thus the holographic procedure of remote sensing reconstructs in accordance 
with the synthetic aperture, not the actual one.

Figure 6. High resolution microwave radar image of the Baltimore-Washington In­
ternational (BWI) Airport obtained with a microwave SAR modality designed for an 
unmanned aerial vehicle. The holographic signal processing makes the resolution in­
dependent of the sensor’s altitude

The physical insight into microwave SAR imaging provided by the holographic 
viewpoint has led to ideas that otherwise would perhaps never been conceived. 
The tilted plane optical processor is one such example [38,40]. In contemporary 
microwave SAR imaging, the data processing is digitally performed [18,20]. 
Nevertheless the Heisenberg Lie group approach is still appropriate because its 
trace formulae [34] provide the interpretation of the cross-correlations as the
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coefficient functions of the representation class p <G G modulo C. Another 
consequence is the fact that the generation of chirp signals by the metaplectic 
representation ce of the metaplectic group M p(2,M), and the mixer devices 
play a dominant role in SAR hardware. It is common for a coherent radar to 
employ a quadrature mixer in which the intermediate frequency signal from 
the coherent oscillator is mixed with the intermediate frequency signal from the 
coherent oscillator shifted in phase by 90 degrees. Then the output is mixed 
with the analog signal at baseband. The next mixer combines the output with 
the stable local oscillator, the STALO in the radar jargon, to produce a low 
power version of the transmitted signal at the carrier frequency. The outputs 
of the baseband mixer are routed through video amplifiers and then sampled 
via A/D converters. The resulting digital signals, often called the video phase 
history, are used for subsequent signal processing.

Figure 7. Microwave SAR imaging of the Washington Monument 
It is a remarkable fact that the resolution is independent of the sensor’s altitude. There­
fore the figure does not look entirely like an optical image, nor should it. The radar 
shadow cast by the SAR itself is the most striking feature of the high resolution airborne 
microwave radar image.
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8. Clinical Magnetic Resonance Tomography

It should be observed that the diagnostic part of medicine has gone through 
a revolution in the last few decades, primarily due to the improvements in 
computer technology. The computationally supported diagnostic facilities have 
culminated in the clinical modality of MRI. Few techniques involving sophis­
ticated instrumentation have made so rapid an impact on medical diagnosis 
as has clinical MRI. Emerged as the most powerful diagnostic imaging tech­
nique in clinical practice, the MRI modality has rapidly replaced very invasive 
and less diagnostic methods such as pneumoencephalography, meyelography, 
and nuclear medicine brain scans. MRI is the premier clinical method for 
the diagnosis of disease in the central nervous system, because of its speed, 
noninvasiveness, and capability to create tomograms with exquisite contrast. 
Presently clinical MRI scanners are ubiquitous and able to cover the full range 
of all organs of the human body [23,51,59].
Although there are very few disorders for which the contributions of the MRI 
modality may not be important, its most valuable contribution lies in the field 
of neuroscience. Since early clinical applications of MRI, there has been a 
growing awareness of its unique role in the field of neurotology, in particular, 
and other fields related to laryngology, and head and neck surgery. MRI has 
shown its value in supplementing or at times replacing computed tomography 
(CT) in studying many otological problems. It has become an invaluable tool 
in studying neurotological disorders. MRI is the study of choice for evaluation 
of the membranous labyrinth, neurovascular structures of the internal auditory 
canal, posterior fossa, and central neurotological and vestibular disorders. Early 
experience with MR angiography quickly proved that it was superior to CT for 
assessing blood vessels. The capability for studying blood flow with MRI 
has led to the development of newer techniques such as flow compensation, 
radio frequency presaturation, three-dimensional MR angiography, sequential 
slice two-dimensional MR angiography, a combination of three-dimensional 
MR angiography and double-dose gadolinium enhanced MRI, and innovative 
techniques such as time resolved contrast enhanced MR angiography which 
markedly enhanced the field of MR angiography. MR angiography not only 
permits study of the vascular anatomy, but also shows vessel patency and direc­
tion of flow and quantifies flow velocities and volume. New developments to 
improve the precision for diagnosing pathological changes are ongoing. Neu­
rofunctional MRI and MR spectroscopy are being used in many clinical centers 
for functional and in vivo analysis of chemical characteristics of disease states 
[58,12],
In correspondence to the zero-dimensional absolute projective quadric <3?̂  r—>
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CP1 which consists of the conjugate cyclic points

*L  =  {M}

joined by the line at infinity of the complex projective plane CP2 and common, 
as a phase reference, to all circles of the symplectic affine plane R © R as well 
as to the relativistic hodogram, the traceless matrices

and

J  =
0 - 1
1 0

introduce the Fourier transformer PA and the Fourier cotransformer PA, re­
spectively. These transformers are acting on the complex Schwartz space 
<S(R) ^  L2(R) on the real line R. They are associated to the metaplec- 
tic representation to of the metaplectic group M p{2, R) via the normalization 
relations

Uj(J 1) — PlR , Cu(P) — ■

Thus the natural symplectic structure of the planar coadjoint orbits Ou {v /  0) 
and its orthogonality involution of conjugate lines in the complex projective 
metric plane CP2 gives not only rise to the real focal points of the elliptic, 
hyperbolic and parabolic motions and the axial direction of the Runge-Lenz 
vector associated to the dynamical system, but also to the Fourier transformer 
and co-transformer which correspond to the non-real foci of the elliptic and 
hyperbolic orbits in the Keplerian conchoid construction of the First Law of 
planetary motion [56,60],
The intertwiners exhibit x as a phase variable and y as a spatial frequency 
variable [54], The symplectic Fourier transformer

P"r® k =  P-r A P7«

is of order 2 instead of order 4 because only two lightlike isotropic tangents 
drawn from the conjugate cyclic points =  {i, i} to the one-dimensional 
absolute central projective quadric of special relativity

$oc ^  CP2

are activated. Besides the orthogonality involution of the rotational collineations 
of the complex projective plane CP2 which induce the group of Lorentz trans­
formations via the Fitzgerald-Lorentz contraction, it provides the filter bank 
implementation for the generation of the final image of observation [25].
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Figure 8. The spatio-temporal phase encoding gradient controls which row of the 
quantum hologram is collected, whereas the sampling of the induced voltage deter­
mines which data of each row is collected. The figure displays the spatio-temporal 
phase encoding gradient that controls the row, the data sampling during the spatio- 
temporal frequency encoding procedure that determines the position along the row, 
and the appearance of the MRI raw database forming the quantum hologram before 
its symplectic Fourier transform reconstruction. It is the phenomenon of the invisible 
time axis which solves the non-local binding problem of MRI by synchronization.

Figure 9. A full sampling of the quantum hologram allows a symplectic Fourier trans­
form reconstruction: The application of the symplectic Fourier transformer .Fr©r gen­
erates the final image. It is the phenomenon of time which solves the non-local binding 
problem of MRI by synchronization. In the hardware of clinical MRI scanners, the 
fast symplectic Fourier transformer is implemented by a special-purpose processor.
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Figure 10. High resolution clinical magnetic resonance tomography 
Sagittal cross-section of the neurocranium along the falx cerebri within the longitudinal 
interhemispheric fissure demonstrating midline sagittal neuroanatomy of the outwardly 
rounded gyri and inwardly invaginating fissures and sulci of the human brain. The 
various portions of the corpus callosum shown include the rostrum, genu, body and 
splénium, pineal gland, quadrigeminal plate, infundibulum, third and fourth ventricle, 
pituitary gland, cerebellar vermis, pons, aqueduct of Sylvius prepontine space, and cra­
niocervical junction. High resolution MRI scans approximate the same level of detail 
as cut specimens to depict neuroanatomy even in the deepest recesses of the brain.

An alternative encoding method to the symplectic Fourier transform MRI is 
wavelet encoding. Wavelet encoding approaches the resolution limit defined 
by the Fourier encoding procedure [45].
Finally, it should be emphasized that the idea of creating time by imaging is 
already in Kant’s “repraesentatio” of the phenomena. Actually, some of his 
ideas on physical time as explained in “De mundi sensibilis atque intelligibilis 
forma e tprincipiis” can be traced back to Leibniz, and even Platon’s philosophy 
of the phenomenon of time. It is the phenomenon of time which solves the 
non-local binding problem of imaging by synchronization.

9. The DNA Double Helix Configuration

Virtually all explicitly known solutions of Einstein’s field equations for physi­
cally plausible matter fields admit a high degree of dynamical symmetry. This 
holds for the Schwarzschild, Kruskal, and Kerr solutions [33,17]. Spherically 
symmetric spacetime manifolds provide excellent descriptions of non-rotating,
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isolated stars and therefore are of astrophysical interest. If the star rotates, the 
rotation axis breaks the dynamical symmetry.
The spectral detection of gravitational wavelets suggests to apply the geometry 
of the Heisenberg group G to cosmology [26]. From geometric control theory 
it is known that the Lie group G under its natural spatial metric serves as 
a paradigm for a Carnot-Carathéodory manifold exhibiting the role of non- 
holonomy. Its geodesic flow is defined by the Heisenberg helices [58]

( 1
— x ( l  — cos 2i:vt)  — y  s in  2irvt ( x 2+ y 2)(2iTut — s in  2 n v t )  \

2irv 2 (2  ttu) 2

0 1 x  s in  27Tvt — v ( l  — cos 2Trvt) t  e  R
2lTV

V o 0 1  /

The Heisenberg helices are, considered as geodesics of the sub-Riemannian 
geometry of G starting at the origin, the solutions of the associated Hamiltonian 
equations [58,57]. In molecular genetic information processing, their reflection 
corresponds to the concept of antiparallel stereochemical base complementarity 
in the (A • T; G • C) alphabet of nucleotide sequences, discovered by Erwin 
Chargaff in 1950 on the basis of Friedrich Miescher’s nucleic acid paradigm. 
The double helix model of the molecular structure of DNA discovered by 
Francis H. Crick and James D. Watson (Nobel prize 1962) finally emerges 
from the basic principle of antisymmetry of the Heisenberg helix which has 
its longitudinal counterpart in the Plancherel measure on the timelike center 
C c—> G, and its transversal counterpart in the Kähler metric of the complex 
projective hyperplane CP2 ^  CP3. Due to the antiparallel orientation of 
the base-pairing, the holographic transform of the nucleic acid information 
carriers provides the perfect semi-conservative replication process of molecular 
genetics.
Recently the energy stereochemically stored in the double DNA helix allowed 
to genetically construct mechanical machines at the nano scale such as a pair 
of DNA tweezers. The length of the complementary base-pairs of the double 
helices is less than 7 nm.

10. The Kruskal Diagram of Cosmology

The unit sphere is the image of a geodesically incomplete Lorentz invariant 
circular cylinder of radius r =  \ /x 2 +  y'2 under its combined stationary and 
axial symmetry actions. The minimizing geodesics supported by the circular 
energy cylinder derive from the classical isoperimetric problem of the Eu­
clidean plane M2. The pullback of the Einstein cylinder world lines or photon 
trajectories of relativity theory to the spheres in spacetime define the Kruskal 
coordinatized two-fold covered Minkowskian spacetime manifold of Clifford
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algebra C£(3 ,1,M) in which radial light rays everywhere have the slope ± 1. 
Because the one-dimensional absolute central projective quadric <1  ̂ ^  CP2 
is common to all Euclidean spheres of M3, an application of the canonical 
Kustaanheimo-Stiefel transformation of spinorial celestial mechanics [61,62], 
combined with the correct gravitational potential in the exterior region, directly 
yields the spherical symmetric two-fold covering of the Schwarzschild mani­
fold. Notice also that the geometry of the Kustaanheimo-Stiefel transformation 
implements the axial direction of the Runge-Lenz vector.
The canonical Kustaanheimo-Stiefel transformation exhibits to form an orbit 
under the natural conjugation action of the skew-field IHT on ^  <b^. The 
ensuing Kruskal manifold is invariant under the group of isometries 0(3, M) 
because the direct product 0(3, M) x 0(3, M) operates transitively on the com­
pact manifold of Keplerian orbits

§2 x § 2 ^ ! 6 .

Dynamical symmetry breaking then provides the axisymmetric Kerr solution 
of Einstein’s field equations mentioned above [13]. In view of the fact that the 
problem of determining the geodesic flow of the sub-Riemannian geometry of 
G reduces to the isoperimetric problem in the plane at infinity of the compact 
Kahler manifold CP2, this is another justification of the projectivization method 
of the complexified coadjoint orbit picture of G in quantum information theory.

Figure 11. The Kruskal coordinatized two-fold covered Minkowskian spacetime ma­
nifold displaying radial null geodesics as straight line trajectories inclined at 45°. The 
region in the Kruskal diagram covered by the Schwarzschild coordinate chart is shaded. 
The spatial metric is regular not only in the shaded area but in the entire area between 
the two branches of the hyperbola r =  0. This comprises two images of the exterior 
of the spherical singularity and two of its interior.
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damping [67], During the last 25 years of observations by Russel A. Hulse and 
Joseph H. Taylor (Nobel prize 1993) at the Arecibo Observatory Laboratory in 
Puerto Rico, a precession of the rotational axis of the radio pulsar PSR 1913+16 
have not been observed so that the direction of the axis is perpendicular to 
the orbital plane. Because the pulse trains are coherently emitted [35], their 
phase and frequency coordinates can be registered by the symplectic affine 
spinorial substrates of quantum holography inside VLA radio interferometers. 
The simplest relativistic model of the binary system is in good accord with the 
data if both the “visible” radio pulsar and the silent companion cold star have 
approximately the Chandrasekhar limiting mass, 1.4 solar masses [41].
Outstanding successes of general relativity theory are the quantitative explana­
tions of the precessions of the planetary perihelion as well as the motions of 
the periastron [21].

12. The Kaluza-Klein Model

One of the sad things about the hectic pace of modem science is that tmly 
valuable discoveries and insights of earlier ages get completely forgotten. This 
is very true of projective geometry. The conjugate cyclic points {i, i} discov­
ered by Jean Victor Poncelet (1788-1867) are common to all circles of the 
symplectic affine plane R © R having the compact Kähler manifold CP2 as the 
projectivization of its complexification. Because they give rise to the lightlike 
isotropic lines of any pencil of lines in the complex projective plane CP2, the 
zero-dimensional absolute projective quadric is capable to serve as a phase 
reference. Its real trace can be observed in the pulse train diagrams of the 59-ms 
binary radio pulsar PSR 1913+16 [35] received by VLA radio interferometers. 
The compact unit sphere S5 ^  R6 forms a circle bundle over CP2 and, by 
passing to the quotient, cuts down to the fundamental four-dimensional central 
Plticker quadric

W RP5

of the Kaluza-Klein model of the Minkowskian spacetime manifold [13]. It 
allows to include Maxwell’s laws of electrodynamics into a unified projective 
theory forming an interface of quantum theory and relativity theory, and to 
derive the Lorentz invariant Klein-Gordon equation. Conversely, the Einstein- 
Maxwell spinor [17] is invariant under the Lie group of rotational collineations 
of Lorentz transformations in CP2 which define via the Hopf fibration and the 
contragredient Hopf fibration the involution

Ox ^  e u
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implemented by the assignment

7 7 -

Figure 13. Visualization of the Klein-Kaluza model by spherical catenation. The one­
dimensional central projective quadric CP2 is common to all the spheres of the
periodic pencil of spheres. The plane represents the spacetime. One line of the plane 
represents the real axis of space, the perpendicular line represents the time axis.

The ensuing binary algorithm
spin up spin down

can be traced back to Gottfried Wilhelm Leibniz [22], Bundles of quadrics 
allow to include general relativity via the Einstein-Maxwell equations for the 
coupled fields of electromagnetism and gravitation [42], The transition in the 
Pauli sense from the real projective space MP3 to the four-dimensional Pliicker 
quadric T of the space MP5 shows that the Lévy stochastic process of the 
spectral flow is dual to the associated phase coherent quantum field. Because 
the Heisenberg uncertainty principle has as its dual the channel noise, quantum 
holography can be considered as a line geometric duality theory which is based 
on the antisymmetric entanglement procedure of photonics and includes Bohr’s 
complimentarity principle.
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13. The Nine Projective Metric Geometries of the Plane

The four-dimensional central projective quadric ^  CP5 as the absolute 
quadric of the Kaluza-Klein model allows to define the various projective 
metric geometries of the real plane. The following list provides a classification 
of the nine projective metric geometries to be realized by the real plane [42,47],

c u r v a tu r e  p o s i t iv e ,  

n o  p a r a l le l  l in e s ,  

p o le s  h a v e  

n o  r e a l  t a n g e n t

c u r v a tu r e  z e r o ,  

o n e  p a r a l le l  l in e ,  

p o le s  h a v e  

o n e  t a n g e n t

c u r v a tu r e  n e g a t iv e ,  

s e v e r a l  p a r a l le l  l in e s ,  

p o le s  h a v e  

tw o  r e a l  ta n g e n ts

p o la r s  n<t>oo =  0
e l l ip t i c

g e o m e tr y

E u c l id e a n

g e o m e tr y

h y p e r b o l i c

g e o m e tr y

p o la r s  n4>oo =  a b s o lu te  p o le
a n t i - E u c l id e a n

g e o m e tr y

G a l i le a n

g e o m e tr y
a n t i - M in k o w s k ia n

g e o m e tr y

p o la r s  n4>oo — tw o  p o in ts
a n t i - d e  S i t te r M in k o w s k ia n d e  S i t t e r

w o r ld w o r ld w o r ld

In the plane M © M there are three Cayley-Klein geometries, the Euclidean, 
Galilean, and Minkowskian geometries with a parabolic measure of distance. 
The hyperbolic plane geometry can be realized by the Klein model of non- 
Euclidean plane. In the Minkowski plane geometry, all points have a common 
polar, the horizon connecting the conjugate cyclic points. The Milne cosmos 
carries the metric of the Minkowskian world, whereas the de Sitter cosmos 
can be equipped with the Friedman-Robertson-Walker metric to model the flat 
exponentially expanding cosmos, the positively curved contracting or expanding 
cosmos, or the negatively exploding cosmos [33]. Its singularity would imply 
that the universe had a beginning a finite time ago.

14. Visualizations of the de Sitter Worlds

Shortly after Einstein proposed the static model in 1917, de Sitter pointed 
out that the general relativistic field equations permitted the description of 
a second model. This was an expanding model of a spacetime manifold of 
constant curvature. Due to Hubble’s discovery, the interest revived in it in the 
late 1920s. Recently it has regained interest in the context of the holographic 
principle and string theory [68],
The four-dimensional central projective quadric in the complex projective 
space CP5 allows to visualize the geometries of the de Sitter cosmos as well 
as the anti-de Sitter cosmos. The Minkowski manifold, de Sitter manifold, and



Quantum Hologram and Relativistic Hodogram 145

anti-de Sitter manifold are all special cases of the Friedman-Robertson-Walker 
spaces. These spaces form a good approximation to the large scale geometry 
of spacetime manifold that can be observed [33],

Figure 14. Exponentially expanding de Sitter cosmos of flat sections 
The cosmological expansion is visualized by a ruled hyperboloid. Its projection onto 
a plane is also displayed. The absolute projective quadric is a hyperbola which meets 
the timelike lines.

Figure 15. Contracting and expanding de Sitter cosmos with spatial sections of positive 
curvature. The pencil of timelike lines is carried by a point at infinity. In this case the 
curves of constant cosmological time are hyperbolas.
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Figure 16. Expanding de Sitter cosmos with spatial sections of negative curvature. The 
projection of the hyperboloid onto a plane is also drawn. The pencil of timelike lines 
is carried by a point inside the world.

Figure 17. Expanding and contracting anti-de Sitter cosmos. The spatial sections have 
negative curvature. The absolute projective quadric forms a hyperbola which does not 
meet the timelike lines.
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