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CHAPTER I

Universal Enveloping Algebra

Abstract. For a complex Lie algebrg, the universal enveloping algebti(g) is an
explicit complex associative algebra with identity having the property that any Lie algebra
homomorphism of into an associative algebrawith identity “extends” to an associative
algebra homomorphism &f (g) into A and carrying 1 to 1. The algebli(g) is a quotient
of the tensor algebra@ (g) and is a filtered algebra as a consequence of this property. The
Poincae-Birkhoff-Witt Theorem gives a vector-space basid ¢f) in terms of an ordered
basis ofg.

One consequence of this theorem is to identify the associated graded algdbg)for
as canonically isomorphic to the symmetric algeB(g). This identification allows the
construction of a vector-space isomorphism called “symmetrization” sgmontoU (g).
Wheng is a direct sum of subspaces, the symmetrization mapping extiiggyscanonically
as a tensor product.

Another consequence of the PoineaBirkhoff-Witt Theorem is the existence of a free
Lie algebra on any seX. This is a Lie algebrg& with the property that any function from
X into a Lie algebra extends uniquely to a Lie algebra homomorphisgiofo the Lie
algebra.

1. Universal Mapping Property

Throughout this chapter we suppose thas a complex Lie algebra.
We shall be interested only in Lie algebras whose dimension is at most
countable, but our discussion will apply in general. Usually, but not always,
g will be finite dimensional. When we are studying a Lie grdBpwith
Lie algebrago, g will be the complexification of,.

If we have a (complex-linear) representationf g on a complex vector
spaceV, then the investigation of invariant subspaces in principle involves
writing down all iterates (X1)7 (X>) - - - 7 (X,) formembers of, applying
them to members of, and seeing what elements\fresult. In the course
of computing the resulting elements\éfone might be able to simplify an
expression by using the identity X)7 (Y) = 7w (Y)w (X) + [ X, Y]. This
identity really has little to do withr, and our objective in this section will
be to introduce a setting in which we can make such calculations without
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214 Ill. Universal Enveloping Algebra

reference tor; to obtain an identity for the representation one simply
appliesr to both sides of a universal identity.

For a first approximation of what we want, we can use the tensor algebra
T(g) = Py T(9). (Appendix A gives the definition and elementary
properties ofT (g).) The representation is a linear map ofy into the
associative algebra Epd/ and extends to an algebra homomorphism
7T :T(g) — End:V with 7(1) = 1. Thenmz(X)x(X,)---7(X,) can
be replaced by (X; ® X, ® - -- ® X,)). The difficulty with usingT (g) is
that it does not take advantage of the Lie algebra structugeanid does
not force the identityr (X)7 (Y) = 7 (Y)nw (X) + [ X, Y] for all X andY
in g and allrz. Thus instead of the tensor algebra, we use the following
quotient ofT (g):

(3.1a) Ug) =T(g)/J,

where

(3.1b) X®Y—Y®X—[X,Y]with X

(two-sided ideal generated by j”
J= .
andY in T(g)
The quotientU (g) is an associative algebra with identity and is known
as theuniversal enveloping algebraof g. Products inU (g) are written
without multiplication signs.

The canonical mag — U (g) given by embedding into T(g) and
then passing ttJ (g) is denoted. Because of (3.1),satisfies

(3.2) (X, Y] = t(X)e(Y) — t(Y)e(X) for X andY in g.

The algebrdJ (g) is harder to work with than the exterior algebkag)
or the symmetric algebr&(g), which are both quotients af (g) and are
discussed in Appendix A. The reason is that the ideal in (3.1b) is not
generated by homogeneous elements. Thus, for example, it is not evident
that the canonical map: g — U(g) is one-one. However, whef
is abelian, U (g) reduces tdS(g), and we have a clear notion of what to
expect olU (g). Even whery is nonabeliany (g) andS(g) are still related,
and we shall make the relationship precise later in this chapter.

Let Un(g) be the image ofl,(g) = @,_, T (g) under the passage to
the quotient in (3.1). Theb (g) = (J,—,Un(g). Since{T,(g)} exhibits
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T (g) as a filtered algebradlJ,(g)} exhibitsU (g) as a filtered algebra. i
is finite dimensional, eadld,(g) is finite dimensional.

Proposition 3.3. The algebrdJ (g) and the canonicalmap g — U (g)
have the following universal mapping property: Whene&és a complex
associative algebra with identity and: g — A'is a linear mapping such
that

3.4) a#X)aY)—a(Y)x(X) =nx[X, Y] forall X andY in g,

then there exists a unique algebra homomorphismU (g) — A such
that7 (1) = 1 and the diagram

U(g)
(3.5) L/ N®
.
g A
T
commutes.
REMARKS.

1) We regardr as an “extension” ofr. This notion will be more
appropriate after we prove thais one-one.

2) This proposition allows us to make an alternative definition of
universal enveloping algebrafor g. It is a pair(U (g), ¢) such thatJ (g)
is an associative algebra with identity, g — U (g) is a linear mapping
satisfying (3.2), and whenevear: g — A is a linear mapping satisfying
(3.4), then there exists a unigue algebra homomorphisnU (g) — A
such thafr (1) = 1 and the diagram (3.5) commutes. The proposition says
that the constructed (g) has this property, and we can use this property to
see that any other candidate, sbly(g), ¢'), hasU’(g) canonically isomor-
phic with the constructed (g). Infact, if we use (3.5) wittA = U’(g) and
7 = ¢, we obtain an algebra map: U(g) — U’(g). Reversing the roles
of U(g) andU’(g) yields7: U’(g) — U(g). To see thato? = Ly, We
use the uniqueness of the extensioim (3.5) whenA = U (g) andr = 1.
Similarly 7' o7 = 1y/().

ProoOF. Unigueness follows from the fact that 1 anig) generatéJ (g).
For existence letr; : T(g) — A be the extension given by the universal
mapping property ofl (g) in Proposition A.14. To obtaiff, we are to
show thatr; annihilates the ideal in (3.1b). It is enough to considen
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on a typical generator af, where we have

X QLY — Y @X —(X,Y])
= m (X)m1 (1Y) — () (e X) — ma ([ X, Y])
=a(X)r(Y) —a(YV)m(X) —x[X, Y]
=0.

Corollary 3.6. Representations @f on complex vector spaces stand in
one-one correspondence with unital leftg) modules (under the corre-
spondencer — 7 of Proposition 3.3).

REMARK. Unital means that 1 operates as 1.

PROOF. If 7 is a representation gf on V, we apply Proposition 3.3 to
7 . g — EndV, and thenv becomes a unital lett) (g) module under
uv = (U foru € U(g) andv € V. Conversely ifV is a unital
left U (g) module, thenV is already a complex vector space with scalar
multiplication given by the action of the scalar multiples of 1Lig). If
we definer (X)v = (tX)v, then (3.2) implies that is a representation
of g. The two constructions are inverse to each other sihee = x in
Proposition 3.3.

Proposition 3.7. There exists a unique antiautomorphism- u' of
U (g) such that (X)! = —(X) forall X € g.

REMARK. The map(-)' is calledtranspose

PROOF. It is unique sinca(g) and 1 generaté (g). Let us prove
existence. For eaatn> 1, the map

Xy oo X)) = DX @ ® Xy

is n-multilinear fromg x --- x g into T"(g) and hence extends to a linear
map of T"(g) into itself with

Xi® - @Xn—> (D"Xpn® -+ - ® Xy

Taking the direct sum of these mapsrasgaries, we obtain a linear map
x + x' of T(g) into itself sending 1 into 1. It is clear that this map is
an antiautomorphism and exten¥s— —X in T(g). Composing with
passage to the quotient By we obtain an antihomomorphismdfg) into
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U(g). Its kernel is an ideal. To show that the map descends(tp, it is
enough to show that each generator

X®Y—-Y®X—[X,Y]

maps to 0. But this element mapsTrig) to itself and then maps to 0 in
U (g). Hence the transpose map descendd ¢g). It is clearly of order
two and thus is one-one onto.

The transpose map— u' allows us to regard leftl (g) modulesV also
as rightU (g) modules, and vice versa: To convert a léftg) module into
a rightU (g) module, we just defineu = u'v for u € U(g) andv € V.
Conversion in the opposite direction is accomplishediby= vu'.

2. Poincare-Birkhoff-Witt Theorem

The main theorem about(g) gives a basis foU (g) as a vector space.
Let {Xi}ica be a basis ofy. A set such asA always admits asimple
ordering, i.e., a partial ordering in which every pair of elements is compa-
rable. In cases of interest, the dimension ig at most countable, and we
can think of this ordering as quite elementary. For example, it might be the
ordering of the positive integers, or it might be something quite different
but still reasonable.

Theorem 3.8 (Poincae—Birkhoff-Witt). Let{X}ica be a basis of,
and suppose a simple ordering has been imposed on the indéxEbén
the set of all monomials

WXl X )

withi; < --- < i, and with allj, > 0, is a basis ob (g). In particular the
canonical map : g — U (g) is one-one.

REMARKS.

1) If Aisfinite, sayA = {1, ..., N}, the basis consists of all monomials
([X]_)j1 tee (LXN)jN W|th a” jk > 0.

2) The proof will be preceded by two lemmas, which will essentially
establish the spanning. The main step will be to prove the linear indepen-
dence. For this we have to prove thitg) is suitably large. The motivation
for carrying out this step comes from assuming the theorem to be true. Then



218 Ill. Universal Enveloping Algebra

we might as well drop from the notation, and monomial§” - - - X" with

ii; < .-+ < i, will form a basis. These same monomials, differently
interpreted, are a basis 8fg). Thus the theorem is asserting a particular
vector-space isomorphisbh(g) — S(g). SinceU (g) is naturally a unital
leftU (g) module, thisisomorphism suggests tBgf) should be aleft unital

U (g) module. By Corollary 3.6 we should look for a natural representation
of g on S(g) consistent with left multiplication af onU (g) and consistent
with the particular isomorphisr (g) — S(g). The proof consists of
constructing this representation, and then the linear independence follows
easily. Actually the proof will make use of a polynomial algebra, but the
polynomial algebra is canonically isomorphic3¢y) once a basis af has
been specified.

Lemma 3.9. Let Z,,..., Z, be ing, and leto be a permutation of
{1,..., p}. Then

(tZy)--- (lzp) - (Lza(l)) s (lza(p))
isinUp_1(g).

PrROOF. Without loss of generality, let be the transposition of with
j + 1. Then the lemma follows from

(tZ)(tZj1) — (tZj40) (W Zy) = Zj, Zj14]

by multiplying through on the left by Z;) - - - (1Z;_1) and on the right by
(tZj2) - - (L Zp).

For the remainder of the proof of Theorem 3.8, we shall use the following
notation: Fori € A, letY, = (X;. For any tuplel = (i,,...,ip) of
members ofA, we say thatl is increasingif i; < --- < i,. Whether
or not | is increasing, we writéf, = Y, ---Y;. Alsoi < | means
i <min{iy, ..., 0ip}.

Lemma 3.10. TheY,, for all increasing tuples fron of length< p,
spanU,(g).

PrROOF. If we useall tuples of length< p, we certainly have a spanning
set, since the obvious preimagesTitig) spanT,(g). Lemma 3.9 then
implies inductively that the increasing tuples suffice.
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PROOF OFTHEOREM3.8. LetP be the polynomial algebra ové&rin the
variablesz, i € A, and letP, be the subspace of members of total degree
< p. Foratuplel = (iy,...,Iip), definez, = z, ---z as a member of
P,. We shall construct a representatiorof g on P such that

(3.11) n(Xi)z = zz ifi <I.

Let us see that the theorem follows from the existence of such a represen-
tation. In fact, let us use Corollary 3.6 to regdpdas a unital leftJ (g)
module. Then (3.11) and the identityf X)v = (¢ X)v imply that

Yiz) = zz ifi <I.
Ifi, <--- <i,, then as a consequence we obtain

Y- Yi)l= (Y, Y, )Y, 1

=Y, - Yi, )7,
=Y, Y, )Yi,.7Z,
=Yy Yi,.)(Z,.,2,)
= =27,

Thus the setY,1 | | increasing is linearly independent withifP, and
{Y, | | increasing must be independent id (g). The independence in
Theorem 3.8 follows, and the spanning is given in Lemma 3.10.

Thus we have to construat satisfying (3.11). We shall define linear
mapsn (X) : P, = P, for X in g, by induction onp so that they are
compatible and satisfy

(Ap) m(Xi)z, =1zz fori <1 andz in P,

(Bp) 7 (Xi)zy —zz isin P, forall I with z, in P,

(Cp) (X)) (@ (X))zy) = 7 (Xj) (7w (Xi)zy) + 7 [Xi, X]z; for all I with

Z;in Py_1.
With 7 (X) defined onP as the union of its definitions on tH&’s, 7 will
be a representation BZ,) and will satisfy (3.11) by A,). Hence we will
be done.

For p = 0, we definer (X;)1 = z. Then(Ay) holds,(By) is valid, and
(Cyp) is vacuous.

Inductively assume that(X) has been defined oR,_; for all X € g
in such a way thatA,_1), (By_1), and(C,_;) hold. We are to define
m(X;j)z, for each increasing sequenteof p indices in such a way that
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(Ap), (Bp), and(Cp) hold. Ifi < I, we make the definition according to
(Ap). Otherwise we can write in obvious notatibr= (j, J) with j <1,
j < 3,13l = p— 1. We are forced to define

7 (Xi)z) = m(X)(z2y)

= (X)) (X))z; sincen (X;)z; is already

defined by(A,_1)

= (XD (X)z; + 7[Xi, X{]z; by (Cp)

= (X))(zz; +w) +7[Xi, Xj]z; withwin Py_; by (Bp_1)

=72z, +n(Xpw +7[X;, Xj]z; by (Ap)

=27z +r(Xp)w + 7[Xi, Xj]z;.
We make this definition, and thé,) holds. Thereforer (X;)z, has now
been defined in all cases &%, and we have to show th&t,) holds.

Our construction above was made so @) holds if j < i, j < J,

|J| = p—1. Since [, Xi] = —[Xi, Xj], itholds also ifi < j,i < J,
|J| = p—1. Also(Cp) istrivial if i = j. Thus it holds whenever< J or

j < J. Sowe may assume that= (k, K), wherek < K,k < i,k < j,
K| = p— 2. We know that

JT(XJ')ZJ = JT(Xj)ZkZK

= 7w (X)) (X)) Zx
(3.12) = 1 (X (Xj)zx + [ X, XiJzk by (Cp-1)

=1 (X (Zjzxk +w) + [ X}, Xz«
for a certain elemenb in Py_, given by (B,_,), which is assumed valid
since(B,_2) € (By_1). We applyr(X;) to both sides of this equation,
calling the three terms on the right, T,, andT;. We can use what we
already know for(C,) to handler (X;) of T, becaus& < (], K), and we
can use(C,_;) with 7 (X;) of T, andT;. Reassembling; andT, as in
line (3.12), we conclude that we can use known casé€ gfwith the sum
(X)) (X (Xj)zx, and we can us€C,_;) with 7 (X;) of T;. Thus we
have
(X)) (X))Zy = w(X)m (X)) (X)) zx + 7 (X)m[Xj, Xi]zx from (3.12)

= (X (X)) (Xj)zx + 7 [Xi, Xi]mw (X)) zk
+ [ X, Xil]m (Xi)zk + 7[Xi, [Xj, Xl zx
by known cases ofC,)
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=T+ T+ T+ T,

Interchanging andj and subtracting, we see that the terms of typand
T; cancel and that we get

7 (X)) (X))Zy; — (X)) (Xi)Z;
= 7 (Xi){m (X)) (Xj)zx — 7w (X)) (Xi)z }
+ {[Xi, [X5, Xl — 7 [ X, [Xi, Xl z«
= 7 (X[ Xi, X{1z« + 7[[Xi, X;], XJz« by (C,_1) and Jacobi
= [ Xi, Xj]r (X)zk by (Cp-1)
= [ Xi, Xj]zzk
=n[Xi, Xj]z,.

We have obtainedC,) in the remaining case, and the proof of Theorem
3.8 is complete.

Now that: is known to be one-one, there is no danger in dropping it from
the notation. We shall freely use Corollary 3.6, identifying representations
of g with unital left U (g) modules. Moreover we shall feel free either
to drop the name of a representation from the notation (to emphasize the
module structure) or to include it even when the argument 4 (g (to
emphasize the representation structure).

The Poincae=Birkhoff-Witt Theorem appears in a number of guises.
Here is one such.

Corollary 3.13. If h is a Lie subalgebra of, then the associative
subalgebra ofJ (g) generated by 1 and is canonically isomorphic to

U (h).

PROOF If p : h — g denotes inclusion, themyields an inclusion (also
denotedp) of b into U (g) such thato(X)p(Y) — p(Y)p(X) = p[X, Y]
for X andY in h. By the universal mapping property 0f(h), we obtain a
corresponding algebra map: U (h) — U (g) with p(1) = 1. The image
of pis certainly the subalgebra bf(g) generated by 1 and(h). Theorem
3.8 says that monomials in an ordered basis sfhanU (), and a second
application of the theorem says that these monomidls(ig) are linearly
independent. Thug is one-one and the corollary follows.
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If g happens to be the vector-space direct sum of two Lie subalgebras
andb, then it follows that we have a vector-space isomorphism

(3.14) U(g) = U(a) @c U(b).

Namely we obtain a linear map from right to left from the inclusions in
Corollary 3.13. To see that the map is an isomorphism, we apply Theorem
3.8 to a basis od followed by a basis 0f. The monomials in the separate
bases are identified withid (g) as bases fdu (a) andU (b), respectively,

by Corollary 3.13, while the joined-together bases give both a basis of the
tensor product and a basisdfg), again by Theorem 3.8. Thus our map
sends basis to basis and is an isomorphism.

3. Associated Graded Algebra

If Ais acomplex associative algebra with identity and i filtered in
the sense of Appendix A, say &s= U A, then Appendix A shows how
to define the associated graded algebré ge P, ,(A./An_1), Where
A_; = 0. In this section we shall compute ldxg), showing that it is
canonically isomorphic with the symmetric alget8&). Then we shall
derive some consequences of this isomorphism.

The idea is to use the PoineaBirkhoff-Witt Theorem. The theorem
implies that a basis dfi,(g)/U,_1(g) is all monomial cosets

XX 4 U a(g)

for which the indices havg < --- < iy and the sum of the exponents is
exactlyn. The monomial” - - - X%, interpreted as if$(g), are a basis of
S'(g), and the linear map that carries basis to basis ought to be the desired
isomorphism. In fact, this statement is true, but this approach does not
conveniently show that the isomorphism is independent of basis. We shalll
therefore proceed somewhat differently.

We shall construct the map in the opposite direction without using the
Poincae-Birkhoff-Witt Theorem, appeal to the theorem to show that we
have anisomorphism, and then compute what the map is in terms of a basis.
Let Ta(g) = Py, TX(g) be then™ member of the usual filtration & (g).

We have definetll,(g) to be the image it (g) of T, (g) under the passage
T(g) — T(g)/J. Thus we can form the composition

Ta(g) = (Ta(g) + J)/J = Un(g) = Un(g)/Un_1(g).
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This composition is onto and carri&s_,(g) to 0. SinceT "(g) is a vector-
space complement B,_1(g) in T,(g), we obtain an onto linear map

T"(g) = Un(g)/Un-1(9).

Taking the direct sum ovaer gives an onto linear map

¥ : T(g) — gru(g)

that respects the grading.
Appendix A uses the notatidnfor the two-sided ideal iff (g) such that

S(g) = T(@/I:

two-sided ideal generated by all
(3.15) I=<X®Y—Y®Xwitthninnj.

T'(g)

Proposition 3.16. The linear map& . T(g) — grU(g) respects
multiplication and annihilates the defining iddalfor S(g). Therefore
Y descends to an algebra homomorphism

(3.17) ¥ S(g) — gru(e)

that respects the grading. This homomorphism is an isomorphism.

PROOF. Letx beinT"(g) and lety be inT*(g). Thenx + JisinU;(g),
and we may regargh (x) as the coset + T,_1(g) + J in U, (g) /U, _1(g),
with O in all other coordinates of &§if (g) sincex is homogeneous. Arguing
in a similar fashion withy andxy, we obtain

OO =x+Ta@+J, Y =y+Teale + I,

~

and  Y(Xy) =Xy + Trys1(g) + J.

SinceJ isanidealy (x)¥ (y) = ¥ (xy). General membessandy of T (g)
are sums of homogeneous elements, and hgnespects multiplication.

Consequently kep is a two-sided ideal. To show that ker2 I, itis
enough to show that ker contains all generators ® Y — Y ® X. We
have

~

YX®Y-YR®X)=X®Y -Y® X+ Ti(g) +J
=[X, Y]+ Tu(g) +J
= Ti(g) + J,
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and thusz maps the generatorto 0. Henfzeiescends to ahomomorphism
Y asin (3.17). _ .

Now let {X;} be an ordered basis gf The monomialsX - - - X}* in
S(g) withi; < --- < iy and with)__ jn = n form a basis ofS'(g). Let
us follow the effect of (3.17) on such a monomial. A preimage of this
monomial inT"(g) is the element

Xi1®"'®Xi1®"'®xik®"‘®xik’

in which there arg, factors ofX;  for 1 < m < k. This element maps to
the monomial ifJ,(g) that we have denote” - - - X/*, and then we pass
to the quotient),,(g)/U,_1(g). Theorem 3.8 shows that such monomials
moduloU,_;(g) form a basis o, (g)/U._1(g). Consequently (3.17) is an
isomorphism.

Inspecting the proof of Proposition 3.16, we see that ik --- < iy
and)_ . jm = n, then

(3.18a) POXE Xy = X X+ Un ().
Hence
(3.18b) ‘pﬂ(xijll e Xijkk +Un1(9) = Xijl1 T Xijkk,

as asserted in the second paragraph of this section. Note that the restriction
i; <--- < iy canbe dropped in (3.18) as a consequence of Lemma 3.9.

Corollary 3.19. Let W be a subspace daf"(g), and suppose that the
quotient mapl "(g) — S'(g) sendswW isomorphically ontaS"(g). Then
the image oW in U, (g) is a vector-space complementlig_,(g).

ProOOF Consider the diagram
(g — Un(g)

l l

S'(g) —— Un(@)/Un-1(0)
The fact that this diagram is commutative is equivalent with the conclusion
in Proposition 3.16 that : T"(g) — Un(g)/U._1(g) descends to a map
¥ S'(g) — Un(g)/Un_1(g). The proposition says that on the bottom
of the diagram is an isomorphism, and the hypothesis is that the map on
the left, when restricted t@V, is an isomorphism ont&"(g). Therefore
the composition of the map on the top followed by the map on the right is
an isomorphism when restricted W, and the corollary follows.
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We apply Corollary 3.19 to the spa@(g) of symmetrized tensors
within T"(g). As in 8A.2, S'(g) is the linear span, for alh-tuples
X1, ..., X, from g, of the elements

1
nl Z Xe =+ Xeays

T 1e6y

where&, is the symmetric group on letters. According to Proposition
A.25, we have a direct sum decomposition

(3.20) T =S@e T@nl).

We shall use this decomposition to investigate a map known as “sym-
metrization.”
Forn > 1, define a symmetrin-multilinear map

onigx---xg— U(g)

1
by on(Xg, ..., Xp) = nl Z Xea « Xemy-

" 1e6y

By Proposition A.20a we obtain a corresponding linear map, also denoted
an, from S'(g) intoU (g). Theimage 08'(g) in U (g) is clearly the same as

the image of the subspa&(g) of T"(g) in U,(g). By (3.20) and Corollary
3.19,0, is one-one fron§"(g) onto a vector-space complementig_;(g)
inUny(g), i.e.,

(3.21) Un(9) = 0n(S'(9)) ® Un_1(9).

The direct sum of the maps, for n > 0 (with 6p(1) = 1) is a linear
mapo : S(g) — U (g) such that

1
o(Xye Xn) = D Xew - X
" 1e6y

The mapo is calledsymmetrization.

Lemma 3.22. The symmetrization map : S(g) — U (g) has associ-
ated graded mag : S(g) — grU (g), with ¢ as in (3.17).

REMARK. The “associated graded map” is defined in 8A.4.
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PROOF. Let{X;} be a basis of, and letX* - - - X}, with 3", jm = n, be
a basis vector 08"(g). Undero, this vector is sent to a symmetrized sum,
but each term of the sum is congruent mdg ;(g) to (n)=X/* - - X},
by Lemma 3.9. Hence the image)qu e Xij: under the associated graded
map is _ _ _ _
= Xill1 T Xijkk +Un1(g) = w(xijf s Xijkk)a

as asserted.

Proposition 3.23. Symmetrizatiorv is a vector-space isomorphism of
S(g) ontoU (g) satisfying

(3.24) Un(9) = 0(S'(g)) ® Un_1(9).

PrROOF. Formula (3.24) is a restatement of (3.21), and the other conclu-
sion follows by combining Lemma 3.22 and Proposition A.39.

The canonical decomposition Of(g) from g = a @ b whena andb are
merely vector spaces is given in the following proposition.

Proposition 3.25.Supposg = a@® b and supposeandb are subspaces
of g. Then the mapping ® b — o (a)o (b) of S(a) ®c S(b) into U (g) is
a vector-space isomorphism onto.

PROOF. The vector spac&(a) ®c S(b) is graded consistently for the
given mapping, tha™ space of the grading beil@gzo SP(a) ®c SP(b).
The given mapping operates on an element of this space by

n n
Y a, @by, Y o@)o(bnp),
p=0

p=0

and the image of this under the associated graded map is
n
= 0(@)0(bnp) + Un_1(g).
p=0

In turn this is .
= O'(Z a® bnfp) + Unfl(g)
p=0

by Lemma 3.9. In other words the associated graded map is just the same
as foro. Hence the result follows by combining Propositions 3.23 and
A.39.
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Corollary 3.26. Suppose thag = ¢ @ p and thatt is a Lie subalgebra
of g. Then the mappingu, p) — uo (p) of U(®) ®c S(p) intoU (g) is a
vector-space isomorphism onto.

PROOFE The composition

k, p) = (0(k), p) > o (K)o (p),

sending
S(®) @c S(p) = U (®) ®c S(p) — U(g),

is anisomorphism by Proposition 3.25, and the first map is an isomorphism
by Proposition 3.23. Therefore the second map is an isomorphism, and
the notation corresponds to the statement of the corollary when we write
u=o(k.

Proposition 3.27. If g is finite dimensional, then the rird (g) is left
Noetherian.

PROOF. The associated graded algebraliofy) is isomorphic toS(g),
according to Proposition 3.16, aigdg) is a commutative Noetherian ring
by the Hilbert Basis Theorem (Theorem A.45) and the examples that follow
it. By Proposition A.47U (g) is left Noetherian.

Corollary 3.28. If g is finite dimensional andl, .. ., |, are left ideals
of finite codimension ifJ (g), then the product idedy, - - - I, is of finite
codimension irlJ (g).

REMARK. The product ideal by definition consists of all finite sums of
productsx - - - Xy, with eachx; in ;.

PrOOF. By induction it is enough to handla = 2. The vector space
U (g)/ 11 isfinite dimensional by assumption, and wedgt- |4, ..., % + 11
be a vector-space basis. Singéy) is left Noetherian by Proposition 3.27,
Proposition A.44 shows that the left iddalis finitely generated, say with
Y1, ..., Ys @S generators.

The claim is that{x;y; + I.11.} is a spanning set for the vector space
I2/111;. In fact, anyx in I, is of the formx = Zle ujy; with u; in
U(g). For eachj, writeu; + 1; = >_; ;% + |, with ¢; € C. Then
Uy, + lala = Y1 XY, + 1112, and the claim follows when we sum on
j.

Thus 1,/1.1, is finite dimensional. Since dik(g)/I.1, is equal
to dimU(g)/l, + diml,/I;1,, we conclude thatU(g)/lil, is finite
dimensional.
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4. Free Lie Algebras

Using the Poinca=Birkhoff-Witt Theorem, we can establish the exis-
tence of “free Lie algebras.” &ree Lie algebraon a setX is a pair(g, ¢)
consisting of a Lie algebr@ and a function : X — § with the following
universal mapping property: Whenevieis a complex Lie algebra and
¢ . X — [is a function, there exists a unique Lie algebra homomorphism
@ such that the diagram

(3.29) : / L

X [

commutes. We regar@d as an extension af.

Let us construct such a Lie algebra. Metonsist of all formal complex
linear combinations of the members Xf so thatV can be regarded as a
complex vector space witK as basis. We embed in its tensor algebra
viaw : V — T(V), obtainingT(V) = (V) as usual. Sincd (V)
is an associative algebra, we can regard it as a Lie algebra in the manner
of Example 2 in 8I.1. Lef be the Lie subalgebra af(V) generated by
THV).

In the setting of (3.29), we are to construct a Lie algebra homomorphism
¢ so that (3.29) commutes, and we are to show ghest unique. Extend
¢ X — [toalinearmap : V — [,andlet, : [ — U (l) be the canonical
map. The universal mapping property©fV) allows us in the diagram

T(V)

‘V/ Soa
Y

\Y, U
Liop
to extend; o ¢ to an associative algebra homomorphsmrith a(1l) = 1.
Forx € X, the commutativity of this diagram implies that

(3.30) a(ty (X)) = u(@(X)).

Let us think ofa as a Lie algebra homomorphism in (3.30). The right side
of (3.30) is in image;, and it follows thata(§) C imagey,.

Now we use the PoincerBirkhoff-Witt Theorem, which implies that
1 . [ — image, is one-one. We writg * for the inverse of this Lie algebra
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isomorphism, and we pgt = (' o a. Then@ is the required Lie algebra
homomorphism making (3.29) commute.

To see thad is unique wherf is defined this way, we observe that (3.29)
forcesg (v (X)) = @(x) for all x € X. Since the elements (x) generate
§ and sincéy is a Lie algebra homomorphisi@,is completely determined
on all of §. This proves the first statement in the following proposition.

Proposition 3.31. If X is a nonempty set, then there exists a free Lie
algebrag on X, and the image oK in § generateg. Any two free Lie
algebras orX are canonically isomorphic.

REMARK. This result was stated in Chapter Il as Proposition 2.96, and
the proof was deferred until now.

PrROOF. Existence off was proved before the statement of the proposi-
tion. We still have to prove th& is unique up to canonical isomorphism.
Let (§F, 1) and(F, ¢') be two free Lie algebras ad. We set up the diagram
(3.29) withl = § and¢ = ¢’ and invoke existence to obtain a Lie algebra
homomorphismN/ . § — §. Reversing the roles & andg’, we obtain a
Lie algebra homomorphisi: § — §. To see thafo !’ = 15, we set up
the diagram (3.29) with = § andg = (x to see that o ¢’ is an extension
of 1. By uniqueness of the extensiam, ¢ = 15. Similarly o7= 15.

5. Problems

1. Forg =sl(2, C), letQ be the member dfi (g) given by = 1h?+ef + fe,
whereh, e, and f are as in (1.5).
(&) Prove thaf2 is in the center ot (g).
(b) Letw be arepresentation ef(2, C) on a complex vector spadé and
regardV as aU (g) module. Show tha® acts inV by the operatoZ of
Lemma 1.65.

2. Letg be a finite-dimensional complex Lie algebra, and definX adh U (g)
for X € g by (adX)u = Xu — uX. Prove that ad is a representatiorgatnd
that each element d&f (g) lies in a finite-dimensional space invariant under
adg.

3. LetU(g) be the universal enveloping algebra of a complex Lie alggbra
Prove that (g) has no zero divisors.

4. (a) ldentify a free Lie algebra on a set consisting of one element.
(b) Prove that afree Lie algebra on a set consisting of two elements is infinite
dimensional.
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5. LetF be afree Lie algebra on the gé{;, X5, X3}, and letg be the quotient
obtained by setting to 0 all brackets involving three or more membe§s of
(a) Prove that ding = 6 and thay is nilpotent but not abelian.
(b) DefineB(X;, Xj) =0, B([Xi, Xj], [Xir, Xjr] =0, and

B(Xa, [X1, X2]) = B(Xz, [X3, X1]) = B(X1, [X2, X3]) = 1.

Prove thatB extends to a nondegenerate symmetric invariant bilinear
form ong.

6. Saythatacomplex Lie algehyas two-step nilpotentiff, [, h]] = 0. Prove
for each integen > 1 that that there is a finite-dimensional two-step nilpotent
Lie algebrag such that every two-step nilpotent Lie algebra of dimensgian
is isomorphic to a homomorphic image gf

7. The construction of a free Lie algelfa@n X in 84 first built a complex vector
spaceV with X as basis. Theff was obtained as the Lie algebra generated
by V within T (V). Prove that) (¥) can be identified witfT (V).

Problems 8-10 concern the diagonal mapping for a universal enveloping algebra.
Fix a complex Lie algebrg and its universal enveloping algehsdg).

8. Use the 4-multilinear mauy, Uy, Uz, Usg) —> U1Us ® Ugug Of U (g) x U (g) x
U (g) x U(g) intoU (g) ®c U (g) to define a multiplication itJ (g) ¢ U (g).
Prove that (g) ®c U (g) becomes an associative algebra with identity.

9. Prove that there exists a unique associative algebra homomorphfsom
U(g) intoU (g) ®c U (g) suchthatA(X) = X® 1+ 1® X forall X € g and
such thatA (1) = 1.

10. If ¢; andg, are in the dual spadd (g)*, theng; ® ¢, is well defined as a
linear functional orJ (g) ®¢ U (g) sinceC ®¢ C = C canonically. Define a
producty; ¢, in U (g)* by

(p102) (U) = (91 ® @2)(A(U)),

where A is as in Problem 9. Prove that this product makkg)* into a
commutative associative algebra (without necessarily an identity).

Problems 11-13 identify (g) with an algebra of differential operators. L@&tbe

a Lie group, lefgo be the Lie algebra, and Igtbe the complexification afo. For

X € go, let X be the left-invariant vector field o@ corresponding tX, regarded
as acting in the spad@>(G) of all complex-valued functions or&. The vector
field X is aleft-invariant differential operator in the sense that it is a member
D of End:(C*°(G)) commuting with left translations such that, for eark G,
there is a charfyp, V) aboutg, sayp = (X1, ..., Xn), and there are functiomg, ...,
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in C*°(V) with the property that

gkattkn £

DI = Y Ak, (X) ———— (X)

ky kn
bounded aXl <+ 0Xn

forallx € V andf € C*(G). Such operators form a complex subalgebr®)
of End:(C*(G)) containing the identity. Moreover, ariy of this kind has such
an expansion in any chart about

11. Prove that the maj +— X extends to an algebra homomorphismlofy)
into D(G) sending 1to 1.

12. Prove that the map in Problem 11 is onto.
13. LetXq,..., X, be a basis ofio.

(a) Foreachtupléiq,...,iy) ofintegers> 0, prove that there is a function
f e C>(G) with the property thaiXy)! - - (Xp) f (1) equals 1 if
ji=11,..., jn =In, and equals 0 if not.

(b) Deduce that the map in Problem 11 is one-one.

Problems 14-22 concern the Weyl algebra and a higher-dimensional version of
the Heisenberg Lie algebra discussed in Problems 25-27 in Chapter\l. het

a real finite-dimensional vector space, and(let - ) be a nondegenerate skew-
symmetric bilinear form oV x V. TheHeisenberg Lie algebraH (V) onV

is the Lie algebrd/ @ R X in which Xq is central and/ brackets with itself by

[u, v] = (u, v)Xo. The compleXWeyl algebra W(V®) onV is the quotient of
T(V®) by the two-sided ideal generated byaty v — v ® u — (u, v)1 withu and
vinV.

14. Using Problem 45b of Chapter I, prove that the Heisenberg algebra and the

Weyl algebra orV/ are determined up to isomorphism by the dimensiov of
which must be even, sayn2

15. Verify that an example of an2dimensionaV with its form (-, -)isV = C"
with (u, v) = Im(u, v), where(-, -) is the usual Hermitian inner product on
C". For thisV, exhibit an isomorphism ofl (V) with the Lie algebra of all

0Zir

complex(n + 1)-by-(n + 1) matrices of the forrr(o 0z ) withz e C" and

000
r e R.

16. Show that the linear majgv + cXp) = v + cl is a Lie algebra homomor-
phism of H (V) into W(V®) and that its extension to an associative algebra
homomorphisr : U (H (V)®) — W(V®) is onto and has kernel equal to the
two-sided ideal generated By — 1.

17. Prove thaW(V®) has the following universal mapping property: For any
Lie algebra homomorphism of H (V) into a complex associative algebfa
with identity such thaiXy maps to 1, there exists a unique associative algebra
homomorphisn& of W(VC) into A such thatr = 7 o 1.
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18.

19.

20.

21.

22.

IIl. Universal Enveloping Algebra

Letvs, ..., von be any vector space basis Wt Prove that the elements

vk ok with integer exponents 0 spanw (V).

If dimz V = 2n, prove thatV is the vector-space direct siwh= V™ @V~
of two n-dimensional subspaces on which -) is identically 0. Show that it
is possible to choose basps ..., p, of VT andqy, ..., g, of V~ such that
(Pi. gy = éij-

LetSbe the space of all complex-valued functidhs)e "X whereP (x) =
P(xq, ..., X,) isapolynomial im variables. Show thalis mapped into itself
by the linear operatord/dx; andm; = (multiplication-byx;).

In the notation of Problems 19 and 20, ¢ebe the linear map o¥ into
End:S given by (pi) = 9/9% ande(gj) = m;. Use Problem 17 to extend
¢ to an algebra homomorphisi of W(V®) into End-S with (1) = 1,
and use Problem 16 to obtain a representatioH ¢¥ ) of S. Prove that this
representation is irreducible.

In Problem 21 prove that the algebra homomorphisnw (V) — End- S

is one-one. Conclude that the elemenis - v'gﬁ” of Problem 18 form a
vector space basis 8 (V°).





