
Chapter 4

Oscillatory integrals with
convexity

As discussed in Section 1.2, in the case of homogeneous mth order strictly
hyperbolic operators, geometric properties of the characteristic roots play
the fundamental role in determining the Lp − Lq decay; in particular, if the
characteristic roots satisfy the convexity condition of Definition 1.2.1, then
the decay is, in general, more rapid than when they do not. We will show
that a similar improvement can be obtained for operators with lower order
terms when a suitable ‘convexity condition’ holds. In Section 4.3, we shall
extend this notion of the convexity condition to functions τ : Rn → R and
prove a decay estimate for an oscillatory integral (related to the solution
representation for a strictly hyperbolic operator) with phase function τ .

First, we give a general result for oscillatory integrals and show how the
concept of functions of “convex type” allows its application to derive the
time decay.

4.1 Estimates for oscillatory integrals

The following theorem is central in proving results involving convexity condi-
tions. In some sense, it bridges the gap between the man der Corput Lemma
and the method of stationary phase, in that the former is used when there
is no convexity but gives a weaker result, while the latter can be used when
a stronger condition than simply convexity holds and gives a better result.
Here, we state and prove a result that has no reference to convexity; how-
ever, in the following section, we show how convexity (in some sense) enables
this result to be used in applications. An earlier version of this result has
appeared in [Ruzh07], with applications to equations with time dependent
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54 CHAPTER 4. OSCILLATORY INTEGRALS WITH CONVEXITY

homogeneous symbols in [MR09]. For completeness we also include a more
detailed proof here.

Theorem 4.1.1. Consider the oscillatory integral

I(λ, ν) =

∫

RN
eiλΦ(y,ν)A(y, ν)g(y) dy , (4.1.1)

where N ∈ N, I : [0,∞)×N → C, N is any set of parameters ν, and

(I1) there exists a bounded open set U ⊂ RN such that g ∈ C∞0 (U);

(I2) Φ(y, ν) is a complex-valued function such that ImΦ(y, ν) ≥ 0 for all
y ∈ U , ν ∈ N ;

(I3) for some fixed z ∈ RN , some δ > 0, and some γ ∈ N, γ ≥ 2, the
function

F (ρ, ω, ν) := Φ(ρω + z, ν)

satisfies

|∂ρF (ρ, ω, ν)| ≥ Cργ−1 and |∂mρ F (ρ, ω, ν)| ≤ Cmρ
1−m|∂ρF (ρ, ω, ν)|

for all (ω, ν) ∈ SN−1×N , all integers 1 ≤ m ≤ [N/γ]+1 and all ρ > 0,
for which ρω + z ∈ U ;

(I4) for each multi-index α such that |α| ≤
[
N
γ

]
+ 1, there exists a constant

Cα > 0 such that |∂αyA(y, ν)| ≤ Cα for all y ∈ U , ν ∈ N .

Then there exists a constant C = CN,γ > 0 such that

|I(λ, ν)| ≤ C(1 + λ)−
N
γ for all λ ∈ [0,∞), ν ∈ N . (4.1.2)

Constant C in (4.1.2) is independent of λ and ν.

Remark 4.1.2. This theorem extends to the case where A(y, ν) is replaced
by A(y, ν ′), where ν ′ may be independent of the variable ν appearing in the
phase function Φ(y, ν); these parameters do not have to be related in any
way, provided the estimates in hypotheses (I2) and (I4) hold uniformly in
the appropriate parameters. We will simply unite both sets of parameters
and call this union ν again.

Proof. It is clear that (4.1.2) holds for 0 ≤ λ ≤ 1 since |I(λ, ν)| is bounded
for such λ.
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Now, consider the case where λ ≥ 1. Set y = ρω + z, where ω ∈ SN−1

(using the convention that S0 = {−1, 1}), ρ > 0 and z ∈ RN is some fixed
point; then

I(λ, ν) =

∫

SN−1

∫ ∞

0

eiλΦ(ρω+z,ν)A(ρω + z, ν)g(ρω + z)ρN−1 dρ dω .

By the compactness of SN−1, it suffices to prove (4.1.2) for the inner integral.
Choose a function χ ∈ C∞0 ([0,∞)), 0 ≤ χ(s) ≤ 1 for all s, which is

identically 1 on 0 ≤ s ≤ 1
2
and is zero when s ≥ 1; then, writing F (ρ, ω, ν) =

Φ(ρω + z, ν), we split the inner integral into the sum of the two integrals

I1(λ, ν, ω, z) =

∫ ∞

0

eiλF (ρ,ω,ν)A(ρω + z, ν)g(ρω + z)χ(λ
1
γ ρ)ρN−1 dρ ,

I2(λ, ν, ω, z) =

∫ ∞

0

eiλF (ρ,ω,ν)A(ρω + z, ν)g(ρω + z)(1− χ)(λ
1
γ ρ)ρN−1 dρ .

Let us first look at I1 = I1(λ, ν, ω, z); since χ(λ
1
γ ρ) is zero for λ

1
γ ρ ≥ 1,

we have, by the change of variables ρ̃ = λ
1
γ ρ,

|I1| ≤ C

∫ ∞

0

χ(λ
1
γ ρ)ρN−1 dρ = C

∫ ∞

0

(ρ̃)N−1λ−
N−1
γ χ(ρ̃)λ−

1
γ dρ̃

≤ Cλ−
N
γ

∫ 1

0

(ρ̃)N−1 dρ̃ = Cλ−
N
γ ,

where we have used |eiλF (ρ,ω,ν)| ≤ 1 since ImF (ρ, ω, ν) ≥ 0 for all ρ, ω, ν by
hypothesis (I2); this is the desired estimate for |I1|.
In order to estimate I2 = I2(λ, ν, ω, z), let us first define the operator

L := (iλ∂ρF (ρ, ω, ν))
−1 ∂
∂ρ
and observe that

L(eiλF (ρ,ω,ν)) = eiλF (ρ,ω,ν) .

Denoting the adjoint of L by L∗, we have, for each l ∈ N ∪ {0},

I2 =

∫ ∞

0

eiλF (ρ,ω,ν)(L∗)l[A(ρω + z, ν)g(ρω + z)(1− χ)(λ
1
γ ρ)ρN−1] dρ .

Now,

(L∗)l =
( i
λ

)l∑
Cs1,...,sp,p,r,l

∂s1ρ F . . . ∂
sp
ρ F

(∂ρF )l+p
(ρ, ω, ν)

∂r

∂ρr
,
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where the sum is over all integers s1, . . . , sp, p, r ≥ 0 such that s1+ ∙ ∙ ∙+ sp+
r − p = l. By Hypothesis (I3),

∣
∣
∣
∂s1ρ F . . . ∂

sp
ρ F

(∂ρF )l+p
(ρ, ω, ν)

∣
∣
∣ ≤ Cρp−s1−∙∙∙−sp−lγ+l = Cρr−lγ .

Also, we claim that, for r ≤ [N
γ
] + 1,

∣
∣
∣
∂r

∂ρr
[A(ρω+ z, ν)g(ρω+ z)(1− χ)(λ

1
γ ρ)ρN−1]

∣
∣
∣ ≤ CNρ

N−1−rχ̃(λ, ρ) , (4.1.3)

where χ̃(λ, ρ) is a smooth function in ρ which is zero for λ
1
γ ρ < 1

2
. Assuming

this is true, we see that, for large enough l—it suffices to take l = [N
γ
] + 1,

i.e. N − lγ < 0—we have,

|I2| ≤CNλ
−l

∫ ∞

0

∑
Cs1,...,sp,p,r,lρ

r−lγ [ρN−1−r]χ̃(λ, ρ) dρ

≤CNλ
−l

∫ ∞

1
2
λ
− 1γ

ρN−1−lγ dρ = CNλ
−l
[ ρN−lγ

N − lγ

]∞
1
2
λ
− 1γ
= CN,γλ

−N
γ ;

together with the estimate for |I1|, this yields the desired estimate (4.1.2).
Here we need l > N/γ, which means an application of (L∗)l, or estimates on
∂αρF for |α| ≤ l. This gives a restriction on the number m of derivatives in
(I3).
Finally, let us check (4.1.3). It holds because:

(i) |∂rρ(ρ
N−1)| ≤ Cr,Nρ

N−1−r for all r ∈ N.

(ii) For each r ∈ N, ∂rρ[(1 − χ)(λ
1
γ ρ)] = −λ

r
γ (∂rsχ)(λ

1
γ ρ); now, (∂sχ)(λ

1
γ ρ)

is supported on the set
{
(λ, ρ) ∈ (0,∞)× (0,∞) : 1

2
< λ

1
γ ρ < 1

}
, so,

in particular, on its support λ
1
γ < ρ−1; therefore,

|∂rρ[(1− χ)(λ
1
γ ρ)]| ≤ Cρ−r(∂rsχ)(λ

1
γ ρ) for all r ∈ N ,

and (∂rsχ)(λ
1
γ ρ) is smooth in ρ and zero for λ

1
γ ρ ≤ 1

2
.

(iii) By hypothesis (I4), |∂rρA(ρω+z, ν)| ≤ Cr for each r ≤ [Nγ ]+1 (this can

be seen for r = 1 by noting that ∂ρA(ρω+ z, ν) = ω ∙∇yA(y, ν)
∣
∣
y=ρω+z

,

and then for r ≥ 2 by calculating the higher derivatives). Also, g is
smooth in U , so, |∂rρ[A(ρω + z, ν)g(ρω + z)]| ≤ Cr for r ≤ [Nγ ] + 1.
Furthermore, by hypothesis (I1), there exists a constant ρ0 > 0 so that
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g(ρω + z) = 0 for ρ > ρ0; thus, ∂
r
ρ[A(ρω + z, ν)g(ρω + z)] is zero for

ρ > ρ0; hence, for r ≤ [Nγ ] + 1,

|∂rρ[A(ρω + z, ν)g(ρω + z)]| ≤ Crρ
r
0ρ
−r .

This completes the proof of the claim, and thus the theorem.

4.2 Functions of convex type

Hypothesis (I3) of Theorem 4.1.1 is sufficient for the result of the theorem to
hold; however, it is often difficult to check. For this reason, we now introduce
the concept of a function of convex type—a condition that is far simpler to
verify—and show that for such functions, (I3) automatically holds.

Definition 4.2.1. Let F = F (ρ, υ) : [0,∞) × Υ → C be a function that is
smooth in ρ for each fixed υ ∈ Υ, where Υ is some parameter space. Write
its M th order Taylor expansion in ρ about 0 in the form

F (ρ, υ) =
M∑

j=0

aj(υ)ρ
j +RM(ρ, υ) , (4.2.1)

where RM(ρ, υ) =
∫ ρ
0
∂M+1s F (s, υ) (ρ−s)

M

M !
ds is the M th remainder term.

We say that F is a function of convex type γ if, for some γ ∈ N, γ ≥ 2,
and for some δ > 0, we have

(CT1) a0(υ) = a1(υ) = 0 for all υ ∈ Υ (i.e. the Taylor expansion of F starts
from order ≥ 2);

(CT2) there exists a constant C > 0 such that
∑γ
j=2|aj(υ)| ≥ C for all

υ ∈ Υ;

(CT3) for each υ ∈ Υ, |∂ρF (ρ, υ)| is increasing in ρ for 0 < ρ < δ;

(CT4) for each k ∈ N, ∂kρF (ρ, υ) is bounded uniformly in 0 < ρ < δ, υ ∈ Υ.

Remark 4.2.2. Note that, if F is real-valued, then (CT3) implies that we
have either ∂2ρF (ρ, υ) ≥ 0 for all 0 < ρ < δ, or ∂2ρF (ρ, υ) ≤ 0 for all
0 < ρ < δ—this is because ∂ρF (0, ν) = 0. This is the connection with
convexity, hence the name of such functions.

Such functions have the following useful property:
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Lemma 4.2.3. Let F (ρ, υ) be a function of convex type γ. Then, for each
sufficiently small 0 < δ ≤ 1 there exist constants C,Cm > 0 such that

|∂ρF (ρ, υ)| ≥ Cργ−1 (4.2.2)

and |∂mρ F (ρ, υ)| ≤ Cmρ
1−m|∂ρF (ρ, υ)| (4.2.3)

for all 0 < ρ < δ, υ ∈ Υ and m ∈ N.

Remark 4.2.4. A version of this lemma appeared in [Sug94] for analytic
functions without dependence on υ and is based on Lemmas 3, 4 and 5 of
Randol [Ran69] (which also appeared in Beals [Bea82], Lemmas 3.2, 3.3).
Lemma 4.2.3 extends it to functions that are only smooth and which depend
on an additional parameter, which will be necessary of our analysis. A limited
regularity version of this lemma appeared in [Ruzh07]. The proof of lemma
given here is based on estimating the remainder rather than on using the
Cauchy’s integral formula for analytic functions.

Proof. First, let us note that, for 0 < ρ ≤ 1 we have, by (CT2),

π(ρ, υ) :=

γ∑

j=2

j|aj(υ)|ρ
j−1 ≥ Cργ−1 . (4.2.4)

Thus, in order to prove (4.2.2), it suffices to show

|∂ρF (ρ, υ)| ≥ Cπ(ρ, υ) for all 0 < ρ < δ, υ ∈ Υ ; (4.2.5)

For 1 ≤ m ≤ γ, we have, using (4.2.1),

∂mρ F (ρ, υ) =

γ−m∑

k=0

(k +m)!

k!
ak+m(υ)ρ

k +Rm,γ−m(ρ, υ) , (4.2.6)

where Rm,γ−m(ρ, υ) =
∫ ρ
0
∂γ+1ρ F (s, υ) (ρ−s)

γ−m

(γ−m)! ds is the remainder term of the

(γ −m)th Taylor expansion of ∂mρ F (ρ, υ). By (CT4) and (4.2.4), we see

|Rm,γ−m(ρ, υ)| ≤ Cγ,mρ
γ+1−m ≤ Cγ,mπ(ρ, υ)ρ

2−m for 0 < ρ < δ . (4.2.7)

Hence, for 0 < ρ < δ,

|∂ρF (ρ, υ)| =
∣
∣
∣
γ−1∑

k=0

(k + 1)ak+1(υ)ρ
k +R1,γ−1(ρ, υ)

∣
∣
∣

≥
∣
∣
∣
γ∑

j=2

jaj(υ)ρ
j−1
∣
∣
∣−
∣
∣
∣R1,γ−1(ρ, υ)

∣
∣
∣ ≥

∣
∣
∣
γ∑

j=2

jaj(υ)ρ
j−1
∣
∣
∣− Cγπ(ρ, υ)ρ .
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Now, by (CT3), |∂ρF (ρ, υ)| is increasing in ρ for each υ ∈ Υ and, by
(CT1), ∂ρF (0, υ) = 0; therefore,

|∂ρF (ρ, υ)| = max
0≤σ≤ρ

|∂ρF (σ, υ)|

≥ max
0≤σ≤ρ

∣
∣
∣
γ∑

j=2

jaj(υ)σ
j−1
∣
∣
∣− max

0≤σ≤ρ
Cγπ(σ, υ)σ

= max
0≤σ̄≤1

∣
∣
∣
γ∑

j=2

jaj(υ)ρ
j−1σ̄j−1

∣
∣
∣− Cγπ(ρ, υ)ρ ,

since π(σ, υ)σ =
∑γ
j=2 j|aj(υ)|σ

j clearly achieves its maximum on 0 ≤ σ ≤ ρ
at σ = ρ. Noting that

max
0≤σ̄≤1

∣
∣
∣
L∑

j=1

zjσ̄
j−1
∣
∣
∣ and

L∑

j=1

|zj|

are norms on CL and, hence, are equivalent, we immediately get

|∂ρF (ρ, υ)| ≥C
γ∑

j=2

j|aj(υ)|ρ
j−1 − Cγπ(ρ, υ)ρ

≥(C − Cγδ)π(ρ, υ) = Cγ,δπ(ρ, υ) ,

which completes the proof of (4.2.5).
To prove (4.2.3), we consider the cases 1 ≤ m ≤ γ and m > γ separately.
For m > γ, we have, by (CT4),

|∂mρ F (ρ, υ)| ≤ Cm ≤ Cm,δρ
γ+1−m for 0 < ρ < δ ,

since γ+1−m ≤ 0, and, thus, ργ+1−m ≥ δγ+1−m > 0; so, by (4.2.2), we have

|∂mρ F (ρ, υ)| ≤ Cm,δρ
2−m|∂ρF (ρ, υ)| for 0 < ρ < δ, m > γ . (4.2.8)

For 1 ≤ m ≤ γ, we have the representation (4.2.6). It is clear that

∣
∣
∣
γ−m∑

k=0

(k +m)!

k!
ak+m(υ)ρ

k
∣
∣
∣ ≤ Cmπ(ρ, υ)ρ

1−m ,

which, together with (4.2.7) and (4.2.5), yields

|∂mρ F (ρ, υ)| ≤ Cm,δρ
1−m|∂ρF (ρ, υ)| for 0 < ρ < δ, 1 ≤ m ≤ γ .

This, together with (4.2.8), completes the proof of (4.2.3) and, thus, the
lemma.
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This lemma means we have the following alternative version of Theo-
rem 4.1.1.

Corollary 4.2.5. Hypothesis (I3) of Theorem 4.1.1 may be replaced by:

(I3′) for some fixed z ∈ RN , the function F (ρ, ω, ν) := Φ(ρω+z, ν) is a func-
tion of convex type γ, for some γ ∈ N, in the sense of Definition 4.2.1
with (ω, ν) ∈ SN−1 ×N ≡ Υ.

4.3 Convexity condition for real-valued phases

Using the results of the previous two sections, we can now prove a series
of results for which a so-called convexity condition holds; here we recall
Definitions 2.2.3 and 2.2.4 from Section 2 and prove the basic result for real-
valued functions. We recall that a smooth function τ : Rn → R is said
to satisfy the convexity condition if Σλ is convex for each λ ∈ R (and the
empty set is considered to be convex). The maximal order of contact of a
hypersurface Σ is defined as follows. Let σ ∈ Σ, and denote the tangent
plane at σ by Tσ. Let P be a plane containing the normal to Σ at σ and
denote the order of the contact between the line Tσ ∩P and the curve Σ∩P
by γ(Σ; σ, P ). Then we set

γ(Σ) := sup
σ∈Σ
sup
P

γ(Σ; σ, P ) .

In the proof of Theorem 2.2.6 we will need a Besov space version of the
estimate for the kernel. For this, let us introduce some useful notation for
a family of cut-off functions gR ∈ C∞0 (R

n), R ∈ [0,∞): these functions will
correspond to the cut-offs to annuli in the frequency space and we need to
trace the dependence on the parameter R. Suppose g ∈ C∞0 (R

n) is such that,
for some constants c0, c1 ≥ 0, it is supported in the set

{ξ : c0 < |ξ| < c1} ,

and let g0 ∈ C∞0 (R
n \{0}) be another (arbitrary) compactly supported func-

tion. Then, for R ≥ 0, set

gR(ξ) :=

{
g(ξ/R) if R ≥ 1,

g0(ξ) if 0 ≤ R < 1.
(4.3.1)

Now we can prove the main convexity theorem:

Theorem 4.3.1. Suppose τ : Rn → R satisfies the convexity condition. Set
γ := supλ>0 γ(Σλ(τ)) and assume this is finite. Let a(ξ) be a symbol of order
n−1
γ
− n of type (1, 0) on Rn ; furthermore, on supp a, we assume:
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(i) for all multi-indices α there exists a constant Cα > 0 such that

|∂αξ τ(ξ)| ≤ Cα(1 + |ξ|)
1−|α|;

(ii) there exist constants M,C > 0 such that for all |ξ| ≥ M we have
|τ(ξ)| ≥ C|ξ|;

(iii) there exists a constant C0 > 0 such that |∂ωτ(λω)| ≥ C0 for all ω ∈
Sn−1, λ > 0; in particular, |∇τ(ξ)| ≥ C0 for all ξ ∈ Rn \ {0};

(iv) there exists a constant R1 > 0 such that, for all λ > 0,

1

λ
Σλ(τ) ≡

1

λ
{ξ ∈ Rn : τ(ξ) = λ} ⊂ BR1(0) .

Then, the following estimate holds for all R ≥ 0, x ∈ Rn, t > 1:

∣
∣
∣

∫

Rn
ei(x∙ξ+τ(ξ)t)a(ξ)gR(ξ) dξ

∣
∣
∣ ≤ Ct−

n−1
γ , (4.3.2)

where gR(ξ) is as given in (4.3.1) and C > 0 is independent of R.

Remark 4.3.2. For an integral of this type with some specific compactly
supported function, χ ∈ C∞0 (R

n) say, in place of gR, we can just use the
result for R = 0. In this way we obtain Corollary 2.2.7.

Proof. We may assume throughout, without loss of generality, that either
τ(ξ) ≥ 0 for all ξ ∈ Rn or τ(ξ) ≤ 0 for all ξ ∈ Rn. Indeed, hypothesis (ii)
and the continuity of τ ensure that either τ(ξ) is positive for all |ξ| ≥ M or
negative for all |ξ| ≥ M . In the case where τ(ξ) is positive for all |ξ| ≥ M ,
set

τ+(ξ) := τ(ξ) + min(0, inf
|ξ|<M

τ(ξ)) ≥ 0 for all ξ ∈ Rn.

Now, τ(ξ) − τ+(ξ) is a constant (in particular, it is independent of ξ) and
|ei[τ(ξ)−τ+(ξ)]t| = 1, so it suffices to show

∣
∣
∣

∫

Rn
ei(x∙ξ+τ+(ξ)t)a(ξ)gR(ξ) dξ

∣
∣
∣ ≤ Ct−

n−1
γ .

In the case where τ(ξ) is negative for |ξ| ≥ M , set τ̃(ξ) := −τ(ξ) and by
similar reasoning to above, it is sufficient to show

∣
∣
∣

∫

Rn
ei(x∙ξ−τ̃+(ξ)t)a(ξ)gR(ξ) dξ

∣
∣
∣ ≤ Ct−

n−1
γ ,
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where −τ̃+(ξ) ≤ 0 for all ξ ∈ Rn.
We begin by dividing the integral into two parts: near to the wave-front

set, i.e. points where ∇ξ[x ∙ ξ + τ(ξ)t] = 0, and away from such points. To
this end, we introduce a cut-off function κ ∈ C∞0 (R

n), 0 ≤ κ(y) ≤ 1, which
is identically 1 in the ball of radius r > 0 (which will be fixed below) centred
at the origin, Br(0), and identically 0 outside the ball of radius 2r, B2r(0).
Then we estimate the following two integrals separately:

I1(t, x) :=

∫

Rn
ei(x∙ξ+τ(ξ)t)a(ξ)gR(ξ)κ

(
t−1x+∇τ(ξ)

)
dξ ,

I2(t, x) :=

∫

Rn
ei(x∙ξ+τ(ξ)t)a(ξ)gR(ξ)(1− κ)

(
t−1x+∇τ(ξ)

)
dξ .

For I2(t, x) we have the following result:

Lemma 4.3.3. Suppose a(ξ) is a symbol of order j ∈ R. Then, for each
l ∈ N with l > n+ j, we have, for all t > 0,

|I2(t, x)| ≤ Cr,lt
−l , (4.3.3)

where the constants Cr,l > 0 are independent of R.

Proof. In the support of (1−κ)(t−1x+∇τ(ξ)), we have |x+t∇τ(ξ)| ≥ rt > 0,
so we can write

(x+ t∇τ(ξ))
i|x+ t∇τ(ξ)|2

∙ ∇ξ(e
i(x∙ξ+τ(ξ)t)) = ei(x∙ξ+τ(ξ)t) ;

therefore, denoting the adjoint to P ≡ (x+t∇τ(ξ))
i|x+t∇τ(ξ)|2 ∙ ∇ξ by P

∗, we get

I2(t, x) =

∫

Rn
ei(x∙ξ+τ(ξ)t)(P ∗)l

[
a(ξ)gR(ξ)(1− κ)

(
t−1x+∇τ(ξ)

)]
dξ

for each l ∈ N. We claim that for each l there exists some constant Cr,l > 0
independent of R so that, when t > 1, we have

(P ∗)l
[
a(ξ)gR(ξ)(1− κ)

(
t−1x+∇τ(ξ)

)]
≤ Cr,lt

−l(1 + |ξ|)j−l ; (4.3.4)

assuming this, we obtain,

|I2(t, x)| ≤ Cr,lt
−l

∫

Rn

1

(1 + |ξ|)l−j
dξ .

Noting that
∫
Rn

1
(1+|ξ|)l−j dξ converges for l − j > n yields the desired esti-

mate (4.3.3).
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It remains to prove (4.3.4). Let f ≡ f(ξ; x, t) be a function that is zero
for |x + t∇τ(ξ)| ≤ rt and is continuously differentiable with respect to ξ;
then,

P ∗f = ∇ξ ∙
[ (x+ t∇τ(ξ))
i|x+ t∇τ(ξ)|2

f
]
=

tΔτ(ξ)

i|x+ t∇τ(ξ)|2
f +

(x+ t∇τ(ξ))
i|x+ t∇τ(ξ)|2

∙ ∇ξf

−
2t(x+ t∇τ(ξ)) ∙ [∇2τ(ξ) ∙ (x+ t∇τ(ξ))]

i|x+ t∇τ(ξ)|4
f . (4.3.5)

Hence, using |x+t∇τ(ξ)| ≥ rt (hypothesis on f) and |∂ατ(ξ)| ≤ C(1+|ξ|)1−|α|

(hypothesis (i)), we have

|P ∗f | ≤ Crt
−1[(1 + |ξ|)−1|f |+ |∇ξf |] . (4.3.6)

Now, for all multi-indices α and for all ξ ∈ Rn, we get

• |∂αa(ξ)| ≤ Cα(1 + |ξ|)j−|α| for all ξ ∈ Rn as a ∈ S
j
1,0(R

n);

• |∂αξ
[
(1 − κ)

(
t−1x + ∇τ(ξ)

)]
| ≤ Cα(1 + |ξ|)−|α|, for all ξ ∈ Rn—here we

have used hypothesis (i) once more. Also, it is zero for each α when
|x+ t∇τ(ξ)| ≤ rt by the definition of κ.

Furthermore, |∂αgR(ξ)| = |∂αg0(ξ)| ≤ Cα(1 + |ξ|)−|α| for 0 ≤ R < 1, since
C∞0 (R

n \ {0}) ⊂ S01,0(R
n). For R ≥ 1, we have:

∂αgR(ξ) = ∂
α[g(ξ/R)] = R−|α|(∂αg)(ξ/R) and g ∈ S01,0(R

n)

=⇒ |∂αgR(ξ)| ≤ CαR
−|α|(1 + |ξ/R|)−|α| ≤ Cα(1 + |ξ|)

−|α| .

Therefore,

|∂αgR(ξ)| ≤ Cα(1 + |ξ|)
−|α| for all ξ ∈ Rn and multi-indices α , (4.3.7)

where the Cα > 0 are independent of R.
Hence, by (4.3.6), we obtain

∣
∣P ∗[a(ξ)gR(ξ)(1− κ)

(
t−1x+∇τ(ξ)

)
]
∣
∣ ≤ Crt

−1(1 + |ξ|)j−1 .

To prove (4.3.4) for l ≥ 2 we do induction on l. Note that

|(P ∗)lf | ≤ Crt
−1[(1 + |ξ|)−1|(P ∗)l−1f |+ |∇ξ{(P

∗)l−1f}|] .

The first term satisfies the desired estimate by the inductive hypothesis. For
the second term, repeated application of the properties of a(ξ), g(ξ) and
(1 − κ)(t−1x + ∇τ(ξ)) noted above to inductively estimate derivatives of
(P ∗)l

′
f , 1 ≤ l′ ≤ l − 2 yields the desired estimate. This completes the proof

of the lemma.
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This lemma, with j = n−1
γ
− n, means that it suffices to prove (4.3.2) for

I1(t, x), where |t−1x+∇τ(ξ)| < 2r.
Let {Ψ`(ξ)}

L
`=1 be a partition of unity in R

n where Ψ`(ξ) ∈ C∞(Rn)
is supported in a narrow (the breadth will be fixed below) open cone K`,
` = 1, . . . , L; let us assume that K1 contains the point en = (0, . . . , 0, 1)
(if necessary, relabel the cones to ensure this) and also that each K`, ` =
1, . . . , L, can be mapped onto K1 by rotation. Then, it suffices to estimate

I ′1(t, x) =

∫

Rn
ei(x∙ξ+τ(ξ)t)a(ξ)gR(ξ)Ψ1(ξ)κ

(
t−1x+∇τ(ξ)

)
dξ , (4.3.8)

since the properties of τ(ξ), a(ξ), gR(ξ) and κ(t
−1x+∇τ(ξ)) used throughout

are invariant under rotation.
By hypothesis (iii), the level sets Σλ = {ξ ∈ Rn : τ(ξ) = λ} are all non-

degenerate (or empty). Furthermore, the Implicit Function Theorem allows
us to parameterise the intersection of the surface Σ′λ ≡

1
λ
Σλ and the cone

K1:
K1 ∩ Σ

′
λ = {(y, hλ(y)) : y ∈ U} ;

here U ⊂ Rn−1 is a bounded open set for which p(U) = Sn−1 ∩ K1 where
p(y) = (y,

√
1− |y|2), and hλ : U → R is a smooth function for each λ > 0; in

particular, each hλ is concave due to τ(ξ) satisfying the convexity condition,
i.e. Σ′λ is convex for each λ ∈ R. Then, in the case that τ(ξ) ≥ 0 for all
ξ ∈ Rn, the cone K1 is parameterised by

K1 = {(λy, λhλ(y)) : λ > 0, y ∈ U} ,

and when τ(ξ) ≤ 0 for all ξ ∈ Rn,

K1 = {(λy, λhλ(y)) : λ < 0, y ∈ U} .

Now, let n : K1 ∩ Σ′λ → Sn−1 be the Gauss map,

n(ζ) =
∇τ(ζ)
|∇τ(ζ)|

.

By the definition of κ(t−1x+∇τ(ξ)), we have

|t−1x− (−∇τ(ξλ))| < 2r

for each ξλ ∈ K1 ∩ Σ′λ that is also in the support of the integrand of (4.3.8).
Hence, provided r > 0 is taken sufficiently small, the convexity of Σ′λ ensures
that the points t−1x/|t−1x| and −n(ξλ) are close enough so that there exists
z(λ) ∈ U (for each ξλ ∈ K1 ∩ Σ′λ) satisfying

n
(
z(λ), hλ(z(λ))

)
= −t−1x/|t−1x| = −x/|x| ∈ Sn−1 .
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Also, (−∇yhλ(y), 1) is normal to Σ′λ at (y, hλ(y)), so, writing x = (x
′, xn),

we have

−
x

|x|
=
(−∇yhλ(z(λ)), 1)
|(−∇yhλ(z(λ)), 1)|

=⇒ −
xn

|x|
=

1

|(−∇yhλ(z(λ)), 1)|

and −
x′

|x|
=

−∇yhλ(z(λ))
|(−∇yhλ(z(λ)), 1)|

=
xn∇yhλ(z(λ))

|x|
;

therefore, −x′ = xn∇yhλ(z(λ)). We claim that xn is away from 0 provided
the breadth of the cone K1 is chosen to be sufficiently narrow, so

x′

xn
= −∇yhλ(z(λ)) . (4.3.9)

To prove this claim, first recall that Σ′λ ⊂ BR1(0) for all λ > 0 (hy-

pothesis (iv)) and note that ∂ξnτ(ξ) is absolutely continuous on BR1(0) (it is
continuous in Rn): taking C0 > 0 as in hypothesis (iii), we get that

there exists δ > 0 so that |η1 − η2| < δ, where η1, η2 ∈ BR1(0),

implies |∂ξnτ(η
1)− ∂ξnτ(η

2)| < C0/4 .
(4.3.10)

Then, fix the breadth of K1 so that the maximal shortest distance from a
point ξ ∈ K1 ∩ (

⋃
λ>0Σ

′
λ) to the ray {μen : μ > 0} is less than this δ, i.e.

sup

{

inf
μ>0
|ξ − μen| : ξ ∈ K1 ∩

( ⋃

λ>0

Σ′λ
)
}

< δ .

Now, observe that for any ξ0 ∈ Rn, μ > 0, we have
∣
∣xn
t

∣
∣ ≥ |∂ξnτ(μen)| − |∂ξnτ(ξ

0)− ∂ξnτ(μen)| − |
xn
t
+ ∂ξnτ(ξ

0)| .

Choose ξ0 ∈ K1∩Σ′λ∩supp[κ(t
−1x+∇τ(ξ))] and μ > 0 so that |ξ0−μen| < δ

and, hence,
|∂ξnτ(ξ

0)− ∂ξnτ(μen)| < C0/4;

also, by hypothesis (iii), |∂ξnτ(μen)| ≥ C0, so

|t−1xn| ≥ 3C0/4− 2r.

Taking r sufficiently small, less than C0/8 say, (ensuring r > 0 satisfies the
earlier condition also) we get

|xn| ≥ ct > 0 (4.3.11)
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proving the claim.
Before estimating (4.3.8), we introduce some useful notation: by the def-

inition of gR(ξ), (4.3.1), when R ≥ 1

ξ ∈ supp gR =⇒ Rc0 < |ξ| < Rc1;

also, if 0 ≤ R < 1, then there exist constants c̃0, c̃1 > 0 so that c̃0 < |ξ| < c̃1
for ξ ∈ supp gR. Thus, by hypotheses (i) and (ii), there exist constants
c′0, c

′
1 > 0 such that

{
Rc′0 < |τ(ξ)| < Rc′1 if R ≥ 1 and ξ ∈ supp gR,

c′0 < |τ(ξ)| < c′1 if 0 ≤ R < 1 and ξ ∈ supp gR.

Let G ∈ C∞0 (R) be identically one on the set {s ∈ R : c
′
0 < s < c′1} and iden-

tically zero in a neighbourhood of the origin; writing R = max(R, 1), this
then satisfies

gR(ξ) = gR(ξ)G(τ(ξ)/R) .

Also, for simplicity, write

ã(ξ) ≡ ãR(ξ) := a(ξ)gR(ξ)Ψ1(ξ) ; (4.3.12)

this is a type (1,0) symbol of order n−1
γ
−n supported in the cone K1, and the

constants in the symbolic estimates are all independent of R as each gR(ξ),
R ≥ 0, is a symbol of order 0 with constants independent of R (see (4.3.7)).
We now turn to estimating (4.3.8). Using the change of variables ξ 7→

(λy, λhλ(y)) and equality (4.3.9), it becomes

I ′1(t, x) =

∫ ∞

0

∫

U

ei[λx
′∙y+λxnhλ(y)+τ(λy,λhλ(y))t]a(λy, λhλ(y))

gR(λy, λhλ(y))Ψ1(λy, λhλ(y))κ
(
t−1x+∇τ(λy, λhλ(y))

) dξ

d(λ, y)
dy dλ

=

∫ ∞

0

∫

U

eiλxn[−∇yhλ(z(λ))∙y+hλ(y)+tx
−1
n ]ã(λy, λhλ(y))

G(λ/R)κ
(
t−1x+∇τ(λy, λhλ(y))

) dξ

d(λ, y)
dy dλ,

(4.3.13)

where we have used τ(λy, λhλ(y)) = λ (definition of Σλ) in the last line.
Here, note that

dξ

d(λ, y)
=

∣
∣
∣
∣

λI y
λ∇yhλ(y) ∂λ[λhλ(y)]

∣
∣
∣
∣ = λ

n−1(∂λ[λhλ(y)]− y ∙ ∇yhλ(y)) ,
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where I is the identity matrix. Differentiating τ(λy, λhλ(y)) = λ with respect
to λ in the first case and with respect to y in the second, gives

y ∙ ∇ξ′τ(λy, λhλ(y)) + ∂λ[λhλ(y)]∂ξnτ(λy, λhλ(y)) = 1 ,

λ∇ξ′τ(λy, λhλ(y)) + λ∇yhλ(y)∂ξnτ(λy, λhλ(y)) = 0 .

Substituting the second of these equalities into the first yields

(
∂λ[λhλ(y)]− y ∙ ∇yhλ(y)

)
∂ξnτ(λy, λhλ(y)) = 1 .

We claim that

|∂ξnτ(λy, λhλ(y))| ≥ C > 0 . (4.3.14)

To see this, first note that

|∂ξnτ(λy, λhλ(y))| ≥ |∂ξnτ(λμen)| −
∣
∣∂ξnτ(λμen)− ∂ξnτ(λy, λhλ(y))

∣
∣

where μ > 0 is chosen as above so that |μen − (y, hλ(y))| ≤ δ; now,

|∂ξnτ(λμen)| ≥ C0

by hypothesis (iii). Also, by the Mean Value Theorem, there exists ξ̄ lying
on the segment between (λy, λhλ(y)) and λμen such that

|∂ξnτ(λμen)− ∂ξnτ(λy, λhλ(y))| ≤ C|∇ξ∂ξnτ(ξ̄)|λδ ≤ C|ξ̄|−1λδ ≤ Cδ ;

choosing δ > 0 small enough (also ensuring it satisfies condition (4.3.10)
above) completes the proof of the claim. Hence,

∣
∣
∣

dξ

d(λ, y)

∣
∣
∣ =

∣
∣
∣

λn−1

∂ξnτ(λy, λhλ(y))

∣
∣
∣ ≤ Cλn−1 . (4.3.15)

Also, note that this Jacobian is bounded below away from zero because
|∂ξnτ(ξ)| ≤ C for all ξ ∈ Rn (hypothesis (i)), which means that the transfor-
mation above is valid in K1.
Next, using the change of variables λ̃ = λxn = λx̃nt in (4.3.13), writing

h(λ, y) ≡ hλ(y) and setting x̃ := t
−1x (so x̃n = t

−1xn), we obtain

∫ ∞

0

∫

U

eiλ̃(−∇yh
(
λ̃
x̃nt
,z

(
λ̃
x̃nt

))
∙y+h
(
λ̃
x̃nt
,y

)
+x̃−1n )ã

(
λ̃
x̃nt
y, λ̃
x̃nt
h
(
λ̃
x̃nt
, y
))

G
(
λ̃
Rx̃nt

)
κ
(
x̃+∇τ

(
λ̃
x̃nt
y, λ̃
x̃nt
h
(
λ̃
x̃nt
, y
))) dξ

d(λ, y)
t−1x̃−1n dy dλ̃ .
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Therefore, using
∣
∣ dξ
d(λ,y)

∣
∣ ≤ Cλ̃n−1|x̃n|−(n−1)t−(n−1) (by (4.3.15)) and recalling

that |κ(η)| ≤ 1, we have,

|I ′1(t, x)| ≤ Ct−
n−1
γ |x̃n|

−n−1
γ

∫ ∞

0

∣
∣
∣I
(
λ̃, λ̃
x̃nt
; z
(
λ̃
x̃nt

))
G
(
λ̃
Rx̃nt

)
λ̃
n−1
γ
−1
∣
∣
∣ dλ̃ ,

(4.3.16)
where,

I
(
λ̃, λ̃
x̃nt
; z
(
λ̃
x̃nt

))
=

∫

U

eiλ̃
[
h

(
λ̃
x̃nt
,y

)
−h
(
λ̃
x̃nt
,z

)
−(y−z)∙∇yh

(
λ̃
x̃nt
,z

)]

ã
(
λ̃
x̃nt
y, λ̃
x̃nt
h
(
λ̃
x̃nt
, y
))(

λ̃
t|x̃n|

)n−n−1
γ

dy .

With Theorem 4.1.1 in mind, let us rewrite this in the form of (4.1.1):

I(λ, μ; z) =

∫

Rn−1
eiλΦ(y,μ;z)a0(μy, μhμ(y))b(y) dy ,

with arbitrary λ > 0, μ > 0 and z ∈ Rn−1, where

• Φ(y, μ; z) = hμ(y)− hμ(z)− (y − z) ∙ ∇yhμ(z);

• a0(ξ) := ã(ξ)|ξ|
n−n−1

γ ;

• b ∈ C∞0 (R
n−1) with support contained in U .

We shall show that the following conditions (numbered as in Theorem 4.1.1
and Corollary 4.2.5) are satisfied by I(λ, μ; z):

(I1) there exists a bounded set U ⊂ Rn−1 such that b ∈ C∞0 (U);

(I2) ImΦ(y, μ; z) ≥ 0 for all y ∈ U , μ > 0;

(I3′) F (ρ, ω, μ; z) = Φ(ρω + z, μ; z), ω ∈ Sn−2, ρ > 0, is a function of convex
type γ (see Definition 4.2.1);

(I4) there exist constants Cα such that |∂αy [a0(μy, μhμ(y))]| ≤ Cα for all
y ∈ U , μ > 0 and |α| ≤ [n−1

γ
] + 1.

Assuming for now that these hold, Theorem 4.1.1 (or, more precisely, Corol-
lary 4.2.5) states that, for all λ > 0, μ > 0,

|I(λ, μ; z)| ≤ C(1 + λ)−
n−1
γ ≤ Cλ−

n−1
γ .
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This, together with (4.3.16), gives

|I ′1(t, x)| ≤ Ct−
n−1
γ |x̃n|

−n−1
γ

∫ ∞

0

λ̃−
n−1
γ G

(
λ̃
Rx̃nt

)
λ̃
n−1
γ
−1 dλ̃ ;

then, setting ν = λ̃
Rx̃nt
, we have

|I ′1(t, x)| ≤ Ct−
n−1
γ |x̃n|

−n−1
γ

∫ ∞

0

(Rx̃ntν)
−1G(ν)Rx̃nt dν

= Ct−
n−1
γ |x̃n|

−n−1
γ

∫ ∞

0

ν−1G(ν) dν ≤ Ct−
n−1
γ for all t > 1 .

Here we have used that G is identically zero in a neighbourhood of the origin
and that it is compactly supported and also (4.3.11) (|x̃n| ≥ C > 0); also,
note the constant here is independent of R. Since this inequality holds for
I ′1(t, x), it also holds for I1(t, x); thus, together with Lemma 4.3.3, this proves
the desired estimate (4.3.2), provided we show that the four properties (I1)–
(I4) above hold.
Now, clearly (I1) holds automatically and (I2) is true since hμ(y) is real-

valued, so ImΦ(y, μ; z) = 0 for all y ∈ U , μ > 0.
For (I3′) and (I4), we need an auxiliary result about the boundedness of

the derivatives of hλ(y):

Lemma 4.3.4. All derivatives of hλ(y) with respect to y are bounded uni-
formly in y. That is, for each multi-index α there exists a constant Cα > 0
such that

|∂αy hλ(y)| ≤ Cα for all y ∈ U, λ > 0 .

Proof. By definition, τ(λy, λhλ(y)) = λ. So,

(∇ξ′τ)(λy, λhλ(y)) + (∂ξnτ)(λy, λhλ(y))∇yhλ(y)

= λ−1∇y[τ(λy, λhλ(y))] = 0 ,

or, equivalently,

∇yhλ(y) = −
(∇ξ′τ)(λy, λhλ(y))
(∂ξnτ)(λy, λhλ(y))

. (4.3.17)

Hypothesis (i) (|∂αξ τ(ξ)| ≤ Cα(1 + |ξ|)1−|α| for all ξ ∈ Rn) and (4.3.14)
(|∂ξnτ(λy, λhλ(y))| ≥ C > 0) then ensure that |∇yhλ(y)| ≤ C for all y ∈ U ,
λ > 0.
For higher derivatives, note that |(y, hλ(y))| ≤ R1 by hypothesis (iv); so,

using hypothesis (i) once more, for all multi-indices α, there exists a constant
Cα > 0 such that

|(∂αξ τ)(λy, λhλ(y))| ≤ Cαλ
1−|α| .
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Then, differentiating (4.3.17), this ensures, by an inductive argument, that
the desired result for higher derivatives of hλ(y) holds, proving the Lemma.

Returning to the proof of (I4), note that,

|∂αξ a0(ξ)| ≤ Cα(1 + |ξ|)
−|α| for all ξ ∈ Rn ,

since, ã(ξ) is a symbol of order n−1
γ
− n (see (4.3.12) for its definition).

Together with Lemma 4.3.4, this ensures that ∂αy [a0(μy, μhμ(y)) is uniformly
bounded for all y ∈ U , μ > 0 and |α| ≤ [n−1

γ
] + 1 as required.

Finally, we show (I3′): observe that for |ρ| < δ′, some suitably small
δ′ > 0,

F (ρ, ω, μ; z) = hμ(ρω + z)− hμ(z)− ρω ∙ ∇yhμ(z)

=

γ+1∑

k=2

[ ∑

|α|=k

1

α!
(∂αy hμ)(z)ω

α
]
ρk +Rγ+1(ρ̄, ω, μ; z)ρ

γ+2 .

So, F (ρ, ω, μ; z) is a function of convex type γ if (using the numbering of
Definition 4.2.1)

(CT2)
∑γ+1
k=2

∣
∣
∣
∑
|α|=k

1
α!
(∂αy hμ)(z)ω

α
∣
∣
∣ ≥ C > 0 for all ω ∈ Sn−2, μ > 0, z ∈

Rn−1.

(CT3) |∂ρF (ρ, ω, μ; z)| is increasing in ρ for 0 < ρ < δ, for each ω ∈ Sn−2,
μ > 0;

(CT4) for each k ∈ N, ∂kρF (ρ, ω, μ; z) is bounded uniformly in 0 < ρ < δ′,
ω ∈ Sn−2, μ > 0.

Condition (CT4), follows straight from Lemma 4.3.4. The concavity
of hμ(y) means that

∂2ρF (ρ, ω, μ; z) = ∂
2
ρ [hμ(ρω + z)] = ω

tHesshμ(ρω + z)ω ≤ 0

for all 0 < ρ < δ′ and for each ω ∈ Sn−2, μ > 0, z ∈ Rn−1; coupled with the
fact that ∂ρF (0, ω, μ; z) = 0, this ensures Condition (CT3) holds.
Lastly, recall that, by definition, γ ≥ γ(Σλ) for all λ > 0, which is the

maximal order of contact between Σλ and its tangent plane; furthermore, γ
is assumed to be finite; thus, for some k ≤ γ + 1 <∞, we have

∂kρ [hμ(z + ρω)]
∣
∣
ρ=0
6= 0 .
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Now, ∂kρ [hμ(z + ρω)]
∣
∣
ρ=0
=
∑
|α|=k

k!
α!
∂αy hμ(z)ω

α, so for some k ≤ γ + 1, we

have

k!

∣
∣
∣
∣
∣
∣

∑

|α|=k

1

α!
∂αy hμ(z)ω

α

∣
∣
∣
∣
∣
∣
≥ C > 0

for all ω ∈ Sn−2. Thus, condition (CT2) holds.
This completes the proof of conditions (I1)–(I4), and, hence, Theorem

4.3.1.




