
Chapter 2

Main estimates

We will now turn to analysing the conditions under which we can obtain
Lp−Lq decay estimates for the general mth order linear, constant coefficient,
strictly hyperbolic Cauchy problem





L(Dt, Dx) ≡ Dmt u+
m∑

j=1

Pj(Dx)D
m−j
t u+

m−1∑

l=0

∑

|α|+r=l

cα,rD
α
xD

r
tu = 0, t > 0,

Dltu(0, x) = fl(x) ∈ C
∞
0 (R

n), l = 0, . . . ,m− 1, x ∈ Rn .
(2.0.1)

Results of this section will show how different behaviours of the characteristic
roots τ1(ξ), . . . , τm(ξ) affect the rate of decay that can be obtained. As in
the introduction, the symbol Pj(ξ) of Pj(Dx) is a homogeneous polynomial of
order j, and the cα,r are constants. The differential operator in the first line of
(2.0.1) will be denoted by L(Dt, Dx) and its symbol by L(τ, ξ). The principal
part of L is denoted by Lm. Thus, Lm(τ, ξ) is a homogeneous polynomial of
order m. In the subsequent analysis, ideally, of course, we would like to have
conditions on the lower order terms for different rates of decay; in Section 8
we shall give some results in this direction. For now, though, we concentrate
on conditions on the characteristic roots.
First of all, it is natural to impose the stability condition, namely that

for all ξ ∈ Rn we have

Im τk(ξ) ≥ 0 for k = 1, . . . ,m ; (2.0.2)

this is equivalent to requiring the characteristic polynomial of the operator
to be stable at all points ξ ∈ Rn, and thus cannot be expected to be lifted.
In fact, certain microlocal decay estimates are possible even without this
condition if the supports of the Fourier transforms of the Cauchy data are
contained in the set where condition (2.0.2) holds. However, this restriction
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16 CHAPTER 2. MAIN ESTIMATES

is only technical so we may assume (2.0.2) without great loss of generality
since otherwise no time decay of solution can be expected.
Also, it is sensible to divide the considerations of how characteristic roots

behave into two parts: their behaviour for large values of |ξ| and for bounded
values of |ξ|. These two cases are then subdivided further; in particular the
following are the key properties to consider:

• multiplicities of roots (this only occurs in the case of bounded frequen-
cies |ξ|);

• whether roots lie on the real axis or are separated from it;

• behaviour as |ξ| → ∞ (only in the case of large |ξ|);

• how roots meet the real axis (if they do);

• properties of the Hessian of the root, Hess τk(ξ);

• a convexity-type condition, as in the case of homogeneous roots (Sec-
tion 1.2).

For some frequencies away from multiplicities we can actually establish
independently interesting estimates for the corresponding oscillatory inte-
grals that contribute to the solution. Around multiplicities we need to take
extra care of the structure of solutions. This will be done by dividing the
frequencies into zones each of which will give a certain decay rate. Combined
together they will yield the total decay rate for solution to (2.0.1). Several
theorems below will deal with integrals of the form

∫

Rn
ei(x∙ξ+τ(ξ)t)a(ξ)χ(ξ)dξ, (2.0.3)

which appear in representations of solutions to Cauchy problem (2.0.1) as
kernels of propagators, where a(ξ) is a suitable amplitude and χ(ξ) is a cut-
off to a corresponding zone, which may be bounded or unbounded. Solution
to the Cauchy problem (2.0.1) can be written in the form

u(t, x) =
m−1∑

j=0

Ej(t)fj(x),

where propagators Ej(t) are defined by

Ej(t)f(x) =

∫

Rn
eix∙ξ

( m∑

k=1

eiτk(ξ)tAkj (t, ξ)
)
χ(ξ)f̂(ξ) dξ , (2.0.4)
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with suitable amplitudes Akj (t, ξ). In the areas where roots are simple, phases
and amplitudes are smooth, and we can analyse the sum (2.0.4) termwise,
reducing the analysis to integrals of the form (2.0.3). In the case of multiple
characteristics we will group terms in (2.0.4) in a special way to obtain suit-
able decay estimates. Below we will give results for decay rates dependent
on the different qualitative behaviours of the characteristic roots.

2.1 Away from the real axis: exponential de-

cay

We begin by looking at the zone where roots are separated from the real axis.
If the roots are smooth, we can analyse solution (2.0.4) termwise:

Theorem 2.1.1. Let τ : U → C be a smooth function, U ⊂ Rn open.
Let a ∈ S−μ1,0 (U), i.e. assume that a = a(ξ) ∈ C∞(U) satisfies |∂αξ a(ξ)| ≤
Cα(1 + |ξ|)−μ−|α|, for all ξ ∈ U and all multi-indices α. Let χ ∈ S01,0(R

n) be
such that χ = 0 outside U . Assume further that :

(i) there exists δ > 0 such that Im τ(ξ) ≥ δ for all ξ ∈ U ;

(ii) |τ(ξ)| ≤ C(1 + |ξ|) for all ξ ∈ U .

Then for all t ≥ 0 we have
∥
∥
∥DrtD

α
x

(∫

Rn
ei(x∙ξ+τ(ξ)t)a(ξ)χ(ξ)f̂(ξ) dξ

)∥∥
∥
Lq(Rnx)

≤ Ce−δt‖f‖
W
Np+|α|+r−μ
p

,

(2.1.1)
where 1

p
+ 1
q
= 1, 1 < p ≤ 2, Np ≥ n

(
1
p
− 1
q

)
, r ≥ 0, α a multi-index and

f ∈ C∞0 (R
n). If p = 1, we take N1 > n.

Moreover, let us assume that equation L(τ, ξ) = 0 has only simple roots
τk(ξ) which satisfy condition (i) above, in the open set U ⊂ Rn, for all k =
1, . . . ,m. Then solution u to (2.0.1) satisfies

||DrtD
α
xχ(D)u(t, ∙)||Lq(Rnx) ≤ Ce−δt

m−1∑

l=0

||fl||WNp+|α|+r−lp
, (2.1.2)

where 1 ≤ p ≤ 2, 1
p
+ 1
q
= 1, and Np, r, α are as above.

The proof of Theorem 2.1.1 will be given in Sections 6.4 and 6.10. Note
also that if we omit assumption (ii) in Theorem 2.1.1, estimate (2.1.1) with
r = 0 still holds. In the case of (2.1.2), it can be shown (see Proposition
3.2.4) that characteristic roots of operator L(Dt, Dx) in (2.0.1) satisfy (ii).
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We also note, that we may have different norms on the right hand side of
(2.1.2). For example, we will show in Section 6.4, that under conditions of
Theorem 2.1.1 we also have the following estimate:

||DrtD
α
xχ(D)u(t, ∙)||Lq(Rnx) ≤ Ce−δt

m−1∑

l=0

||fl||
W
N′q+|α|+r−l
2

, (2.1.3)

where 1 < p ≤ 2, 1
p
+ 1
q
= 1, N ′q ≥

n
2
(1
p
− 1
q
), and N ′∞ > n

2
for p = 1. Estimate

(2.1.3) will follow from (6.4.1) and Proposition 6.4.1 by interpolation. In
turn, interpolating between (2.1.2) and (2.1.3), we can obtain similar Lp−Lq

estimates for all intermediate p and q.
To be able to derive time decay in the case of multiple roots, we will group

terms in (2.0.4) in the following way. Assume that roots τ1(ξ), . . . , τL(ξ)
coincide on a set contained in someM, that isM⊃ {τ1(ξ) = ∙ ∙ ∙ = τL(ξ)} .
For ε > 0, we define Mε := {ξ ∈ Rn : dist(ξ,M) < ε} . Choose ε > 0 so
that these roots τ1(ξ), . . . , τL(ξ) do not intersect with any of the other roots
τL+1(ξ), . . . , τm(ξ) inMε. If different numbers of roots intersect in different
sets, we can apply the following theorem to such sets one by one. We note
that by the strict hyperbolicity Mε is bounded. Here we will estimate the
sum ∫

Mε

eix∙ξ
( L∑

k=1

eiτk(ξ)tAkj (t, ξ)
)
χ(ξ)f̂(ξ) dξ . (2.1.4)

Theorem 2.1.2. Let the sum (2.0.4) be the solution to the Cauchy problem
(2.0.1). Assume that roots τ1(ξ), . . . , τL(ξ) coincide in a set contained inM
and do not intersect other roots in the set Mε. Let χ ∈ C∞0 (M

ε). Assume
that there exists δ > 0 such that Im τk(ξ) ≥ δ for all ξ ∈Mε and k = 1, . . . , L.
Then for all t ≥ 0 we have

∥
∥
∥DrtD

α
x

(∫

Mε

eix∙ξ
( L∑

k=1

eiτk(ξ)tAkj (t, ξ)
)
χ(ξ)f̂(ξ) dx

)∥∥
∥
Lq(Rnx)

≤ C(1 + t)L−1e−δt‖f‖Lp ,

where 1
p
+ 1
q
= 1, 1 ≤ p ≤ 2.

Thus, if characteristic roots are separated from the real axis on the sup-
port of some χ ∈ C∞0 (R

n), we can separate the solution (2.0.4) into groups of
multiple roots for which the Lp−Lq norms still decay exponentially as stated
in Theorem 2.1.2. We also note that sinceMε is bounded, assumption (ii) of
Theorem 2.1.1 is automatically satisfied and, therefore, it is omitted in the
formulation of Theorem 2.1.2. Theorem 2.1.2 will be proved in Section 7.2.
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2.2 Roots with non-degeneracies

The following case that we consider is the one of roots satisfying certain non-
degeneracy conditions. These may be conditions on the Hessian, convexity
conditions, or simply the information on the index of the corresponding level
surfaces. In this section we will give the corresponding statements. We
always assume the stability condition (2.0.2) but no longer assume that roots
are separated from the real axis.
First we state the result for phases with the non-degenerate Hessian. The

behavior depends on critical points ξ0 with ∇τ(ξ0) = 0 and the behavior of
the Hessian at such points. As usual, we say that the critical point ξ0 is
non-degenerate if the Hessian Hess τ(ξ0) is non-degenerate.

Theorem 2.2.1. Let U ⊂ Rn be a bounded open set, and let τ : U → C be
smooth and such that Im τ(ξ) ≥ 0 for all ξ ∈ U . Assume that there are some
constants C0 and M such that | detHess τ(ξ)| ≥ C0(1 + |ξ|)−M for all ξ ∈ U .
Let χ ∈ S01,0(R

n) be such that χ = 0 outside U and let a ∈ S−μ1,0 (U).
Assume that τ has only one non-degenerate critical point in U , and that

U is sufficiently small. Then there is a constant C > 0 independent of the
position of U such that for all t ≥ 0 we have
∣
∣
∣
∣

∣
∣
∣
∣

∫

Rn
ei(x∙ξ+τ(ξ)t)a(ξ)χ(ξ)f̂(ξ)dξ

∣
∣
∣
∣

∣
∣
∣
∣
Lq(Rnx)

≤ C(1 + t)−
n
2
( 1
p
− 1
q
)||f ||

W
Np
p
, (2.2.1)

with 1 ≤ p ≤ 2, 1
p
+ 1
q
= 1, Np =

M
2
(1
p
− 1
q
)− μ.

For example, the case of the Klein–Gordon equation corresponds to M =
n + 2 in this theorem. If we work with a fixed bounded set U , the ||f ||

W
Np
p

norm on the right hand side of (2.2.1) can be replaced by ||f ||Lp . However,
since we may also want to have estimate (2.2.1) uniform over such U (allowing
it to move to infinity while remaining to be of the same size), we have the
Sobolev norm in (2.2.1). From this point of view, we assume that a behaves
as a symbol in U – the meaning is that if the symbolic constants here are
uniform over the position of U , then also the constant in (2.2.1) is uniform
over such a and U .
The condition that critical points are isolated and therefore can be lo-

calised by different sets U may follow from certain properties of τ and will
be discussed in Section 6.5, in particular see Lemma 6.5.2 and remarks after
it. If, in addition, we take the size of U uniform, say of volume bounded by
one, then constant C in (2.2.1) is also uniform over all such sets U . We may
also assume that if ξ0 is a critical point of τ , then Im τ(ξ0) = 0. Otherwise
we would have Im τ(ξ0) > 0 and so Theorem 2.1.1 would actually give the
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exponential decay rate. The proof of this theorem is based on the station-
ary phase method and will be given in Section 6.5. If we apply different
versions of the stationary phase method under different conditions, we can
reach different conclusions here. For example, we also have:

Theorem 2.2.2. Let U ⊂ Rn be a bounded open and let τ : U → C be smooth
and such that Im τ(ξ) ≥ 0 for all ξ ∈ U . Let χ ∈ S01,0(R

n) be such that χ = 0

outside U and let a ∈ S−μ1,0 (U). Assume that τ has only one critical point ξ
0

in U , and that U is sufficiently small.
Suppose that there are constants C0,M > 0 independent of the size and

position of U and of ξ0, with the following conditions. Suppose that

rankHess τ(ξ0) = k,

that this rank is attained on an k × k submatrix A(ξ0) and that

| detA(ξ0)| ≥ C0(1 + |ξ
0|)−M .

Then for all t ≥ 0 we have
∣
∣
∣
∣

∣
∣
∣
∣

∫

Rn
ei(x∙ξ+τ(ξ)t)a(ξ)χ(ξ)f̂(ξ)dξ

∣
∣
∣
∣

∣
∣
∣
∣
Lq(Rnx)

≤ C(1 + t)−
k
2
( 1
p
− 1
q
)||f ||

W
Np
p
,

with 1 ≤ p ≤ 2, 1
p
+ 1
q
= 1, Np =

M
2
(1
p
− 1
q
)− μ.

The proof of this theorem is similar to the proof of Theorem 2.2.1 once we
restrict to the set of k variables (possibly after a suitable change) on which
the rank of the Hessian is attained on A(ξ0).
This result can be improved dependent on further properties of A(ξ0). For

example, if rankA(ξ0) = n− 1 and this is attained on variables ξ1, . . . , ξn−1,
the analysis reduces to the behaviour of the oscillatory integral with respect
to ξn. If the l-th derivative of the phase with respect to ξn is non-zero, we get
an additional decay by t−1/l. This follows from the stationary phase method,
see, for example Hörmander [Hör83a, Section 7.7], or from an appropriate
use of van der Corput lemma. We will not formulate further statements here
since they are quite straightforward.

The next theorem is an estimate of oscillatory integrals with real-valued
phases under convexity condition. It will be shown in Proposition 3.2.4 (see
also Proposition 6.8.2) that for large ξ characteristic roots of the Cauchy
problem (2.0.1) satisfy assumptions of these theorems given below, if the
homogeneous roots of the principal part satisfy them. The convexity con-
dition is weaker than (but does not contain) the condition that the Hessian
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of τ is positive definite and the result can be compared with Theorem 2.2.1,
dependent on suitable properties of roots.
Let us first give the necessary definitions. Given a smooth function τ :

Rn → R and λ ∈ R, set

Σλ ≡ Σλ(τ) := {ξ ∈ R
n : τ(ξ) = λ} .

In the case where τ(ξ) is homogeneous of order 1 and τ ∈ C∞(Rn\0), we
will also write Στ := Σ1(τ)—for such τ , we then have Σλ(τ) = λΣτ . There
should be no confusion in this notation since we always reserve letters φ, τ
for phases and λ for the real number.

Definition 2.2.3. A smooth function τ : Rn → R is said to satisfy the
convexity condition if surface Σλ is convex for each λ ∈ R. Note that the
empty set and the point set are considered to be convex.

If the Gaussian curvatures of Σλ never vanish, Σλ is automatically convex
(the converse is not true). This curvature condition corresponds to the case
k = n−1 in Theorem 2.2.2. Another important notion is that of the maximal
order of contact of a hypersurface, similar to the one in Section 1.2:

Definition 2.2.4. Let Σ be a hypersurface in Rn (i.e. a manifold of dimen-
sion n−1); let σ ∈ Σ, and denote the tangent plane at σ by Tσ. Now let P be
a 2–dimensional plane containing the normal to Σ at σ and denote the order
of the contact between the line Tσ ∩ P and the curve Σ ∩ P by γ(Σ; σ, P ).
Then set

γ(Σ) := sup
σ∈Σ
sup
P

γ(Σ; σ, P ) .

Examples 2.2.5.

(a) γ(Sn) = 2, as γ(Sn; σ, P ) = 2 for all σ ∈ Sn and all planes P containing
σ and the origin.

(b) If ϕl(ξ) is a characteristic root of an m
th order homogeneous strictly

hyperbolic constant coefficient operator, then γ(Σϕl) ≤ m; see [Sug96]
for a proof of this.

Now we can formulate the corresponding theorem.

Theorem 2.2.6. Suppose τ : Rn → R satisfies the convexity condition and
let χ ∈ C∞(Rn) ; furthermore, on suppχ, we assume:

(i) for all multi-indices α there exists a constant Cα > 0 such that

|∂αξ τ(ξ)| ≤ Cα(1 + |ξ|)
1−|α|;
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(ii) there exist constants M,C > 0 such that for all |ξ| ≥ M we have
|τ(ξ)| ≥ C|ξ|;

(iii) there exists a constant C > 0 such that |∂ωτ(λω)| ≥ C for all ω ∈ Sn−1,
λ > 0; in particular, |∇τ(ξ)| ≥ C for all ξ ∈ Rn \ {0};

(iv) there exists a constant R1 > 0 such that, for all λ > 0,

1

λ
Σλ(τ) ≡

1

λ
{ξ ∈ Rn : τ(ξ) = λ} ⊂ BR1(0) .

Also, set γ := supλ>0 γ(Σλ(τ)) and assume this is finite. Let aj = aj(ξ) ∈ S
−j
1,0

be a symbol of order −j of type (1, 0) on Rn. Then for all t ≥ 0 we have the
estimate

∥
∥
∥

∫

Rn
ei(x∙ξ+τ(ξ)t)aj(ξ)χ(ξ)f̂(ξ) dξ

∥
∥
∥
Lq(Rnx)

≤ C(1 + t)−
n−1
γ

(
1
p
− 1
q

)
‖f‖

W
Np,j,t
p

,

(2.2.2)
where 1

p
+ 1
q
= 1, 1 < p ≤ 2, and the Sobolev order satisfies Np,j,t ≥ n(1

p
− 1
q
)−j

for 0 ≤ t < 1, and Np,j,t ≥
(
n− n−1

γ

)
(1
p
− 1
q
)− j for t ≥ 1.

Theorem 2.2.6 will be proved in Section 6.6, where estimate (2.2.2) will
follow by interpolation from the L2 − L2 estimate combined with L1 − L∞

cases given in (6.6.1) for small t, and in (6.6.6) for large t. See those estimates
also for the case of p = 1 in estimate (2.2.2). The estimate for large times
will follow from Theorem 4.3.1, which gives the L∞-estimate for the kernel
of (2.2.2). As another consequence of Theorem 4.3.1, we will also have the
following estimate:

Corollary 2.2.7. Under conditions of Theorem 2.2.6 with χ ≡ 1, assume
that a ∈ C∞0 (R

n). Then for all x ∈ Rn and t ≥ 0 we have the estimate

∣
∣
∣

∫

Rn
ei(x∙ξ+τ(ξ)t)a(ξ) dξ

∣
∣
∣ ≤ C(1 + t)−

n−1
γ . (2.2.3)

In Proposition 3.2.4 we show that properties (i)–(iv) of Theorem 2.2.6
are satisfied for characteristic roots of L(Dt, Dx) in (2.0.1), while in Lemma
6.6.2 we will show that the index γ is also finite, both for large frequencies.
Now we turn to the case without convexity. As in the case of the homo-

geneous operators (see Introduction, Section 1.2) we introduce an analog of
the order of contact also in the case where the convexity condition does not
hold.
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Definition 2.2.8. Let Σ be a hypersurface in Rn; set

γ0(Σ) := sup
σ∈Σ
inf
P
γ(Σ; σ, P ) ≤ γ(Σ),

where γ(Σ; σ, P ) is as in Definition 2.2.4.

Remark 2.2.9.

(a) When n = 2, γ0(Σ) = γ(Σ);

(b) If p(ξ) is a polynomial of order m, Σ = {ξ ∈ Rn : p(ξ) = 0} is compact,
and ∇p(ξ) 6= 0 on Σ, then γ0(Σ) ≤ γ(Σ) ≤ m; this is useful when
applying the result below to hyperbolic differential equations and is proved
in [Sug96].

Theorem 2.2.10. Suppose τ : Rn → R is a smooth function. Let χ ∈
C∞(Rn); furthermore, on suppχ, we assume:

(i) for all multi-indices α there exist constants Cα > 0 such that

|∂αξ τ(ξ)| ≤ Cα(1 + |ξ|)
1−|α|;

(ii) there exist constants M,C > 0 such that for all |ξ| ≥ M we have
|τ(ξ)| ≥ C|ξ|;

(iii) there exists a constant C > 0 such that |∂ωτ(λω)| ≥ C for all ω ∈ Sn−1

and λ > 0;

(iv) there exists a constant R1 > 0 such that, for all λ > 0,

1

λ
{ξ ∈ Rn : τ(ξ) = λ} ⊂ BR1(0) .

Set γ0 := supλ>0 γ0(Σλ(τ)) and assume it is finite. Let aj = aj(ξ) ∈ S
−j
1,0 be

a symbol of order −j of type (1, 0) on Rn. Then for all t ≥ 0 we have the
estimate

∥
∥
∥

∫

Rn
ei(x∙ξ+τ(ξ)t)aj(ξ)χ(ξ)f̂(ξ) dξ

∥
∥
∥
Lq(Rnx)

≤ C(1 + t)
− 1
γ0

(
1
p
− 1
q

)
‖f‖

W
Np,j,t
p

,

where 1
p
+ 1
q
= 1, 1 < p ≤ 2, and the Sobolev order satisfies Np,j,t ≥ n(1

p
− 1
q
)−j

for 0 ≤ t < 1, and Np,j,t ≥
(
n− 1

γ0

)
(1
p
− 1
q
)− j for t ≥ 1.
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The proof of Theorem 2.2.10 will be given in Section 6.7. As in the convex
case, as a consequence of estimates for the kernel on Theorem 5.1.2, we also
have the following statement:

Corollary 2.2.11. Under conditions of Theorem 2.2.10 with χ ≡ 1, assume
that a ∈ C∞0 (R

n). Then for all x ∈ Rn and t ≥ 0 we have the estimate for
the kernel: ∣

∣
∣

∫

Rn
ei(x∙ξ+τ(ξ)t)a(ξ) dξ

∣
∣
∣ ≤ C(1 + t)

− 1
γ0 .

Again, in Proposition 3.2.4 we show that properties (i)–(iv) of Theorem
2.2.10 are satisfied for characteristic roots of L(Dt, Dx) in (2.0.1), while in
Lemma 6.7.1 we will show that the index γ0 is also finite, both for large
frequencies.
As a corollary and an example of these theorems, we get the following

possibilities of decay for parts of solutions with roots on the axis. We can use
a cut-off function χ to microlocalise around points with different qualitative
behaviour (hence we also do not have to worry about Sobolev orders).

Corollary 2.2.12. Let Ω ⊂ Rn be an open set and let τ : Ω→ R be a smooth
real valued function. Let χ ∈ C∞0 (Ω). Let us make the following choices of
K(t), depending on which of the following conditions are satisfied on suppχ.

(1) If detHess τ(ξ) 6= 0 for all ξ ∈ Ω, we set K(t) = (1 + t)−
n
2
( 1
p
− 1
q
).

(2) If rankHess τ(ξ) = n− 1 for all ξ ∈ Ω, we set K(t) = (1 + t)−
n−1
2
( 1
p
− 1
q
).

(3) If τ satisfies the convexity condition with index γ, we set K(t) = (1 +

t)−
n−1
γ
( 1
p
− 1
q
).

(4) If τ does not satisfy the convexity condition but has non-convex index γ0,

we set K(t) = (1 + t)
− 1
γ0
( 1
p
− 1
q
)
.

Assume in each case that other assumptions of the corresponding Theorems
2.2.1–2.2.10 are satisfied. Let 1 ≤ p ≤ 2, 1

p
+ 1
q
= 1. Then for all t ≥ 0 we

have ∣
∣
∣
∣

∣
∣
∣
∣

∫

Rn
ei(x∙ξ+τ(ξ)t)a(ξ)χ(ξ)f̂(ξ)dξ

∣
∣
∣
∣

∣
∣
∣
∣
Lq(Rnx)

≤ CK(t)||f ||Lp(Rn).

We note that no derivatives appear in the Lp–norm of f because the
support of χ is bounded. In general, there are different ways to ensure the
convexity condition for τ . Thus, we can say that the principal part Lm of
operator L(Dt, Dx) in (2.0.1) satisfies the convexity condition if all Hessians
ϕ′′l (ξ), l = 1, . . . ,m, are semi–definite for all ξ 6= 0. In this case it was shown
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by Sugimoto in [Sug94] that there exists a linear function α(ξ) such that
ϕ̃l = ϕl + α have convex level sets Σ(ϕ̃l), and we have γ(Σ(ϕ̃l)) ≤ 2

[
m
2

]
.

For large frequencies, perturbation arguments imply that the same must be
true for Σλ(τl), for sufficiently large λ. If we now assume that Σλ(τl) are also
convex for small λ, then τl will satisfy the convexity conditions. Alternatively,
if they do not satisfy the convexity condition for small λ, we can cut-off this
regions and analyse the decay rates by other methods developed in this paper.

2.3 Roots meeting the real axis

In this section we will present the results for characteristic roots (or phase
functions) in the upper complex plane near the real axis, that become real
at some point or in some set.
For M ⊂ Rn, denote Mε = {ξ ∈ Rn : dist(ξ,M) < ε} as before. The

largest number ν ∈ N such that meas(Mε) ≤ Cεν for all sufficiently small
ε > 0, will be denoted by codimM, and we will call it the codimension of
M.
We will say that the root τk meets the real axis at ξ

0 with order sk if
Im τk(ξ

0) = 0 and if there exists a constant c0 > 0 such that

c0|ξ − ξ
0|sk ≤ Im τk(ξ) ,

for all ξ sufficiently near ξ0. Here we may recall that in (2.0.2) we already
assumed Im τk(ξ) ≥ 0 for all ξ.
More generally, if the root τk meets the axis on the set

Zk = {ξ ∈ R
n : Im τk(ξ) = 0} ,

we will say that it meets the axis with order s if

c0 dist(ξ, Zk)
s ≤ Im τk(ξ) .

We will localise around each connected component of Zk, e.g. around each
point of Zk, if it is a union of isolated points. As usual, when we talk about
multiple roots intersecting in a setM, we adopt the terminology introduced
in Section 2.1. Since we are dealing with strictly hyperbolic equations, roots
can meet each other only for bounded frequencies, so we may assume that
setM is bounded.

Theorem 2.3.1. Assume that the characteristic roots τ1(ξ), . . . , τL(ξ) inter-
sect in the C1 setM of codimension `. Assume also that they meet the real
axis inM with the finite orders ≤ s, i.e. that

c0 dist(ξ,M)
s ≤ Im τk(ξ) ,
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for some c0 > 0 and all k = 1, . . . , L. Assume that (2.0.4) is the solution of
the Cauchy problem (2.0.1) and we look at its part (2.1.4). Let χ ∈ C∞0 (M

ε)
for sufficiently small ε > 0. Then for all t ≥ 0 we have

∥
∥
∥DrtD

α
x

(∫

Mε

eix∙ξ
( L∑

k=1

eiτk(ξ)tAkj (t, ξ)
)
χ(ξ)f̂(ξ) dξ

)∥∥
∥
Lq(Rnx)

≤ C(1 + t)−
`
s

(
1
p
− 1
q

)
+L−1‖f‖Lp , (2.3.1)

where 1
p
+ 1
q
= 1, 1 ≤ p ≤ 2.

We assume ε > 0 to be small enough to make sure that the type of
behaviour assumed in the theorem is the only one that takes place in Mε.
In the complement of Mε we may use other theorems to analyse the decay
rate. Moreover, we assume that setM is C1. In fact, it is usually Lipschitz,
so in order to avoid to go into depth about its structure and existence of
almost everywhere differentiable coordinate systems, we make the technical
C1 assumption. The proof of Theorem 2.3.1 will be given in Section 7.3.
Let us now give a special case of this theorem where simple roots meet the

axis at a point, so that we have L = 1 and ` = n. The following statement
is also global in frequency, so we have the result in Sobolev spaces.

Theorem 2.3.2. Consider the mth order strictly hyperbolic Cauchy prob-

lem (2.0.1) for operator L(Dt, Dx), with initial data fj ∈ W
Np+|α|+r−j
p , for

j = 0, . . . ,m − 1, where 1 ≤ p ≤ 2 and 2 ≤ q ≤ ∞ are such that 1
p
+ 1
q
= 1,

r ≥ 0 and α is a multi-index. We assume that the Sobolev index Np satisfies
Np ≥ n(1

p
− 1
q
) for 1 < p ≤ 2 and N1 > n for p = 1.

Assume that the characteristic roots τ1(ξ), . . . , τm(ξ) of L(τ, ξ) = 0 satisfy
Im τk ≥ 0 for all k, and also the following conditions:

(H1) for all k = 1, . . . ,m, we have

lim inf
|ξ|→∞

Im τk(ξ) > 0 ;

(H2) for each ξ0 ∈ Rn there is at most one index k for which Im τk(ξ0) = 0
and there exists a constant c > 0 such that

|ξ − ξ0|s ≤ cIm τk(ξ),

for ξ in some neighbourhood of ξ0. Assume also that there are finitely
many points ξ0 with Im τk(ξ

0) = 0.
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Then the solution u = u(t, x) to Cauchy problem (2.0.1) satisfies the following
estimate for all t ≥ 0:

‖DrtD
α
xu(t, ∙)‖Lq ≤ Cα,r(1 + t)

−n
s
( 1
p
− 1
q
)
m−1∑

j=0

‖fj‖WNp+|α|+r−jp
. (2.3.2)

Theorem 2.3.2 is proved in Section 6.11, where we will also give microlo-
cal versions of this result around points ξ0 from hypothesis (H2). In the
complement of such points, we have roots separated from the real axis, so
we get the exponential decay from Theorems 2.1.1 and 2.1.2. Moreover, in
the exponential decay zone we may have different versions of the estimate,
for example we can use estimate (2.1.3) there instead of (2.1.2). As a spe-
cial case, such estimate together with (2.3.4) below (used with s = s1 = 2),
we improve the indices in Sobolev spaces over L2 for the dissipative wave
equation in (1.1.5) and (1.1.6) compared to [Mat77].

If conditions of Theorem 2.3.2 hold only with ξ0 = 0, namely if Im τk(ξ
0) =

0 implies ξ0 = 0, we will call the polynomial L(τ, ξ) strongly stable. Such
polynomials will be discussed in more detail in applications in Section 8.5.
Now we will give some improvements of (2.3.2) under additional assumptions
on the roots:

Remark 2.3.3. The order of time decay in Theorem 2.3.2 may be improved
in the following cases, if we make additional assumptions. If, in addition, we
assume that Im τk(ξ

0) = 0 in (H2) implies that ξ0 = 0, then we actually get
the estimate

∥
∥
∥DrtD

α
xu(t, ∙)

∥
∥
∥
Lq(Rnx)

≤ C(1 + t)−
n
s

(
1
p
− 1
q

)
− |α|
2

m−1∑

j=0

‖fj‖WNp+|α|+r−jp
,

where here and further in this remark Np is as in Theorem 2.3.2.

Now, assume further that for all ξ0 in (H2) we also have the estimate

|τk(ξ)| ≤ c1|ξ − ξ
0|s1 , (2.3.3)

with some constant c1 > 0, for all ξ sufficiently close to ξ
0.

If we have that Im τk(ξ
0) = 0 in (H2) implies that we have (2.3.3) around

such ξ0, then we actually get

∥
∥
∥DrtD

α
xu(t, ∙)

∥
∥
∥
Lq(Rnx)

≤ C(1 + t)−
(
n
s

)(
1
p
− 1
q

)
− rs1
s

m−1∑

j=0

‖fj‖WNp+|α|+r−jp
.
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And finally, assume that for all ξ0 such that Im τk(ξ
0) = 0 in (H2), we

also have ξ0 = 0 and (2.3.3) around such ξ0. Then we actually get

∥
∥
∥DrtD

α
xu(t, ∙)

∥
∥
∥
Lq(Rnx)

≤ C(1 + t)−
n
s

(
1
p
− 1
q

)
− |α|
s
− rs1
s

m−1∑

j=0

‖fj‖WNp+|α|+r−jp
. (2.3.4)

Estimate (2.3.4) with s = s1 = 2 gives the decay estimate for the dissipa-
tive wave equation in (1.1.5). The proof of this remark is given in Remark
6.11.3.

Moreover, there are other possibilities of multiple roots intersecting each
other while lying entirely on the real axis. For example, this is the case for
the wave equation or for more general equations with homogeneous symbols,
when several roots meet at the origin. In this case roots always lie on the
real axis, but they become irregular at the point of multiplicity, which is
the origin for homogeneous roots. In the case when lower order terms are
presents, characteristics roots are not homogeneous in general, so we can
not eliminate time from the estimates as was done in Section 1.2. It means
that we have to look at the structure of such multiple points by making cut-
offs around them and studying their structure in more detail. In particular,
there is an interaction between low frequencies and large times, which does
not take place for homogeneous symbols. The detailed discussion of this
topic and corresponding decay rates will be determined in Section 7.4.

2.4 Application to the Cauchy problem

Putting together theorems from previous sections we obtain the following
conclusion about solutions to the Cauchy problem (2.0.1). We will first for-
mulate the following general result collecting statements of previous sections,
and then will explain how this result can be used.

Theorem 2.4.1. Suppose u = u(t, x) is the solution of the mth order lin-
ear, constant coefficient, strictly hyperbolic Cauchy problem (2.0.1). Denote
the characteristic roots of the operator by τ1(ξ), . . . , τm(ξ), and assume that
Im τk(ξ) ≥ 0 for all k = 1, . . . , n, and all ξ ∈ Rn.
We introduce two functions, K(l)(t) and K(b)(t), which take values as

follows :

I. Consider the behaviour of each characteristic root, τk(ξ), in the region
|ξ| ≥ M , where M is a large enough real number. The following table

gives values for the function K
(l)
k (t) corresponding to possible properties
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of τk(ξ); if τk(ξ) satisfies more than one, then take K
(l)
k (t) to be function

that decays the slowest as t→∞.

Location of τk(ξ) Additional Property K
(l)
k (t)

away from real axis e−δt, some δ > 0

detHess τk(ξ) 6= 0 (1 + t)−
n
2
( 1
p
− 1
q
)

on real axis rankHess τk(ξ) = n− 1 (1 + t)−
n−1
2
( 1
p
− 1
q
)

convexity condition γ (1 + t)−
n−1
γ
( 1
p
− 1
q
)

no convexity condition, γ0 (1 + t)
− 1
γ0

Then take K(l)(t) = maxk=1 ...,nK
(l)
k (t).

II. Consider the behaviour of the characteristic roots in the bounded re-
gion |ξ| ≤ M ; again, take K(b)(t) to be the maximum (slowest decay-
ing) function for which there are roots satisfying the conditions in the
following table:

Location of Root(s) Properties K(b)(t)

away from axis no multiplicities e−δt, some δ > 0
L roots coinciding (1 + t)Le−δt

on axis, detHess τk(ξ) 6= 0 (1 + t)−
n
2
( 1
p
− 1
q
)

no multiplicities ∗ convexity condition γ (1 + t)−
n−1
γ
( 1
p
− 1
q
)

no convexity condition, γ0 (1 + t)
− 1
γ0
( 1
p
− 1
q
)

on axis, L roots coincide
multiplicities∗,∗∗ on set of codimension ` (1 + t)L−1−`

meeting axis L roots coincide

with finite order s on set of codimension ` (1 + t)L−1−
`
s
( 1
p
− 1
q
)

∗ These two cases of roots lying on the real axis require some additional regularity

assumptions; see corresponding microlocal statements for details.
∗∗ This is the L1−L∞ rate in a shrinking region; see Proposition 7.4.3 for details.
For different types of L2 estimates see Section 7.4, and then interpolate.

Then, with K(t) = max
(
K(b)(t), K(l)(t)

)
, the following estimate holds :

‖DαxD
r
tu(t, ∙)‖Lq ≤ Cα,rK(t)

m−1∑

l=0

‖fl‖WNp−lp
,

where 1 ≤ p ≤ 2, 1
p
+ 1
q
= 1, and Np = Np(α, r) is a constant depending

on p, α and r.
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The scheme of the proof of this theorem and precise relations to microlocal
theorems of previous sections will be given in Section 2.5. However, let
us now briefly explain how to understand this theorem. Since the decay
rates do depend on the behaviour of characteristic roots in different regions
and theorems from previous sections determine the corresponding rates, in
Theorem 2.4.1 we single out properties which determine the final decay rate.
Since the same characteristic root, say τk, may exhibit different properties
in different regions, we look at the corresponding rates K(b)(t), K(l)(t) under
each possible condition and then take the slowest one for the final answer.
The value of the Sobolev index Np = Np(α, r) depends on the regions as well,
and it can be found from microlocal statements of previous sections for each
region.
In conditions of Part I of the theorem, it can be shown by the pertur-

bation arguments that only three cases are possible for large ξ, namely, the
characteristic root may be uniformly separated from the real axis, it may lie
on the axis, or it may converge to the real axis at infinity. If, for example, the
root lies on the axis and, in addition, it satisfies the convexity condition with

index γ, we get the corresponding decay rate K(l)(t) = (1 + t)−
n−1
γ
( 1
p
− 1
q
). In-

dices γ and γ0 in the tables are defined as the maximum of the corresponding
indices γ(Σλ) and γ0(Σλ), respectively, where Σλ = {ξ : τk(ξ) = λ}, over all
k and over all λ, for which ξ lies in the corresponding region. At present, we
do not have examples of characteristic roots tending to the real axis for large
frequencies while remaining in the open upper half of the complex plane, so
we do not give any estimates for this case in Theorem 2.4.1. However, in
Section 6.8 we will still discuss what happens in this case.
The statement in Part II is more involved since we may have multiple

roots intersecting on rather irregular sets. The number L of coinciding roots
corresponds to the number of roots which actually contribute to the loss of
regularity. For example, operator (∂2t −Δ)(∂

2
t − 2Δ) would have L = 2 for

both pairs of roots ±|ξ| and ±
√
2|ξ|, intersecting at the origin. Meeting the

axis with finite order s means that we have the estimate

dist(ξ, Zk)
s ≤ c| Im τk(ξ)| (2.4.1)

for all the intersecting roots, where Zk = {ξ : Im τk(ξ) = 0}. In Part II of
Theorem 2.4.1, the condition that L roots meet the axis with finite order s
on a set of codimension ` means that all these estimates hold and that there
is a (C1) setM of codimension ` such that Zk ⊂M for all corresponding k
(see Theorem 2.3.1 for details). In Theorem 2.3.2 we discuss the special case
of a single root τk meeting the axis at a point ξ0 with order s, which means
that Im τk(ξ0) = 0 and that we have the estimate |ξ − ξ0|s ≤ c|Im τk(ξ)|. In
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fact, under certain conditions an improvement in this part of the estimates
is possible, see Theorem 2.3.2 and Remark 2.3.3.

In Part II of the theorem, condition ∗∗ is formulated in the region of the
size decreasing with time: if we have L multiple roots which coincide on the
real axis on a setM of codimension `, we have an estimate

|u(t, x)| ≤ C(1 + t)L−1−`
m−1∑

l=0

‖fl‖L1 , (2.4.2)

if we cut off the Fourier transforms of the Cauchy data to the ε-neighbourhood
Mε ofM with ε = 1/t. Here we may relax the definition of the intersection
above and say that if L roots coincide in a set M, then they coincide on a
set of codimension ` if the measure of the ε-neighborhoodMε ofM satisfies
|Mε| ≤ Cε` for small ε > 0; here Mε = {ξ ∈ Rn : dist(ξ,M) ≤ ε}. The
estimate (2.4.2) follows from the procedure described in Section 7.1 of the
resolution of multiple roots, and details and proof of estimate (2.4.2) are
given in Section 7.4, especially in Proposition 7.4.3.

We can then combine this with the remaining cases outside of this neigh-
borhood, where it is possible to establish decay by different arguments. In
particular, this is the case of homogeneous equations with roots intersecting
at the origin. However, one sometimes needs to introduce special norms to
handle L2-estimates around the multiplicities. Details of this are given in the
L2 part of Section 7.4, in particular in Proposition 7.4.2. Finally, in the case
of a simple root we may set L = 1, and ` = n, if it meets the axis at a point.

2.5 Schematic of method

Let us briefly explain some ideas behind the reduction of Theorem 2.4.1 to
the proceeding theorems. The realisation of the steps below will be done in
Sections 6 and 7.

Step 1: Representation of the solution.

Using the Fourier transform in x, this reduces the problem to studying time-
dependent oscillatory integrals, at least for frequencies with no multiplicities.
In the case near multiplicities we will introduce a special procedure to deal
with them in Section 7.

Step 2: Division of the integral.
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We reduce the problem to several microlocal cases using suitable cut-
off functions. The problem is divided into studying the behaviour of the
characteristic roots in three regions of the phase space—large |ξ|, bounded
|ξ| away from multiplicities of roots and bounded |ξ| in a neighbourhood of
multiplicities.

Step 3: Interpolation reduces problem to finding L1 − L∞ and L2 − L2 es-
timates.

Step 4: Large |ξ|:

• root separated from the real axis (Theorem 2.1.1);

• root lying on the real axis (Theorems 2.2.2–2.2.10).

Step 5: Bounded |ξ|, away from multiplicities:

• root away from the real axis (Theorem 2.1.1);

• root meeting the real axis with finite order (Theorem 2.3.2);

• root lying on the real axis (Theorems 2.2.2–2.2.10).

Step 6: Bounded |ξ|, around multiplicities of roots:

• all intersecting roots away from the real axis (Theorem 2.1.2);

• all intersecting roots lie on the real axis around the multiplicity
(Section 7.4);

• all intersecting roots meet the real axis with finite order (Theorem
2.3.1);

• one or more of the roots meets the real axis with infinite order
(similar to Theorems 2.2.2–2.2.10).

2.6 Strichartz estimates and nonlinear prob-

lems

Let us denote by κp,q(L(Dt, Dx)) the time decay rate for the Cauchy problem
(2.0.1), so that function K(t) from Theorem 2.4.1 satisfies K(t) ' t−κp,q(L)

for large t. Thus, for polynomial decay rates, we have

κp,q(L) = − lim
t→∞

lnK(t)

ln t
. (2.6.1)
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We will also abbreviate the important case κ(L) = κ1,∞(L) since by inter-
polation we have κp,p′ = κ2,2

2
p′
+ κ1,∞(

1
p
− 1
p′
), 1 ≤ p ≤ 2. These indices

κ(L) and κp,p′(L) of operator L(Dt, Dx) will be responsible for the decay rate
in the Strichartz estimates for solutions to (2.0.1), and for the subsequent
well-posedness properties of the corresponding semilinear equation which are
discussed below.
In order to present an application to nonlinear problems let us first con-

sider the inhomogeneous equation
{
L(Dt, Dx)u = f, t > 0,

Dltu(0, x) = 0, l = 0, . . . ,m− 1, x ∈ Rn ,
(2.6.2)

with L(Dt, Dx) as in (1.0.1). By the Duhamel’s formula the solution can be
expressed as

u(t) =

∫ t

0

Em−1(t− s)f(s)ds, (2.6.3)

where Em−1 is given in (2.0.4). Let κ = κp,p′(L) be the time decay rate
of operator L, determined by Theorem 2.4.1 and given in (2.6.1). Then
Theorem 2.4.1 implies that we have estimate

||Em−1(t)g||W s
p′
≤ C(1 + t)−κ||g||W sp .

Together with (2.6.3) this implies

||u(t)||W s
p′
(Rnx) ≤ C

∫ t

0

(t− s)−κ||f(s)||W sp ds ≤ C|t|−κ ∗ ||f(t)||W sp .

By the Hardy–Littlewood–Sobolev theorem this is Lq(R)−Lq
′
(R) bounded if

1 < q < 2 and 1−κ = 1
q
− 1
q′
. Therefore, this implies the following Strichartz

estimate:

Theorem 2.6.1. Let κp,p′ be the time decay rate of the operator L(Dt, Dx)
in the Cauchy problem (2.6.2). Let 1 < p, q < 2 be such that 1/p + 1/p′ =
1/q+1/q′ = 1 and 1/q−1/q′ = 1−κp,p′. Let s ∈ R. Then there is a constant
C such that the solution u to the Cauchy problem (2.6.2) satisfies

||u||Lq′ (Rt,W sp′ (Rnx))
≤ C||f ||Lq(Rt,W sp (Rnx)),

for all data right hand side f = f(t, x).

By the standard iteration method we obtain the well-posedness result for
the following semilinear equation

{
L(Dt, Dx)u = F (t, x, u), t > 0,

Dltu(0, x) = fl(x), l = 0, . . . ,m− 1, x ∈ Rn .
(2.6.4)
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Theorem 2.6.2. Let κp,p′ be the time decay index of the operator L(Dt, Dx)
in the Cauchy problem (2.6.4). Let p, q be such that 1/p+1/p′ = 1/q+1/q′ =
1 and 1/q − 1/q′ = 1− κp,p′. Let s ∈ R.
Assume that for any v ∈ Lq

′
(Rt,W s

p′(R
n
x)), the nonlinear term satisfies

F (t, x, v) ∈ Lq(Rt,W s
p (R

n
x)). Moreover, assume that for every ε > 0 there

exists a decomposition −∞ = t0 < t1 < ∙ ∙ ∙ < tk = +∞ such that the
estimates

||F (t, x, u)− F (t, x, v)||Lq(Ij ,W sp (Rnx)) ≤ ε||u− v||Lq′ (Ij ,W sp′ (Rnx))

hold for the intervals Ij = (tj, tj+1), j = 0, . . . , k − 1.
Finally, assume that the solution of the corresponding homogeneous Cauchy

problem is in the space Lq
′
(Rt,W s

p′(R
n
x)).

Then the semilinear Cauchy problem (2.6.4) has a unique solution in the
space Lq

′
(Rt,W s

p′(R
n
x)).




