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Abstract. We consider the Caudrey-Beals-Coifman linear problem and the
theory of the Recursion Operators (Generating Operators) related to it in the
presence of Zp reduction of Mikhailov type

1. Introduction

1.1. The Generalized Zakharov-Shabat and Caudrey-Beals-Coifman
Systems

As it is well known nonlinear evolution equations (NLEEs) of soliton type are
equations (systems) that can be written into the form [L,A] = 0 (Lax represensta-
tion) where L,A are linear operators on ∂x, ∂t depending also on some functions
qα(x, t), 1 ≤ α ≤ s (called potentials) and the spectral parameter λ. The corre-
sponding system is of a course system of partial differential equations on qα(x, t).
Usually the equation is a part of a hierarchy of NLEEs related to Lψ = 0 (auxiliary
linear problem) which consists of the equations that can be obtained by changing
A and fixing L, [7, 15]. The soliton equations possess many interesting proper-
ties but for our purposes we shall mention only that they can be solved explicitly
through various schemes, most of which share the property that the Lax represen-
tation permits to pass from the original evolution to the evolution of some spectral
data related to the problem Lψ = 0. The Caudrey-Beals-Coifman (CBC) sys-
tem, called the Generalized Zakharov-Shabat (GZS) system in the case when
the element J is real, is one of the best known auxiliary linear problems

Lψ = (i∂x + q(x)− λJ)ψ = 0. (1)
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The system has a long history of study and generalizations see [2–6,29,30], finally
it has been realized that one can assume that q(x) and J belong to a fixed simple
Lie algebra g in some finite dimensional irreducible representation, [17]. Then the
element J should be regular, that is ker(adJ) (adJ(X) ≡ [J,X], X ∈ g) is a
Cartan subalgebra h ⊂ g and q(x) should belong to the orthogonal complement
h⊥ ≡ ḡ of h with respect to the Killing form: ⟨X,Y ⟩ = tr(adX adY ), X,Y ∈ g.
Thus q(x) =

∑
α∈∆ qα(x)Eα where Eα are the root vectors, ∆ is the root system

of g with respect to h. (We use notation and normalizations as in [20].) The scalar
functions qα(x) are defined on R, are complex valued, smooth and tend to zero
as x → ±∞. We shall assume that they are Schwartz-type functions. Classical
Zakharov-Shabat system is obtained for g = sl(2,C), J = diag(1,−1).

1.2. The AKNS Approach to the Soliton Equations

Let us construct the so-called adjoint solutions of the system L, that is functions of
the type w = mXm−1 where X = const, X ∈ g and m is fundamental solution
of Lm = 0. They satisfy the equation

[L,w] = (i∂xw + [q(x)− λJ,w]) = 0.

Let wa = π0, wd = (id−π0)w where π0 is the orthogonal projector (with respect
to the Killing form) of w over h⊥ and h respectively. We cannot go in detail into
the AKNS approach, its history and generalizations, we just mention the seminal
work [1] according to which the approach has been named and refer to [15] for all
the details. Very roughly speaking the main facts are the following

• If a suitable set of adjoint solutions (wi(x, λ))i is taken, for λ on the spec-
trum of L the functions wa

i (x, λ) form a complete set in the space of poten-
tials q(x).

• If one expands the potential over (wi(x, λ))i as coefficients one gets the
minimal scattering data for L.

2. Recursion Operators

Relation to the expansions over adjoint solutions. From the above follows that
passing from the potentials to the scattering data can be considered as Generalized
Fourier Transform(GFT). For it the functions wa

i (x, λ) play the role the expo-
nents play in the Fourier transform. The Recursion Operators (Generating Op-
erators, Λ-operators) are the operators for which the adjoint solutions wa

i (x, λ)
introduced above are eigenfunctions and therefore for the GFT they play the same
role as the differentiation operator in the Fourier transform method.
For the above reason recursion operators are theoretical tools containing most of
the information about the NLEEs associated withL. Through them can be obtained
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i) The hierarchies of the nonlinear evolution equations solvable through L.
ii) The conservation laws for these NLEEs.

iii) The hierarchies of Hamiltonian structures for these NLEEs.

It is not hard to get that the recursion operators related to L have the form

Λ±(X(x)) = ad−1
J

i∂xX + π0[q,X] + i adq

x∫
±∞

(id−π0)[q(y), X(y)]dy

 (2)

where of course adq(X) = [q,X] andX is a smooth, fast decreasing function with
values in h⊥.
Relation to recursion identities. The name recursion operators has the following
origin. If for the NLEEs such that [L,A] = 0 the operator A is of the form

A = i∂t +

n∑
k=0

λkAk, An ∈ h, An = const, An−1 ∈ h⊥

then first An−1 = ad−1
J [q,A] and for 0 < k < n − 1 one gets the recursion

relations

π0Ak−1 = Λ±(π0Ak), (id−π0)Ak = i(id−π0)
x∫

±∞

[q, π0Ak](y)dy. (3)

Moreover, the NLEEs related to L can be written into one of the two forms

iad−1
J qt + Λn

±
(
ad−1

J [An, q]
)
= 0. (4)

Thus the recursion operators could be introduced also algebraically as the operators
solving the above recursion relations.
Geometric Interpretation. The recursion operators have interesting geometric
interpretation as dual objects to a Nijenhuis tensorsN on the manifold of potentials
on which it is defined a special geometric structure, Poisson-Nijenhuis structure
[15, 22]. The corresponding NLEEs are fundamental fields of that structure.
Summarizing, the recursion operators have three important aspects

• They appear naturally by considering the recursion relations arising from
the Lax representations of the NLEEs related with L.

• In the generalized Fourier expansions they play the role similar of the role
of differentiation in the Fourier expansions.

• Their adjoint operators are Nijenhuis tensors for some special geometric
structure on the manifold of potentials - Poisson-Nijenhuis structures.

In this work we shall discuss the implications of the Mikhailov-type reductions
on the theory of recursion operators. The topic has been considered recently in
several papers, for example [12–14, 25–27]. The case treated in these papers is
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of the CBC system in pole gauge. The CBC system in canonical gauge (the one
we discuss now) subject to reductions has been considered earlier. For example,
in [18, 19] were investigated the implications to the scattering data. In [16] the
recursion operators in the presence of reductions has been considered from spectral
theory viewpoint. General result about the geometry of the recursion operators for
L in canonical gauge is presented in [28]. From the other side, though there are
number of papers treating what happens with the spectral expansions related with
the recursion operators in concrete situations with Zp reductions, there has been no
general treatment and we shall try to fill this gap.

3. Fundamental Solutions to the CBC System

If q(x) =
∑

α∈∆ qα(x)Eα we define: ∥q∥1 =
∑
α∈∆

+∞∫
−∞

|qα(x)|dx. Potentials for

which ∥q∥1 < ∞ form a Banach space L1(ḡ,R). Some important facts about the
solutions of (1) with q ∈ L1(ḡ) in some irreducible matrix representation defined
on a space V are obtained in [17]. We remind them in this and the next section.
Let m(x, λ) = ψ(x, λ) exp iλJx where ψ satisfies CBC system. Then

i∂xm+ q(x)m− λJm+ λmJ = 0, lim
x→−∞

m = 1V . (5)

Theorem 1. Suppose that for a fixed λ the bounded fundamental solutionm(x, λ),
satisfying the equation (5) exists. Suppose that λ does not belong to the bunch of
straight lines Σ = ∪α∈∆lα where

lα = {λ ; Im(λα(J)) = 0}. (6)

Then the solutionm(x, λ) is unique. (In the above Im denotes the imaginary part.)

The connected components of C \Σ are open sectors in the λ-plain. In every such
sector either Im[λα(J)], α ∈ ∆ is identically zero or it has the same sign. We
denote these sectors by Ων and order them anti-clockwise. Clearly ν takes values
from one to some even number 2M . The boundary of the sector Ων consists of two
rays - Lν and Lν+1 (Lν comes before Lν+1 when we turn anti-clockwise) so that
Ω̄ν ∩ Ω̄ν−1 = Lν . Of course, we understand the number ν modulo 2M .
For small potentials (∥q∥1 < 1) in any representation of g there is no discrete
spectrum and in each sector Ων there exists unique fundamental solution mν(x, λ)
of (5), analytic in λ. The solution admits extension by continuity to the boundary
of Ων , that is to the rays Lν and Lν+1. For potentials that are not small the typical
approach is to consider potentials on compact support and then to pass to Lebesgue
integrable potentials. The situation is complicated, there is discrete spectrum etc.,
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[17]. For our purposes however we shall limit ourselves to the situation when there
is no discrete spectrum.

4. Expansions Over Adjoint Solutions

We first define in each Ων analytic solutions χν(x, λ) of equation (1)

mν(x, λ) = χν(x, λ)e
iλJx (7)

and then we set

eνα(x, λ) = π0(χν(x, λ)Eαχ
−1
ν (x, λ)), λ ∈ Ω̄ν . (8)

This notation is better to be changed because for λ ∈ Lν it will be good to retain
the index ν to refer to the ray Lν . Then it becomes necessary to distinguish from
which sector the solution is extended. So for λ ∈ Lν we shall write e(+;ν)

α (x, λ)

if the solution is extended from the sector Ων−1 and e(−;ν)
α (x, λ) if the solution is

extended from the sector Ων . In other words, for λ ∈ Lν

eν;+α (x, λ) = π0(χν−1(x, λ)Eαχ
−1
ν−1(x, λ)) (9)

eν;−α (x, λ) = π0(χν(x, λ)Eαχ
−1
ν (x, λ)).

In order to write the completeness relations, let is denote

Π0 =
∑
γ∈∆

| γ⟩⟨γ |
γ(J)

, δ±ν = ∆±
ν ∩ δν (10)

δν = {α ∈ ∆ ; Im(λα(J)) = 0 for λ ∈ Lν}. (11)

Let us also assume that the rays Lν are oriented from 0 to ∞. Then the complete-
ness relations (no discrete spectrum) amount to the formula

Π0δ(x− y)

=
1

2π

2M∑
ν=1

∫
Lν

dλ{
∑
α∈δ+ν

[e(−;ν)
α (x)⊗ e

(−;ν)
−α (y)− e

(+;ν)
−α (x)⊗ e(+;ν)

α (y)]} (12)

where we have omitted the dependence on λ in order to be able to write the relation
(12) more nicely. The above formula should be understood in the following way:
first, it is assumed that g∗ is identified with g, assuming that the pairing is given by
the Killing form. So for example, for X,Y, Z ∈ g making a contraction of X ⊗ Y
with Z on the right we obtain X⟨Y,Z⟩ and making contraction on the left we get
⟨Z,X⟩Y . Next, the formula for Π0 implies that making a contraction with Π0 on
the right we get Π0X = ad−1

J π0X and similarly on the left XΠ0 = − ad−1
J π0X .

(On the space ḡ the operator adJ is invertible.) Finally, if we have a L1-integrable
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function h : R 7→ ḡ then making a contraction of adJ h = [J, h] with (12) from
the right (left) and integrating over y from −∞ to +∞ we get

h(x) =
ϵ

2π

2M∑
ν=1

∫
Lν

{
∑
α∈δ+ν

[e(−;ν)
ϵα (x)⟨⟨e(−;ν)

−ϵα , [J, h]⟩⟩

− e(+;ν)
ϵα (x)⟨⟨e(+;ν)

−ϵα , [J, h]⟩⟩]}dλ. (13)

We have two expansions here for ϵ = +1 and ϵ = −1 and we adopted the notation

⟨⟨e(±;ν)
α , [J, h]⟩⟩ =

+∞∫
−∞

⟨e(±;ν)
α (x), [J, h(x)]⟩⟩dx. (14)

We must make some comments here

1. It can be shown that the expansion (13) converges in the same sense as the
Fourier expansions for h(x). These are the so-called Generalized Fourier
Expansions and the functions e±;ν

α (x, λ) are the Generalized Exponents.
When one expands over the Generalized Exponents the potential q(x) one
gets as coefficients the minimal scattering data.

2. One can prove that

(Λ− − λ)e(−;ν)
α = 0, (Λ− − λ)e

(+;ν)
−α = 0, α ∈ δ+ν (15)

(Λ+ − λ)e
(−;ν)
−α = 0, (Λ+ − λ)e(+;ν)

α = 0, α ∈ δ+ν (16)
and therefore the expansions (13) are in fact the spectral decompositions for
the operators Λ− and Λ+, that is they play for these expansions the role that
i∂x plays for the Fourier expansion.

5. Zp Reductions in the CBC System Defined by an Automorphism

We shall consider now special type of linear problems of the type (1) in which the
potential function q(x) and the element J obey some special requirements resulting
from Mikhailov-type reductions, [21, 23, 24]. We shall consider the case when the
Mikhailov reduction group G0 is generated by one element, which we denote by
H . It acts on the fundamental solutions in the following way

H(ψ(x, λ)) = K(ψ(x, ω−1λ)) (17)

where ω = exp
2πi

p
and K is automorphism of order p of the Lie group correspond-

ing to the algebra g. K generates an automorphism of g which we shall denote by
the same letter K. We shall require in the above situation that the automorphism
leaves invariant the Cartan subalgebra h ⊂ g to which the element J in the CBC
system belongs. We proceed with some general remarks and technical results.
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1. Suppose K is an automorphism of g and Kp = id, Kh ⊂ h. (In case
of Coxeter automorphisms p is the Coxeter number.) The Coxeter auto-
morphisms are internal that is each K is internal and can be represented as
K = Ad(K), K belonging to the corresponding group G with algebra g.

2. The automorphisms leave the Killing form invariant, a fact that we shall use
constantly.

3. The algebra g splits into a direct sum of eigenspaces of K, that is

g = ⊕p−1
s=0g

[s] (18)

where for each X ∈ g[s] we have KX = ωsX and the spaces g[s], g[k] for
k ̸= s are orthogonal with respect to the Killing form.

4. Because K leaves h invariant, it leaves invariant also the orthogonal com-
plement ḡ of h. Thus each g[s] splits into ḡ[s] ⊕ h[s] and

ḡ = ⊕p−1
s=0 ḡ

[s], h = ⊕p−1
s=0h

[s]. (19)

The spaces ḡ[k] and h[s] are orthogonal for arbitrary k and s. We shall denote
the projectors over the space ḡ[k] by π[s]0 .

After the above preliminaries, let us assume that the set of fundamental solutions
for the spectral problem (1) is invariant under G0. Then as it is easy to see that we
must have

K(J) = ωJ, Kq = q (20)

that is, J ∈ g[1], q(x) ∈ g[0]. In fact, suppose we have a Lax representation
[L,A] = 0 where A has the form

A = i∂t +
n∑

k=0

λkAk, An ∈ h, An = const, An−1 ∈ ḡ.

If the common fundamental solutions for Lψ = 0, Aψ = 0 are invariant under G0

then we also have

K(As) = ωsAs, s = 0, 1, 2, . . . n. (21)

The above reductions are compatible with the evolution in the sense that if at the
moment t = 0 we have (20), (21) we have the same relations at arbitrary moment t.
The invariance of the set of the fundamental solutions can be additionally specified
if we take the solutions mν(x, λ) defined in the sectors Ων , ν = 1, 2, . . . 2M
defined by the straight lines lα = {λ ; Im(λα(J)) = 0, α ∈ ∆}. (Of course, one
obtains the same line for α and −α but it can happen that α ̸= β and lα = lβ .)
Taking into account the uniqueness of the solutionsm(x, λ) we get that K(m(x, λ))
is equal to m(x, ωλ). Consequently, we obtain that

K(χ(x, λ)) = K(m(x, λ)e−iJxλ) = m(x, ωλ)e−iJxωλ = χ(x, ωλ) (22)
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is analytic in ωΩν . If lα, lβ form the boundary of Ων then ωlα, ωlβ are the straight
lines defining the boundary of ωΩν .

Let us define K̂ : h 7→ h by K̂ = (K∗)−1. The map K̂ defines the coadjoint action
of K on h∗. Naturally K̂p = id and

⟨K̂ξ,KH⟩ = ⟨ξ,H⟩, ξ ∈ h∗,H ∈ h. (23)

It is a general fact from the theory of the automorphisms is that for all roots we have
KEα = q(α)EK̂α, where q(α) = ±1, q(α)q(−α) = 1, q(α)q(β) = q(α + β) if
α + β ∈ ∆. One easily gets that ωlα = lK̂−1α. Thus we have an action of the
automorphism K (the group Zp) on the bunch of lines {lα}α∈∆ defined by K̂−1

and similarly the action on the set of sectors Ων , ν = 1, 2, . . . , 2M . We have

Proposition 2. The representatives from the different orbits of Zp on the set of
sectors Ων , ν = 1, 2 . . . , a can be taken to be adjacent, which we shall always
assume.

6. Expansions in Presence of Reductions Defined by Automorphisms

6.1. Zp Reductions of General Type

Consider the general case of automorphism K of order p, let Ω1, Ω2,...,Ωa be the
fundamental sectors (moving anticlockwise when we go from Ω1 to Ωa) and let
us label the rays that form the boundaries of the sectors in such a way that Ων

is locked between the rays Lν and Lν+1 that are oriented from zero to infinity.
Since multiplication by ωp is identity (turning by angle 2π) the number of sectors
is 2M = pa. Multiplying by ω we get from the sector Ων the sector Ωa+ν and
multiplying by ω2M we get again Ων so we shall understand the labels modulo 2M .
Naturally, La+ν = ωLν . For each α ∈ ∆ we have K(Eα) = q(α)EK̂α, where
q(α) are numbers, such that q(α) = ±1, q(α)q(−α) = 1 and q(α)q(β) = q(α+β)
if α+ β ∈ ∆. It is not hard to obtain that

[K ◦ π0](χν(x, λ)Eαχ
−1
ν (x, λ)) = π0(χν+a(x, ωλ)K(Eα)χ

−1
ν+a(x, ωλ))

= q(α)π0(χν+a(x, ωλ)EK̂αχ
−1
ν+a(x, ωλ))

and as a consequence

K(eνα(x, λ)) = q(α)eν+a

K̂α
(x, ωλ). (24)
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Changing the variables for the integrals over the rays that do not belong to the set
{L1, L2, . . . La} we transform expansion (12) into

Π0 δ(x− y) =
1

2π

a∑
ν=1

p∑
k=1

∫
Lν

{
∑
α∈δ+ν

[ωkKk ⊗Kk(e(−;ν)
α (x)⊗ e

(−;ν)
−α (y))

(25)

−
∑

ωkKk ⊗Kk(e
(+;ν)
−α (x)⊗ e(+;ν)

α (y))]}dλ

where (K ⊗ K)(X ⊗ Y ) = K(X) ⊗ K(Y ). Note that the numbers q(α) do not
appear any more, this occurs because we apply K always on products of the type
Eα ⊗ E−α. The rays Lν are orientated from 0 to ∞ and the index ν is understood
modulo a.
The expansions of a function h(x) over the adjoint solutions can be simplified
further, if for arbitrary x the value h(x) ∈ g[s], where g[s] is the eigenspace corre-
sponding to the eigenvalue ωs. As the Killing form is invariant with respect to the
action of the automorphism, we get

⟨Kk(eνα(x, λ)), [J, h(x)]⟩ = ⟨eνα(x, λ),K−k([J, h(x)])⟩

= ω−k(s+1)⟨eνα(x, λ), [J, h(x)]⟩.

The expansions over the adjoint solutions run as follows

h(x) =
ϵ

2π

a∑
ν=1

∫
Lν

{
∑
α∈δ+ν

[

p∑
k=1

ω−ksKk(e(−;ν)
ϵα (x, λ))⟨⟨e(−;ν)

−ϵα , [J, h]⟩⟩

−
p∑

k=1

ω−ksKk(e
(+;ν)
−ϵα (x, λ))⟨⟨e(+;ν)

ϵα , [J, h]⟩⟩]}dλ. (26)

Actually here we have two expansions, one for ϵ = +1 and the other for ϵ = −1
and the index ν is understood modulo a.Thus we see that h(x) is expanded over
the functions

e(±;ν;s)
α (x, λ) =

p∑
k=1

ω−ksKk(e(±;ν)(x, λ)) ∈ g[s], ν = 1, 2, . . . , a (27)

since for arbitrary X ∈ g we have
∑p

k=1 ω
−ksKk(X) ∈ g[s]. We shall denote by

e
(ν;s)
α (x, λ) the expressions

e
(ν;s)
α (x, λ) =

p∑
k=1

ω−ksKk(eνα(x, λ)), λ ∈ Ων . (28)

Clearly, e(±;ν;s)
α (x, λ) are just the limits of e(ν−1;s)

α (x, λ) and e(ν;s)α (x, λ) when λ
approaches one of the rays Lν from one or the other side. If as before h(x) ∈ g[s],
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we get ⟨e(ν;s+1)
α (x, λ), [J, h(x)]⟩ = p⟨eνα, [J, h(x)]⟩ and the expansions (26) can

be cast into the form

h(x) =
ϵ

2πp

a∑
ν=1

∫
Lν

{
∑
α∈δ+ν

[e(−;ν;s)
ϵα (x, λ)⟨⟨e(−;ν;s+1)

−ϵα , [J, h]⟩⟩

(29)

−e(+;ν;s)
−ϵα (x, λ))⟨⟨e(+;ν;s+1)

+ϵα , [J, h]⟩⟩]}dλ.

(As before we have two expansions, for ϵ = +1 and for ϵ = −1.)

6.2. Coxeter Automorphisms Reductions

Coxeter automorphisms are the automorphisms for which

K̂ = Sα1Sα2 . . . Sαr , Kp = id, p− the Coexter number

and Sαi are the Weyl reflections corresponding to the simple roots α1, α2, . . . αr

of g. We are able to prove the following

Theorem 3. Assume we have the CBC problem for the classical series of simple
Lie algebras and the Zp reduction is defined as in the above using the Coxeter
automorphism K. Then we have two adjacent fundamental sectors of analyticity
for the fundamental analytic solutions mν(x, λ) and they can be chosen to be

Ω0 = {λ ;
π

2
< arg(λ) <

π

2
+
π

p
}

Ω1 = {λ ;
π

2
+
π

p
< arg(λ) <

π

2
+

2π

p
}.

(30)

For a reduction defined by Coxeter automorphism of order p on some fixed algebra
from the classical series of simple Lie algebras the expansion we considered spec-
ify even further. First, for the sake of symmetry we label the fundamental sectors
by 0 and 1, that is they are Ω0 and Ω1 (as in the above). Their boundaries are
formed by the rays L0, L1, L2. Next, if α ∈ δ+ν then

• ν = 2k leads to K̂−kα ∈ δ+0 = δ+2p

• ν = 2k + 1 leads to K̂−kα ∈ δ+1 .

The completeness relations we have considered, namely the general formula (25)
and the expansions (26),(29) can be written easily for the case of Coxeter automor-
phism reduction. The only thing one needs to do is not to sum over ν instead from
1 to a but from 0 to 1. Of course, p is then the Coxeter number.
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7. Recursion Operators and Zp Reductions Related to
Automorphisms

7.1. Algebraic Aspects

When we have Zp reductions of the type we consider the algebra splits in a direct
sum, see (18) and q ∈ g[0] while J ∈ h[1]. In particular, this means that

adJ(ḡ
[s]) ⊂ ḡ[s+1], ad−1

J (ḡ[s]) ⊂ ḡ[s−1] (31)

(the superscripts are understood modulo p.) Also, if X ∈ ḡ[s] then ∂xX ∈ ḡ[s],
∂−1
x X ∈ ḡ[s], [q,X] ∈ ḡ[s] and

Λ±X = ad−1
J {i∂xX + π0[q,X] + adq ∂

−1
x (1− π0)[q,X]} ∈ ḡ[s−1]. (32)

If we use the projectors π[s]0 introduced earlier the above expression can also be
written as

Λ±X = ad−1
J {i∂x + π0 adq +adq ∂

−1
x (1− π0) adq}π[s]0 X. (33)

Further on we will denote

• by F(ḡ) the space of smooth, rapidly decreasing ḡ-valued functions.
• by F(ḡ[s]) the space of smooth, rapidly decreasing ḡ[s]-valued functions.

• by Λ±;s the operator Λ±π
[s]
0 , that is Λ±;sX = Λ±X if X ∈ F(ḡ[s]).

The spaces F(ḡ[s]) are mapped by Λ± and are invariant under the action of Λp
±

Λ±|F(ḡ[s]) = Λ±;s|F(ḡ[s]), Λ±;sF(ḡ
[s]) ⊂ F(ḡ[s−1]). (34)

Also
Λp
±|F(ḡ[s] = Λ±;s−p+1 . . .Λ±;s−1Λ±;s (35)

and the indexes are understood modulo p. In particular

Λp
±|F(ḡ[0]) = Λ±;1 . . .Λ±;p−2Λ±;p−1Λ±;p. (36)

Recall that the recursion operators arise naturally when looking for the NLEEs that
have Lax representation [L,A] = 0 with L being the CBC system operator and A
is the form

A = i∂t +

n∑
k=0

λkAk, h ∋ An = const, An−1 ∈ ḡ. (37)

Then from [L,A] = 0 we first obtain An−1 = ad−1
J [q, A] and next for 0 < k <

n− 1 the recursion relations π0Ak−1 = Λ±(π0Ak) and the NLEEs (4).
Assume that we have Zp reduction. Then q ∈ ḡ[0], J ∈ h[0] and we must have
K(As) = ωsAs. Assume that An ∈ h[n]. Then An−1 ∈ ḡ[n−1] and we see that
As ∈ g[s]. Therefore the reduction requirements will be satisfied automatically
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when we choose An ∈ h[n]. Since n is a natural number let us write it into the
form n = kp+m where k, p,m are natural numbers and 0 ≤ m < p. Then

Λn
± ad−1

J [An, q] = Λkp
± Λm

± ad−1
J [An, q]

= (Λ±;0 . . .Λ±;p−2Λ±;p−1)
k Λ±;0 . . .Λ±;m−2Λ±;m−1 ad

−1
J [An, q].

Starting from the works [8,9] it is frequently said that when reductions are present
the recursion operator becomes of higher order in the derivative ∂x and factorizes
into a product of first order operators with respect to ∂x. The above has been used
by some authors to justify the claim that the recursion operatorsR± in the presence
of Zp reduction factorize to become

R± = Λ±;0 . . .Λ±;p−2Λ±;p−1. (38)

To our opinion more accurate would be simply to say that they are restrictions of
the recursion operator in general position on some subspaces

Λ±;0 Λ±;p−1 Λ±;1

F(ḡ[p]) = F(ḡ[0]) → F(ḡ[p−1]) → . . . → F(ḡ[0]) = F(ḡ[p]).
(39)

The above shows that the role of the recursion operators in case of Zp reductions
is taken now by Λp

±. This view is supported also by the geometric picture, [28],
since the operators (Λp

±)
∗ are also Nijenhuis tensors.

7.2. Expansions Over Adjoint Solutions

Let us see how the operators we introduced act on the set of functions (27), (28)
over which the expansions (26) are written. Using the properties of the automor-
phism K (the fact that it commutes with the projection π0 on h) and the facts that
Kq = q and KJ = ωJ we easily get

Lemma 4. If K is an automorphism of order p defining the Zp reduction then

Λ± ◦ K = ωK ◦ Λ±. (40)

As a consequence
Λp
± ◦ K = K ◦ Λp

±. (41)

Then for λ ∈ Ων we immediately obtain

Λ±e
(ν;s)
α (x, λ) = λ

p∑
k=1

ω−k(s−1)KkΛ±(e
ν
α(x, λ)) = λe

(ν;s−1)
α (x, λ). (42)

After some calculations we get that

Λ−e
(−;ν;s)
α = λe(−;ν,s−1)

α , Λ−e
(+;ν,s)
α = λe(+;ν.s−1)

α , α ∈ δ+ν (43)

Λ+e
(−;ν,s)
−α = λe

(−;ν,s−1)
−α , Λ+e

(+;ν,s)
α = λe(+;ν,s−1)

α , α ∈ δ+ν . (44)
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As a corollary

Λp
−e

(−;ν;s)
α = λpe(−;ν,s)

α , Λp
−e

(+;ν,s)
−α = λpe

(+;ν.s)
−α , α ∈ δ+ν (45)

Λp
+e

(−;ν,s)
−α = λpe

(−;ν,s)
−α , Λp

+e
(+;ν,s)
α = λpe(+;ν,s)

α , α ∈ δ+ν (46)

and we have

Theorem 5. For the expansions (26) the role of the recursion operators are played
by the p-th powers of the operators Λ±.

8. Conclusions

• The above considerations show that both from recursion relations viewpoint
and expansion over adjoint solutions viewpoint the role of the recursion
operators in case of Zp reductions is played by the operators Λp

±.
• The same conclusion is drawn from the geometric considerations [28] so the

theory now is complete in all aspects - algebraic, spectral and geometric.
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