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CHAPTER III

Universal Enveloping Algebra

Abstract. For a complex Lie algebrag, the universal enveloping algebraU (g) is an
explicit complex associative algebra with identity having the property that any Lie algebra
homomorphism ofg into an associative algebraA with identity “extends” to an associative
algebra homomorphism ofU (g) into A and carrying 1 to 1. The algebraU (g) is a quotient
of the tensor algebraT (g) and is a filtered algebra as a consequence of this property. The
Poincaré–Birkhoff–Witt Theorem gives a vector-space basis ofU (g) in terms of an ordered
basis ofg.

One consequence of this theorem is to identify the associated graded algebra forU (g)

as canonically isomorphic to the symmetric algebraS(g). This identification allows the
construction of a vector-space isomorphism called “symmetrization” fromS(g) ontoU (g).
Wheng is a direct sum of subspaces, the symmetrization mapping exhibitsU (g) canonically
as a tensor product.

Another consequence of the Poincar´e–Birkhoff–Witt Theorem is the existence of a free
Lie algebra on any setX . This is a Lie algebraF with the property that any function from
X into a Lie algebra extends uniquely to a Lie algebra homomorphism ofF into the Lie
algebra.

1. Universal Mapping Property

Throughout this chapter we suppose thatg is a complex Lie algebra.
We shall be interested only in Lie algebras whose dimension is at most
countable, but our discussion will apply in general. Usually, but not always,
g will be finite dimensional. When we are studying a Lie groupG with
Lie algebrag0, g will be the complexification ofg0.

If we have a (complex-linear) representationπ of g on a complex vector
spaceV, then the investigation of invariant subspaces in principle involves
writing down all iteratesπ(X1)π(X2) · · · π(Xn) for members ofg, applying
them to members ofV, and seeing what elements ofV result. In the course
of computing the resulting elements ofV, one might be able to simplify an
expression by using the identityπ(X)π(Y ) = π(Y )π(X)+π [ X, Y ]. This
identity really has little to do withπ , and our objective in this section will
be to introduce a setting in which we can make such calculations without
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214 III. Universal Enveloping Algebra

reference toπ ; to obtain an identity for the representationπ , one simply
appliesπ to both sides of a universal identity.

For a first approximation of what we want, we can use the tensor algebra
T (g) = ⊕∞

k=0 T k(g). (Appendix A gives the definition and elementary
properties ofT (g).) The representationπ is a linear map ofg into the
associative algebra EndC V and extends to an algebra homomorphism
π̃ : T (g) → EndC V with π̃(1) = 1. Thenπ(X1)π(X2) · · · π(Xn) can
be replaced bỹπ(X1 ⊗ X2 ⊗ · · · ⊗ Xn). The difficulty with usingT (g) is
that it does not take advantage of the Lie algebra structure ofg and does
not force the identityπ(X)π(Y ) = π(Y )π(X) + π [ X, Y ] for all X andY
in g and allπ . Thus instead of the tensor algebra, we use the following
quotient ofT (g):

(3.1a) U (g) = T (g)/J,

where

(3.1b) J =
( two-sided ideal generated by all

X ⊗ Y − Y ⊗ X − [ X, Y ] with X
andY in T 1(g)

)
.

The quotientU (g) is an associative algebra with identity and is known
as theuniversal enveloping algebraof g. Products inU (g) are written
without multiplication signs.

The canonical mapg → U (g) given by embeddingg into T 1(g) and
then passing toU (g) is denotedι. Because of (3.1),ι satisfies

(3.2) ι[ X, Y ] = ι(X)ι(Y ) − ι(Y )ι(X) for X andY in g.

The algebraU (g) is harder to work with than the exterior algebra
∧

(g)

or the symmetric algebraS(g), which are both quotients ofT (g) and are
discussed in Appendix A. The reason is that the ideal in (3.1b) is not
generated by homogeneous elements. Thus, for example, it is not evident
that the canonical mapι : g → U (g) is one-one. However, wheng
is abelian, U (g) reduces toS(g), and we have a clear notion of what to
expect ofU (g). Even wheng is nonabelian,U (g) andS(g) are still related,
and we shall make the relationship precise later in this chapter.

Let Un(g) be the image ofTn(g) = ⊕n
k=0 T k(g) under the passage to

the quotient in (3.1). ThenU (g) = ⋃∞
n=0 Un(g). Since{Tn(g)} exhibits
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T (g) as a filtered algebra,{Un(g)} exhibitsU (g) as a filtered algebra. Ifg
is finite dimensional, eachUn(g) is finite dimensional.

Proposition 3.3.The algebraU (g) and the canonical mapι : g → U (g)

have the following universal mapping property: WheneverA is a complex
associative algebra with identity andπ : g → A is a linear mapping such
that

(3.4) π(X)π(Y ) − π(Y )π(X) = π [ X, Y ] for all X andY in g,

then there exists a unique algebra homomorphismπ̃ : U (g) → A such
thatπ̃(1) = 1 and the diagram

U (g)

ι π̃(3.5)

g −−−−−−−−−−−−→
π

A

commutes.

REMARKS.
1) We regard̃π as an “extension” ofπ . This notion will be more

appropriate after we prove thatι is one-one.
2) This proposition allows us to make an alternative definition of

universal enveloping algebrafor g. It is a pair(U (g), ι) such thatU (g)

is an associative algebra with identity,ι : g → U (g) is a linear mapping
satisfying (3.2), and wheneverπ : g → A is a linear mapping satisfying
(3.4), then there exists a unique algebra homomorphismπ̃ : U (g) → A
such that̃π(1) = 1 and the diagram (3.5) commutes. The proposition says
that the constructedU (g) has this property, and we can use this property to
see that any other candidate, say(U ′(g), ι′), hasU ′(g) canonically isomor-
phic with the constructedU (g). In fact, if we use (3.5) withA = U ′(g) and
π = ι′, we obtain an algebra map̃ι′ : U (g) → U ′(g). Reversing the roles
of U (g) andU ′(g) yields̃ι : U ′(g) → U (g). To see that̃ι ◦ ι̃′ = 1U (g), we
use the uniqueness of the extensionπ̃ in (3.5) whenA = U (g) andπ = 1.
Similarly ι̃′ ◦ ι̃ = 1U ′(g).

PROOF. Uniqueness follows from the fact that 1 andι(g) generateU (g).
For existence letπ1 : T (g) → A be the extension given by the universal
mapping property ofT (g) in Proposition A.14. To obtaiñπ , we are to
show thatπ1 annihilates the idealJ in (3.1b). It is enough to considerπ1
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on a typical generator ofJ , where we have

π1(ιX ⊗ ιY − ιY ⊗ ιX − ι[ X, Y ])

= π1(ιX)π1(ιY ) − π1(ιY )π1(ιX) − π1(ι[ X, Y ])

= π(X)π(Y ) − π(Y )π(X) − π [ X, Y ]

= 0.

Corollary 3.6. Representations ofg on complex vector spaces stand in
one-one correspondence with unital leftU (g) modules (under the corre-
spondenceπ → π̃ of Proposition 3.3).

REMARK. Unital means that 1 operates as 1.

PROOF. If π is a representation ofg on V, we apply Proposition 3.3 to
π : g → EndC V, and thenV becomes a unital leftU (g) module under
uv = π̃(u)v for u ∈ U (g) and v ∈ V . Conversely ifV is a unital
left U (g) module, thenV is already a complex vector space with scalar
multiplication given by the action of the scalar multiples of 1 inU (g). If
we defineπ(X)v = (ιX)v, then (3.2) implies thatπ is a representation
of g. The two constructions are inverse to each other sinceπ̃ ◦ ι = π in
Proposition 3.3.

Proposition 3.7. There exists a unique antiautomorphismu �→ ut of
U (g) such thatι(X)t = −ι(X) for all X ∈ g.

REMARK. The map( · )t is calledtranspose.

PROOF. It is unique sinceι(g) and 1 generateU (g). Let us prove
existence. For eachn ≥ 1, the map

(X1, . . . , Xn) �→ (−1)n Xn ⊗ · · · ⊗ X1

is n-multilinear fromg × · · · × g into T n(g) and hence extends to a linear
map ofT n(g) into itself with

X1 ⊗ · · · ⊗ Xn �→ (−1)n Xn ⊗ · · · ⊗ X1.

Taking the direct sum of these maps asn varies, we obtain a linear map
x �→ xt of T (g) into itself sending 1 into 1. It is clear that this map is
an antiautomorphism and extendsX �→ −X in T 1(g). Composing with
passage to the quotient byJ , we obtain an antihomomorphism ofT (g) into
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U (g). Its kernel is an ideal. To show that the map descends toU (g), it is
enough to show that each generator

X ⊗ Y − Y ⊗ X − [ X, Y ]

maps to 0. But this element maps inT (g) to itself and then maps to 0 in
U (g). Hence the transpose map descends toU (g). It is clearly of order
two and thus is one-one onto.

The transpose mapu �→ ut allows us to regard leftU (g) modulesV also
as rightU (g) modules, and vice versa: To convert a leftU (g) module into
a rightU (g) module, we just definevu = utv for u ∈ U (g) andv ∈ V .
Conversion in the opposite direction is accomplished byuv = vut .

2. Poincaré–Birkhoff–Witt Theorem

The main theorem aboutU (g) gives a basis forU (g) as a vector space.
Let {Xi}i∈A be a basis ofg. A set such asA always admits asimple
ordering, i.e., a partial ordering in which every pair of elements is compa-
rable. In cases of interest, the dimension ofg is at most countable, and we
can think of this ordering as quite elementary. For example, it might be the
ordering of the positive integers, or it might be something quite different
but still reasonable.

Theorem 3.8(Poincaré–Birkhoff–Witt). Let {Xi}i∈A be a basis ofg,
and suppose a simple ordering has been imposed on the index setA. Then
the set of all monomials

(ιXi1)
j1 · · · (ιXin)

jn

with i1 < · · · < in and with all jk ≥ 0, is a basis ofU (g). In particular the
canonical mapι : g → U (g) is one-one.

REMARKS.
1) If A is finite, sayA = {1, . . . , N }, the basis consists of all monomials

(ιX1)
j1 · · · (ιX N ) jN with all jk ≥ 0.

2) The proof will be preceded by two lemmas, which will essentially
establish the spanning. The main step will be to prove the linear indepen-
dence. For this we have to prove thatU (g) is suitably large. The motivation
for carrying out this step comes from assuming the theorem to be true. Then
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we might as well dropι from the notation, and monomialsX j1
i1

· · · X jn
in

with
i1 < · · · < in will form a basis. These same monomials, differently
interpreted, are a basis ofS(g). Thus the theorem is asserting a particular
vector-space isomorphismU (g) → S(g). SinceU (g) is naturally a unital
leftU (g)module, this isomorphism suggests thatS(g)should be a left unital
U (g) module. By Corollary 3.6 we should look for a natural representation
of g on S(g) consistent with left multiplication ofg onU (g) and consistent
with the particular isomorphismU (g) → S(g). The proof consists of
constructing this representation, and then the linear independence follows
easily. Actually the proof will make use of a polynomial algebra, but the
polynomial algebra is canonically isomorphic toS(g) once a basis ofg has
been specified.

Lemma 3.9. Let Z1, . . . , Zp be in g, and letσ be a permutation of
{1, . . . , p}. Then

(ιZ1) · · · (ιZp) − (ιZσ(1)) · · · (ιZσ(p))

is in Up−1(g).

PROOF. Without loss of generality, letσ be the transposition ofj with
j + 1. Then the lemma follows from

(ιZj)(ιZj+1) − (ιZj+1)(ιZj) = ι[Zj , Zj+1]

by multiplying through on the left by(ιZ1) · · · (ιZj−1) and on the right by
(ιZj+2) · · · (ιZp).

For the remainder of the proof of Theorem 3.8, we shall use the following
notation: Fori ∈ A, let Yi = ιXi . For any tupleI = (i1, . . . , ip) of
members ofA, we say thatI is increasing if i1 ≤ · · · ≤ ip. Whether
or not I is increasing, we writeYI = Yi1 · · · Yip . Also i ≤ I means
i ≤ min{i1, . . . , ip}.

Lemma 3.10. TheYI , for all increasing tuples fromA of length≤ p,
spanUp(g).

PROOF. If we useall tuples of length≤ p, we certainly have a spanning
set, since the obvious preimages inT (g) spanTp(g). Lemma 3.9 then
implies inductively that the increasing tuples suffice.
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PROOF OFTHEOREM3.8. LetP be the polynomial algebra overC in the
variableszi , i ∈ A, and letPp be the subspace of members of total degree
≤ p. For a tupleI = (i1, . . . , ip), definezI = zi1 · · · zip as a member of
Pp. We shall construct a representationπ of g on P such that

(3.11) π(Xi)zI = zi z I if i ≤ I.

Let us see that the theorem follows from the existence of such a represen-
tation. In fact, let us use Corollary 3.6 to regardP as a unital leftU (g)

module. Then (3.11) and the identityπ(X)v = (ιX)v imply that

Yi zI = zi z I if i ≤ I.

If i1 ≤ · · · ≤ ip, then as a consequence we obtain

(Yi1 · · · Yip)1 = (Yi1 · · · Yip−1)Yip 1

= (Yi1 · · · Yip−1)zip

= (Yi1 · · · Yip−2)Yip−1zip

= (Yi1 · · · Yip−2)(zip−1zip)

= · · · = zi1 · · · zip .

Thus the set{YI 1 | I increasing} is linearly independent withinP, and
{YI | I increasing} must be independent inU (g). The independence in
Theorem 3.8 follows, and the spanning is given in Lemma 3.10.

Thus we have to constructπ satisfying (3.11). We shall define linear
mapsπ(X) : Pp → Pp+1 for X in g, by induction onp so that they are
compatible and satisfy

(Ap) π(Xi)zI = zi z I for i ≤ I andzI in Pp ,
(Bp) π(Xi)zI − zi z I is in Pp for all I with zI in Pp ,
(Cp) π(Xi)(π(X j)zJ ) = π(X j)(π(Xi)zJ ) + π [ Xi , X j ]zJ for all J with

zJ in Pp−1.

With π(X) defined onP as the union of its definitions on thePp’s, π will
be a representation by(Cp) and will satisfy (3.11) by(Ap). Hence we will
be done.

For p = 0, we defineπ(Xi)1 = zi . Then(A0) holds,(B0) is valid, and
(C0) is vacuous.

Inductively assume thatπ(X) has been defined onPp−1 for all X ∈ g

in such a way that(Ap−1), (Bp−1), and (Cp−1) hold. We are to define
π(Xi)zI for each increasing sequenceI of p indices in such a way that
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(Ap), (Bp), and(Cp) hold. If i ≤ I , we make the definition according to
(Ap). Otherwise we can write in obvious notationI = ( j, J ) with j < i ,
j ≤ J , |J | = p − 1. We are forced to define

π(Xi)zI = π(Xi)(zj z J )

= π(Xi)π(X j)zJ sinceπ(X j)zJ is already
defined by(Ap−1)

= π(X j)π(Xi)zJ + π [ Xi , X j ]zJ by (Cp)

= π(X j)(zi z J + w) + π [ Xi , X j ]zJ with w in Pp−1 by (Bp−1)

= zj zi z J + π(X j)w + π [ Xi , X j ]zJ by (Ap)

= zi z I + π(X j)w + π [ Xi , X j ]zJ .

We make this definition, and then(Bp) holds. Thereforeπ(Xi)zI has now
been defined in all cases onPp, and we have to show that(Cp) holds.

Our construction above was made so that(Cp) holds if j < i , j ≤ J ,
|J | = p − 1. Since [X j , Xi ] = −[ Xi , X j ], it holds also ifi < j , i ≤ J ,
|J | = p −1. Also(Cp) is trivial if i = j . Thus it holds wheneveri ≤ J or
j ≤ J . So we may assume thatJ = (k, K ), wherek ≤ K , k < i , k < j ,
|K | = p − 2. We know that

π(X j)zJ = π(X j)zkzK

= π(X j)π(Xk)zK

= π(Xk)π(X j)zK + π [ X j , Xk ]zK by (Cp−1)(3.12)

= π(Xk)(zj zK + w) + π [ X j , Xk ]zK

for a certain elementw in Pp−2 given by(Bp−2), which is assumed valid
since(Bp−2) ⊆ (Bp−1). We applyπ(Xi) to both sides of this equation,
calling the three terms on the rightT1, T2, andT3. We can use what we
already know for(Cp) to handleπ(Xi) of T1 becausek ≤ ( j, K ), and we
can use(Cp−1) with π(Xi) of T2 and T3. ReassemblingT1 and T2 as in
line (3.12), we conclude that we can use known cases of(Cp) with the sum
π(Xi)π(Xk)π(X j)zK , and we can use(Cp−1) with π(Xi) of T3. Thus we
have

π(Xi)π(X j)zJ = π(Xi)π(Xk)π(X j)zK + π(Xi)π [ X j , Xk ]zK from (3.12)

= π(Xk)π(Xi)π(X j)zK + π [ Xi , Xk ]π(X j)zK

+ π [ X j , Xk ]π(Xi)zK + π [ Xi , [ X j , Xk ]] zK

by known cases of(Cp)
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= T ′
1 + T ′

2 + T ′
3 + T ′

4.

Interchangingi and j and subtracting, we see that the terms of typeT ′
2 and

T ′
3 cancel and that we get

π(Xi)π(X j)zJ − π(X j)π(Xi)zJ

= π(Xk){π(Xi)π(X j)zK − π(X j)π(Xi)zK }
+ {π [ Xi , [ X j , Xk ]] − π [ X j , [ Xi , Xk ]]}zK

= π(Xk)π [ Xi , X j ]zK + π [[ Xi , X j ], Xk ]zK by (Cp−1) and Jacobi

= π [ Xi , X j ]π(Xk)zK by (Cp−1)

= π [ Xi , X j ]zkzK

= π [ Xi , X j ]zJ .

We have obtained(Cp) in the remaining case, and the proof of Theorem
3.8 is complete.

Now thatι is known to be one-one, there is no danger in dropping it from
the notation. We shall freely use Corollary 3.6, identifying representations
of g with unital left U (g) modules. Moreover we shall feel free either
to drop the name of a representation from the notation (to emphasize the
module structure) or to include it even when the argument is inU (g) (to
emphasize the representation structure).

The Poincar´e–Birkhoff–Witt Theorem appears in a number of guises.
Here is one such.

Corollary 3.13. If h is a Lie subalgebra ofg, then the associative
subalgebra ofU (g) generated by 1 andh is canonically isomorphic to
U (h).

PROOF. If ρ : h → g denotes inclusion, thenρ yields an inclusion (also
denotedρ) of h into U (g) such thatρ(X)ρ(Y ) − ρ(Y )ρ(X) = ρ[ X, Y ]
for X andY in h. By the universal mapping property ofU (h), we obtain a
corresponding algebra map̃ρ : U (h) → U (g) with ρ̃(1) = 1. The image
of ρ̃ is certainly the subalgebra ofU (g) generated by 1 andρ(h). Theorem
3.8 says that monomials in an ordered basis ofh spanU (h), and a second
application of the theorem says that these monomials inU (g) are linearly
independent. Thus̃ρ is one-one and the corollary follows.
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If g happens to be the vector-space direct sum of two Lie subalgebrasa

andb, then it follows that we have a vector-space isomorphism

(3.14) U (g) ∼= U (a) ⊗C U (b).

Namely we obtain a linear map from right to left from the inclusions in
Corollary 3.13. To see that the map is an isomorphism, we apply Theorem
3.8 to a basis ofa followed by a basis ofb. The monomials in the separate
bases are identified withinU (g) as bases forU (a) andU (b), respectively,
by Corollary 3.13, while the joined-together bases give both a basis of the
tensor product and a basis ofU (g), again by Theorem 3.8. Thus our map
sends basis to basis and is an isomorphism.

3. Associated Graded Algebra

If A is a complex associative algebra with identity and ifA is filtered in
the sense of Appendix A, say asA = ∪∞

n=0 An, then Appendix A shows how
to define the associated graded algebra grA = ⊕∞

n=0(An/An−1), where
A−1 = 0. In this section we shall compute grU (g), showing that it is
canonically isomorphic with the symmetric algebraS(g). Then we shall
derive some consequences of this isomorphism.

The idea is to use the Poincar´e–Birkhoff–Witt Theorem. The theorem
implies that a basis ofUn(g)/Un−1(g) is all monomial cosets

X j1
i1

· · · X jk
ik

+ Un−1(g)

for which the indices havei1 < · · · < ik and the sum of the exponents is
exactlyn. The monomialsX j1

i1
· · · X jk

ik
, interpreted as inS(g), are a basis of

Sn(g), and the linear map that carries basis to basis ought to be the desired
isomorphism. In fact, this statement is true, but this approach does not
conveniently show that the isomorphism is independent of basis. We shall
therefore proceed somewhat differently.

We shall construct the map in the opposite direction without using the
Poincaré–Birkhoff–Witt Theorem, appeal to the theorem to show that we
have an isomorphism, and then compute what the map is in terms of a basis.
Let Tn(g) = ⊕n

k=0 T k(g) be thenth member of the usual filtration ofT (g).
We have definedUn(g) to be the image inU (g) of Tn(g) under the passage
T (g) → T (g)/J . Thus we can form the composition

Tn(g) → (Tn(g) + J )/J = Un(g) → Un(g)/Un−1(g).
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This composition is onto and carriesTn−1(g) to 0. SinceT n(g) is a vector-
space complement toTn−1(g) in Tn(g), we obtain an onto linear map

T n(g) → Un(g)/Un−1(g).

Taking the direct sum overn gives an onto linear map

ψ̃ : T (g) → grU (g)

that respects the grading.
Appendix A uses the notationI for the two-sided ideal inT (g) such that

S(g) = T (g)/I :

(3.15) I =
( two-sided ideal generated by all

X ⊗ Y − Y ⊗ X with X andY in
T 1(g)

)
.

Proposition 3.16. The linear mapψ̃ : T (g) → grU (g) respects
multiplication and annihilates the defining idealI for S(g). Therefore
ψ descends to an algebra homomorphism

(3.17) ψ : S(g) → grU (g)

that respects the grading. This homomorphism is an isomorphism.

PROOF. Let x be inT r(g) and lety be inT s(g). Thenx + J is in Ur(g),
and we may regard̃ψ(x) as the cosetx + Tr−1(g) + J in Ur(g)/Ur−1(g),
with 0 in all other coordinates of grU (g) sincex is homogeneous. Arguing
in a similar fashion withy andxy, we obtain

ψ̃(x) = x + Tr−1(g) + J, ψ̃(y) = y + Ts−1(g) + J,

and ψ̃(xy) = xy + Tr+s−1(g) + J.

SinceJ is an ideal,̃ψ(x)ψ̃(y) = ψ̃(xy). General membersx andy of T (g)

are sums of homogeneous elements, and henceψ̃ respects multiplication.
Consequently ker̃ψ is a two-sided ideal. To show that kerψ̃ ⊇ I , it is

enough to show that ker̃ψ contains all generatorsX ⊗ Y − Y ⊗ X . We
have

ψ̃(X ⊗ Y − Y ⊗ X) = X ⊗ Y − Y ⊗ X + T1(g) + J

= [ X, Y ] + T1(g) + J

= T1(g) + J,
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and thus̃ψ maps the generator to 0. Henceψ̃ descends to a homomorphism
ψ as in (3.17).

Now let {Xi} be an ordered basis ofg. The monomialsX j1
i1

· · · X jk
ik

in
S(g) with i1 < · · · < ik and with

∑
m jm = n form a basis ofSn(g). Let

us follow the effect of (3.17) on such a monomial. A preimage of this
monomial inT n(g) is the element

Xi1 ⊗ · · · ⊗ Xi1 ⊗ · · · ⊗ Xik ⊗ · · · ⊗ Xik ,

in which there arejm factors ofXim for 1 ≤ m ≤ k. This element maps to
the monomial inUn(g) that we have denotedX j1

i1
· · · X jk

ik
, and then we pass

to the quotientUn(g)/Un−1(g). Theorem 3.8 shows that such monomials
moduloUn−1(g) form a basis ofUn(g)/Un−1(g). Consequently (3.17) is an
isomorphism.

Inspecting the proof of Proposition 3.16, we see that ifi1 < · · · < ik

and
∑

m jm = n, then

(3.18a) ψ(X j1
i1

· · · X jk
ik
) = X j1

i1
· · · X jk

ik
+ Un−1(g).

Hence

(3.18b) ψ−1(X j1
i1

· · · X jk
ik

+ Un−1(g)) = X j1
i1

· · · X jk
ik
,

as asserted in the second paragraph of this section. Note that the restriction
i1 < · · · < ik can be dropped in (3.18) as a consequence of Lemma 3.9.

Corollary 3.19. Let W be a subspace ofT n(g), and suppose that the
quotient mapT n(g) → Sn(g) sendsW isomorphically ontoSn(g). Then
the image ofW in Un(g) is a vector-space complement toUn−1(g).

PROOF. Consider the diagram

T n(g) −−−→ Un(g)	 	
Sn(g)

ψ−−−→ Un(g)/Un−1(g)

The fact that this diagram is commutative is equivalent with the conclusion
in Proposition 3.16 that̃ψ : T n(g) → Un(g)/Un−1(g) descends to a map
ψ : Sn(g) → Un(g)/Un−1(g). The proposition says thatψ on the bottom
of the diagram is an isomorphism, and the hypothesis is that the map on
the left, when restricted toW , is an isomorphism ontoSn(g). Therefore
the composition of the map on the top followed by the map on the right is
an isomorphism when restricted toW , and the corollary follows.
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We apply Corollary 3.19 to the spacẽSn(g) of symmetrized tensors
within T n(g). As in §A.2, S̃n(g) is the linear span, for alln-tuples
X1, . . . , Xn from g, of the elements

1

n!

∑
τ∈Sn

Xτ(1) · · · Xτ(n),

whereSn is the symmetric group onn letters. According to Proposition
A.25, we have a direct sum decomposition

(3.20) T n(g) = S̃n(g) ⊕ (T n(g) ∩ I ).

We shall use this decomposition to investigate a map known as “sym-
metrization.”

For n ≥ 1, define a symmetricn-multilinear map

σn : g × · · · × g → U (g)

σn(X1, . . . , Xn) = 1

n!

∑
τ∈Sn

Xτ(1) · · · Xτ(n).by

By Proposition A.20a we obtain a corresponding linear map, also denoted
σn, from Sn(g) intoU (g). The image ofSn(g) in U (g) is clearly the same as
the image of the subspacẽSn(g) of T n(g) in Un(g). By (3.20) and Corollary
3.19,σn is one-one fromSn(g) onto a vector-space complement toUn−1(g)

in Un(g), i.e.,

(3.21) Un(g) = σn(Sn(g)) ⊕ Un−1(g).

The direct sum of the mapsσn for n ≥ 0 (with σ0(1) = 1) is a linear
mapσ : S(g) → U (g) such that

σ(X1 · · · Xn) = 1

n!

∑
τ∈Sn

Xτ(1) · · · Xτ(n).

The mapσ is calledsymmetrization.

Lemma 3.22. The symmetrization mapσ : S(g) → U (g) has associ-
ated graded mapψ : S(g) → grU (g), with ψ as in (3.17).

REMARK. The “associated graded map” is defined in §A.4.
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PROOF. Let {Xi} be a basis ofg, and letX j1
i1

· · · X jk
ik

, with
∑

m jm = n, be
a basis vector ofSn(g). Underσ , this vector is sent to a symmetrized sum,
but each term of the sum is congruent modUn−1(g) to (n!)−1X j1

i1
· · · X jk

ik
,

by Lemma 3.9. Hence the image ofX j1
i1

· · · X jk
ik

under the associated graded
map is

= X j1
i1

· · · X jk
ik

+ Un−1(g) = ψ(X j1
i1

· · · X jk
ik
),

as asserted.

Proposition 3.23.Symmetrizationσ is a vector-space isomorphism of
S(g) ontoU (g) satisfying

(3.24) Un(g) = σ(Sn(g)) ⊕ Un−1(g).

PROOF. Formula (3.24) is a restatement of (3.21), and the other conclu-
sion follows by combining Lemma 3.22 and Proposition A.39.

The canonical decomposition ofU (g) from g = a⊕ b whena andb are
merely vector spaces is given in the following proposition.

Proposition 3.25.Supposeg = a⊕b and supposea andb are subspaces
of g. Then the mappinga ⊗ b �→ σ(a)σ (b) of S(a) ⊗C S(b) into U (g) is
a vector-space isomorphism onto.

PROOF. The vector spaceS(a) ⊗C S(b) is graded consistently for the
given mapping, thenth space of the grading being

⊕n
p=0 S p(a)⊗C Sn−p(b).

The given mapping operates on an element of this space by

n∑
p=0

ap ⊗ bn−p �→
n∑

p=0

σ(ap)σ (bn−p),

and the image of this under the associated graded map is

=
n∑

p=0

σ(ap)σ (bn−p) + Un−1(g).

In turn this is

= σ
( n∑

p=0

ap ⊗ bn−p

) + Un−1(g)

by Lemma 3.9. In other words the associated graded map is just the same
as forσ . Hence the result follows by combining Propositions 3.23 and
A.39.
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Corollary 3.26. Suppose thatg = k ⊕ p and thatk is a Lie subalgebra
of g. Then the mapping(u, p) �→ uσ(p) of U (k) ⊗C S(p) into U (g) is a
vector-space isomorphism onto.

PROOF. The composition

(k, p) �→ (σ (k), p) �→ σ(k)σ (p),

sending
S(k) ⊗C S(p) → U (k) ⊗C S(p) → U (g),

is an isomorphism by Proposition 3.25, and the first map is an isomorphism
by Proposition 3.23. Therefore the second map is an isomorphism, and
the notation corresponds to the statement of the corollary when we write
u = σ(k).

Proposition 3.27. If g is finite dimensional, then the ringU (g) is left
Noetherian.

PROOF. The associated graded algebra forU (g) is isomorphic toS(g),
according to Proposition 3.16, andS(g) is a commutative Noetherian ring
by the Hilbert Basis Theorem (Theorem A.45) and the examples that follow
it. By Proposition A.47,U (g) is left Noetherian.

Corollary 3.28. If g is finite dimensional andI1, . . . , Im are left ideals
of finite codimension inU (g), then the product idealI1 · · · Im is of finite
codimension inU (g).

REMARK. The product ideal by definition consists of all finite sums of
productsx1 · · · xm with eachxj in Ij .

PROOF. By induction it is enough to handlem = 2. The vector space
U (g)/I1 is finite dimensional by assumption, and we letx1+ I1, . . . , xr + I1

be a vector-space basis. SinceU (g) is left Noetherian by Proposition 3.27,
Proposition A.44 shows that the left idealI2 is finitely generated, say with
y1, . . . , ys as generators.

The claim is that{xi yj + I1I2} is a spanning set for the vector space
I2/I1I2. In fact, anyx in I2 is of the formx = ∑s

j=1 uj yj with uj in
U (g). For eachj , write uj + I1 = ∑r

i=1 ci j xi + I1 with ci j ∈ C. Then
uj yj + I1I2 = ∑r

i=1 ci j xi yj + I1I2, and the claim follows when we sum on
j .

Thus I2/I1I2 is finite dimensional. Since dimU (g)/I1I2 is equal
to dimU (g)/I2 + dim I2/I1I2, we conclude thatU (g)/I1I2 is finite
dimensional.
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4. Free Lie Algebras

Using the Poincar´e–Birkhoff–Witt Theorem, we can establish the exis-
tence of “free Lie algebras.” Afree Lie algebraon a setX is a pair(F, ι)

consisting of a Lie algebraF and a functionι : X → F with the following
universal mapping property: Wheneverl is a complex Lie algebra and
ϕ : X → l is a function, there exists a unique Lie algebra homomorphism
ϕ̃ such that the diagram

F

ι ϕ̃(3.29)

X −−−−−−−−−−−−→
ϕ

l

commutes. We regard̃ϕ as an extension ofϕ.
Let us construct such a Lie algebra. LetV consist of all formal complex

linear combinations of the members ofX , so thatV can be regarded as a
complex vector space withX as basis. We embedV in its tensor algebra
via ιV : V → T (V ), obtainingT 1(V ) = ιV (V ) as usual. SinceT (V )

is an associative algebra, we can regard it as a Lie algebra in the manner
of Example 2 in §I.1. LetF be the Lie subalgebra ofT (V ) generated by
T 1(V ).

In the setting of (3.29), we are to construct a Lie algebra homomorphism
ϕ̃ so that (3.29) commutes, and we are to show thatϕ̃ is unique. Extend
ϕ : X → l to a linear mapϕ : V → l, and letιl : l → U (l) be the canonical
map. The universal mapping property ofT (V ) allows us in the diagram

T (V )

ιV a

V −−−−−−−−−−−−→
ιl ◦ ϕ

U (l)

to extendιl ◦ ϕ to an associative algebra homomorphisma with a(1) = 1.
For x ∈ X , the commutativity of this diagram implies that

(3.30) a(ιV (x)) = ιl(ϕ(x)).

Let us think ofa as a Lie algebra homomorphism in (3.30). The right side
of (3.30) is in imageιl, and it follows thata(F) ⊆ imageιl.

Now we use the Poincar´e–Birkhoff–Witt Theorem, which implies that
ιl : l → imageιl is one-one. We writeι−1

l
for the inverse of this Lie algebra
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isomorphism, and we put̃ϕ = ι−1
l

◦ a. Thenϕ̃ is the required Lie algebra
homomorphism making (3.29) commute.

To see that̃ϕ is unique whenF is defined this way, we observe that (3.29)
forcesϕ̃(ιV (x)) = ϕ(x) for all x ∈ X . Since the elementsιV (x) generate
F and sincẽϕ is a Lie algebra homomorphism,̃ϕ is completely determined
on all ofF. This proves the first statement in the following proposition.

Proposition 3.31. If X is a nonempty set, then there exists a free Lie
algebraF on X , and the image ofX in F generatesF. Any two free Lie
algebras onX are canonically isomorphic.

REMARK. This result was stated in Chapter II as Proposition 2.96, and
the proof was deferred until now.

PROOF. Existence ofF was proved before the statement of the proposi-
tion. We still have to prove thatF is unique up to canonical isomorphism.
Let (F, ι) and(F′, ι′) be two free Lie algebras onX . We set up the diagram
(3.29) withl = F′ andϕ = ι′ and invoke existence to obtain a Lie algebra
homomorphism̃ι′ : F → F′. Reversing the roles ofF andF′, we obtain a
Lie algebra homomorphism̃ι : F′ → F. To see that̃ι ◦ ι̃′ = 1F, we set up
the diagram (3.29) withl = F andϕ = ιX to see that̃ι ◦ ι̃′ is an extension
of ι. By uniqueness of the extension,ι̃ ◦ ι̃′ = 1F. Similarly ι̃′ ◦ ι̃ = 1F′ .

5. Problems

1. Forg = sl(2, C), let� be the member ofU (g) given by� = 1
2h2 + e f + f e,

whereh, e, and f are as in (1.5).
(a) Prove that� is in the center ofU (g).
(b) Let π be a representation ofsl(2, C) on a complex vector spaceV, and

regardV as aU (g) module. Show that� acts inV by the operatorZ of
Lemma 1.65.

2. Letg be a finite-dimensional complex Lie algebra, and define adX on U (g)

for X ∈ g by (adX)u = Xu − u X . Prove that ad is a representation ofg and
that each element ofU (g) lies in a finite-dimensional space invariant under
adg.

3. Let U (g) be the universal enveloping algebra of a complex Lie algebrag.
Prove thatU (g) has no zero divisors.

4. (a) Identify a free Lie algebra on a set consisting of one element.
(b) Prove that a free Lie algebra on a set consisting of two elements is infinite

dimensional.
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5. LetF be a free Lie algebra on the set{X1, X2, X3}, and letg be the quotient
obtained by setting to 0 all brackets involving three or more members ofF.
(a) Prove that dimg = 6 and thatg is nilpotent but not abelian.
(b) DefineB(Xi , X j ) = 0, B([ Xi , X j ], [ Xi ′ , X j ′ ] = 0, and

B(X3, [ X1, X2]) = B(X2, [ X3, X1]) = B(X1, [ X2, X3]) = 1.

Prove thatB extends to a nondegenerate symmetric invariant bilinear
form ong.

6. Say that a complex Lie algebrah is two-step nilpotent if [h, [h, h]] = 0. Prove
for each integern ≥ 1 that that there is a finite-dimensional two-step nilpotent
Lie algebrag such that every two-step nilpotent Lie algebra of dimension≤ n
is isomorphic to a homomorphic image ofg.

7. The construction of a free Lie algebraF on X in §4 first built a complex vector
spaceV with X as basis. ThenF was obtained as the Lie algebra generated
by V within T (V ). Prove thatU (F) can be identified withT (V ).

Problems 8–10 concern the diagonal mapping for a universal enveloping algebra.
Fix a complex Lie algebrag and its universal enveloping algebraU (g).

8. Use the 4-multilinear map(u1, u2, u3, u4) �→ u1u2 ⊗ u3u4 of U (g)×U (g)×
U (g) × U (g) into U (g) ⊗C U (g) to define a multiplication inU (g) ⊗C U (g).
Prove thatU (g) ⊗C U (g) becomes an associative algebra with identity.

9. Prove that there exists a unique associative algebra homomorphism	 from
U (g) into U (g) ⊗C U (g) such that	(X) = X ⊗ 1+ 1⊗ X for all X ∈ g and
such that	(1) = 1.

10. If ϕ1 andϕ2 are in the dual spaceU (g)∗, thenϕ1 ⊗ ϕ2 is well defined as a
linear functional onU (g) ⊗C U (g) sinceC ⊗C C ∼= C canonically. Define a
productϕ1ϕ2 in U (g)∗ by

(ϕ1ϕ2)(u) = (ϕ1 ⊗ ϕ2)(	(u)),

where	 is as in Problem 9. Prove that this product makesU (g)∗ into a
commutative associative algebra (without necessarily an identity).

Problems 11–13 identifyU (g) with an algebra of differential operators. LetG be
a Lie group, letg0 be the Lie algebra, and letg be the complexification ofg0. For
X ∈ g0, let X̃ be the left-invariant vector field onG corresponding toX , regarded
as acting in the spaceC∞(G) of all complex-valued functions onG. The vector
field X̃ is a left-invariant differential operator in the sense that it is a member
D of EndC(C∞(G)) commuting with left translations such that, for eachg ∈ G,
there is a chart(ϕ, V ) aboutg, sayϕ = (x1, . . . , xn), and there are functionsak1···kn
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in C∞(V ) with the property that

D f (x) =
∑

bounded

ak1···kn (x)
∂k1+···+kn f

∂xk1
1 · · · ∂xkn

n

(x)

for all x ∈ V and f ∈ C∞(G). Such operators form a complex subalgebraD(G)

of EndC(C∞(G)) containing the identity. Moreover, anyD of this kind has such
an expansion in any chart aboutx .

11. Prove that the mapX �→ X̃ extends to an algebra homomorphism ofU (g)

into D(G) sending 1 to 1.

12. Prove that the map in Problem 11 is onto.

13. LetX1, . . . , Xn be a basis ofg0.
(a) For each tuple(i1, . . . , in) of integers≥ 0, prove that there is a function

f ∈ C∞(G) with the property that(X̃1)
j1 · · · (X̃n)

jn f (1) equals 1 if
j1 = i1, . . . , jn = in, and equals 0 if not.

(b) Deduce that the map in Problem 11 is one-one.

Problems 14–22 concern the Weyl algebra and a higher-dimensional version of
the Heisenberg Lie algebra discussed in Problems 25–27 in Chapter I. LetV be
a real finite-dimensional vector space, and let〈 · , · 〉 be a nondegenerate skew-
symmetric bilinear form onV × V . TheHeisenberg Lie algebraH(V ) on V
is the Lie algebraV ⊕ RX0 in which X0 is central andV brackets with itself by
[u, v] = 〈u, v〉X0. The complexWeyl algebra W (V C) on V is the quotient of
T (V C) by the two-sided ideal generated by allu ⊗ v − v ⊗ u −〈u, v〉1 with u and
v in V .

14. Using Problem 45b of Chapter II, prove that the Heisenberg algebra and the
Weyl algebra onV are determined up to isomorphism by the dimension ofV ,
which must be even, say 2n.

15. Verify that an example of a 2n-dimensionalV with its form〈 · , · 〉 is V = Cn

with 〈u, v〉 = Im(u, v), where( · , · ) is the usual Hermitian inner product on
Cn. For thisV , exhibit an isomorphism ofH(V ) with the Lie algebra of all

complex(n + 1)-by-(n + 1) matrices of the form

(
0 z̄t ir
0 0 z
0 0 0

)
with z ∈ Cn and

r ∈ R.

16. Show that the linear mapι(v + cX0) = v + c1 is a Lie algebra homomor-
phism of H(V ) into W (V C) and that its extension to an associative algebra
homomorphism̃ι : U (H(V )C) → W (V C) is onto and has kernel equal to the
two-sided ideal generated byX0 − 1.

17. Prove thatW (V C) has the following universal mapping property: For any
Lie algebra homomorphismπ of H(V ) into a complex associative algebraA
with identity such thatX0 maps to 1, there exists a unique associative algebra
homomorphism̃π of W (V C) into A such thatπ = π̃ ◦ ι.
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18. Let v1, . . . , v2n be any vector space basis ofV . Prove that the elements

v
k1
1 · · · vk2n

2n with integer exponents≥ 0 spanW (V C).

19. If dimR V = 2n, prove thatV is the vector-space direct sumV = V + ⊕ V −

of two n-dimensional subspaces on which〈 · , · 〉 is identically 0. Show that it
is possible to choose basesp1, . . . , pn of V + andq1, . . . , qn of V − such that
〈pi , qj 〉 = δi j .

20. LetSbe the space of all complex-valued functionsP(x)e−π |x |2, whereP(x) =
P(x1, . . . , xn) is a polynomial inn variables. Show thatS is mapped into itself
by the linear operators∂/∂xi andmj = (multiplication-by-xj ).

21. In the notation of Problems 19 and 20, letϕ be the linear map ofV into
EndCS given byϕ(pi ) = ∂/∂xi andϕ(qj ) = mj . Use Problem 17 to extend
ϕ to an algebra homomorphism̃ϕ of W (V C) into EndCS with ϕ̃(1) = 1,
and use Problem 16 to obtain a representation ofH(V ) of S. Prove that this
representation is irreducible.

22. In Problem 21 prove that the algebra homomorphismϕ̃ : W (V C) → EndC S
is one-one. Conclude that the elementsv

k1
1 · · · vk2n

2n of Problem 18 form a
vector space basis ofW (V C).




