CHAPTER 3
Part 1. Some properties of I'.

Throughout Part 1 of this chapter, we assume that the quotient G/I" is compact. Our
main purpose is to prove the following results (i)~(iv) (particularly (iv)).

(i) The commutator subgroup [I',I'] of T is of finite index in I'. Moreover, if " is torsion-
free, then the index (" : [, I']) is a divisor of P(1)?, where

g
P@) = ﬂ(l — mu)(1 — mu)
| 1] .

is the numerator of the main factor of /(%) (Theorem 2, §6).

(ii) I'r has no non-trivial deformation in G¢ = PL,(C) (Theorem 3, §7).

(iii) T is residually finite. Moreover, I contains a torsion-free subgroup of finite index
(Theorem 4, §9).

(iv) The field F = Q((tr yr)*|yr € I'r) is an algebraic number field. Moreover, there is a
quaternion algebra 4 over F, which is uniquely determined by I', such that for any
field K c C the following two statements (a), (b) are equivalent:

(a) There is an element ¢ € G¢ = PL,(C) such that 'T'rt ¢ PL,(K).

(b) K contains F and 4 ®r K = M,(K).
Furthermore, I'g can be considered as a subgroup of 4*/F* (Theorem 5, Proposition
6;§12, §13).

We begin with some preliminaries; then we shall prove Theorem 1 (§5) which asserts
H\(T'r,px) = {0} (n = 0), where p, is the symmetric tensor representation of Gg of
degree 2n (see §3). This is a consequence of Eichler-Shimura’s isomorphism (see §4),
Kuga’s lemma (Lemma 10 of Chapter 1), and our remarks on cohomology groups (§1
§2). Now, Theorem 1 is basic for all our results (i)-(iv). In fact, (i) and (ii) are almost
direct consequences of H'('r, p») = {0} for n = 0 and » = 1 respectively; and (iii), (iv)
are results of our study of “deformation variety” of I'g in G¢, of which (ii) is the starting
point.

Finally, we remark that some of our results are valid also for more general dense
subgroups I'r of G satisfying some conditions (see Remark 1 in §7).
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The vanishing of H'(T'g, p,) and its consequences.

§1. In general, let 4 be an additive abelian group, and let p be a homomorphism of
an arbitrary abstract group I" into the group of all automorphisms of 4;

) p:T — Autd;  p(yy')a = p(y)p(y')a).

As usual, 1-cocycles are A-valued functions a(y) on I satisfying
a(yy’) = a(y) + p(v)a(y') (v.y' €T),

and 1-coboundaries are such 1-cocycles a(y) as can be written as a(y) = (1 — p(y))a with
some fixed a € A. We denote by H!(T', p) the 1-cohomology group, i.e., the quotient of
the group of all 1-cocycles by that of all 1-coboundaries. If I is a subgroup of I' and if
Po is the restriction of p to I'?, then we get a restriction homomorphism

@ ¢ H'\(T,p) > H'(T°, po).

Lemma 1. If for every y € T, p(T® N y~'T%) has no common fixed element # 0 of A,
then ¢ is injective. :

Proor. Let a(y) be a cocycle representing a class contained in the kernel of ¢. Then
we get a(yo) = (1 — p(yo))a (a € A) for all y, € I°. Puta’(y) = a(y) = (1 — p(y))a. Then
a'(y) is a 1-cocycle with respect to I" and p, and we have a (yo) Oforall yo €T Leté
be any element of I'. Then we have .

d (6 'ys) =d ") + p(6™)d (y) + p(67'y)d' (8)
= —p(67)a' () + p(67)d' () + p(6 ' y)d' (6).

Hence if y € T° N 6I'%! so that y and 67'yé are both contained in I'%, then we get
(p(y) — 1)a’(6) = 0. Since this holds for all y € I'° N 6T% !, we get a’(6) = 0 by our
assumption. Therefore, a’(6) = 0 for all 6 € T; hence we get a(y) = (1 - p(y))a for all
v € I. Therefore, a(y) is a coboundary. o

CoRroLLARY . Let I'® be a discrete subgroup of Gg = PSLy(R) such that the quotient
Gr/T? is of finite invariant volume, and let T be a group withT® c T c Gg, such that
y~'I% and T° are commensurable with each other for every y € T. Let j be a finite
dimensional non-trivial irreducible representation of Gr, and let p be its restriction to T..
Then the restriction homomorphism ¢ given by (2) is injective.

Proor. By Borel’s density theorem (see [1] and Supplement §1), ,plron,,-nro; is iﬁe-
ducible forall y e T. 0

§2. Returning to the general situation, let I'® be a subgroup of T, and assume now that
¥~ is commensurable with I’ for every y € I'. Let H(T, I'®) be the Hecke ring defined
w1th respect to the left I°-coset decomposition of I'. For each I'yI® e H(I',I?), let
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d(T°yI™®) be the number of left I'°-cosets contained in I'%yI?, and for each X € H(T,T?),
we define d(X) by linearity. Then

HIT,T% 5> X > d(X) € Z

isa homomorphlsm
Now we shall define an action p* of H(T,T) on H'(I', po). Take any double coset

I%yI° = ¢ 1%, (disjoint), and for each o € [P and i (1 < i < d), put y,0 = x5y; with
x;; € I, For any 1-cocycle a(o), put

' d
3) p"(Cya(@) = ) pyiMatxy).
‘ i=1 S

Then, as can be checked directly, this is also a 1-cocycle; and moreover, if a(o) is a
coboundary, it is also a coboundary. In fact, if a(o) = (1 — p(0))a, then (3) will be
equal to (1-p(c)) T2, p(y;Da. Moreover, if we take another left ['-coset decomposition
[0 = 37, 1% with y, = oyy; (0; € I?), and define p*/(I%yI®) with respect to this
decomposition, a simple straightforward computatlon (note that a(y“) = —p(y a(y)
(y € I)) shows that -

d
@ P T )a(o) = p"T°YTa(0) = (1 = p(@)) ), (i alo7).

i=1
Therefore, p*(I'°yI'®) defines an endomorphism of H'(I"°, p°), which is well-defined by
I'%yT? and does not depend on the choice of y;, - - - , y4. Define p*(X) for any X € H([,I')
by linearity. Thus, for each X € H(I,I'?), p*(X) is an element of End H'(I'°, po), the
endomorphism ring of H'(I'°, po).

ProrosiTioN 1. The notations being as above,

() p* is an anti-homomorphism of H(T, T'°) into End H'(I'°, po);
® PX-V)=p(Nop'(X) VX YeHT,T).
(ii) If a(c") is contained in o(H'(T, p)), then
(6) p*(X)a(O') = d(X)a(o) VX e H{T,T),

holds.

Proor. (i). This can be checked in a straightforward manner and hence is omitted.
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(ii) Let a(c’) be a cocycle on I'. Then,

d d
Py a(0) = ) p(yNatxy) = ) oy Halyioy;h)
i=1

i=1

d d d
=Y piNatm) + ) e erale) + D oty eriolaly;")
i=1 i=1 i=1 i
d d
= > pyaly) +d-a(@) - ) p(eIp(y; Yaly;)
i=1 Jj=1

d
=d-a(@) + (1 - p(@)) ), Py atys)
i=1

~d- a(o) = dT°yI%)a(0),

which proves (ii). m]

§3. Nowletp, (n=0,1,2,---)be the real symmetric tensor representation of Ggr =
PS L,(R) of degree 2n. Namely, put

™ i(’;:)=i(‘c’ 3)(’;) i(‘c’ f,)ecn, (:)GRZ.,

and put
i
® BN RS 3))[u : ]
pe o

Then p, is an absolutely irreducible representation of Gg in ¥, = R?"*!, In particular, po
is the trivial representation, and as can be easily checked, p; is equivalent to the adjoint
representation Ad of Gy in the Lie algebra gg = {X € M(R)|tr X = 0} of Gg;

® Gr 3 gr : X > (Adgr)X = g3 Xg.

§4. Let I'} be a discrete subgroup of Gg with compact quotient, let p,o (n =
0,1,2,---) be the restriction of p, to Fg, and let M,,,, be the vector space over R of
all holomorphic automorphic forms of weight 2»+ 2 with respect to I'y,. Then, by Eichler-
Shimura [12] [31], the following map : gives an R-linear isomorphism of M,,,, onto

Hl (r%’ p’l,O):

[7 faye®ar

z 2n-1
10y B> f) o alo) =Re [ T

?

f: : f(n)dr
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where z is an arbitrarily fixed point of $. Let I'r > I'y be a group contained in the com-
mensurability subgroup of I'} in Gg, and let p, be the anti-representation of H(I'r, I3) in
M,,+, defined by linearity and by '

, ,
11) Dsni2 3 f(2) = PuTRATR)S@) = Z frz)ez + dy ™ € My,
i=1

a;

where IS = Y4, I%y: (disjoint), and y; = i(c- Ic);) (1 < i < d). Then, as can

be checked directly, the anti-representations p;, of H(I'r,I'}) in H' (TS, ps0), and 5, of
H([TR, 1"%) in M,,,, are equivalent by the isomorphism ¢; i.e., we have

(12) pX) ot=10p,(X) VX e HTr,TR),
cf. [31] §8.

§5. Now we are in the situation to prove the following Theorem.

THEOREM 1. Let l"% be a discrete subgroup of Gr = PS L,(R) with compact quotient,
and let Tg be a dense subgroup of Gr containing T} such that yg'Tyyr and Ty are com-
mensurable with each other for all yp € Tr. Let p, (n = 0,1,2,---) be as in §3, and
identify pulry with p,. Then we have

(13) H'(Tr,px) =10} (n=1,2,3,---).

Moreover, if Tr does not contain a normal subgroup of infinite index containing I3, then
we also have

(14) H'(Tr, po) = {0}.

ProoF. The case n > 0. Let p, ¢ be the restriction of p, to I'°R. Then the restriction ho-
momorphism ¢ of H'(T'g, p,) into H' ('}, pno) is injective. In fact, since p, is irreducible
and # 1, we can apply the Corollary of Lemma 1. So, we shall consider H'(T'g, p»)
as a subspace of H'(I'}, o»0). Now we have an anti-representation pj, of H(I'r,I'y) in
HY(T%, pno), and by Proposition 1, H'(T'r, p,) is contained in the kernel of p};(X) — d(X) - I
for any X € H(gr, l"%). Let Hy,--- , Hy be the set of all subgroups of Gr containing
I} as a subgroup of finite index. By a well-known theorem on fuchsian groups, such
subgroups are finite in number. Since (T : I'}) = co, we can take yr € I'r that is not
contained in any H; (1 < i < N). Then I‘°R and ygr generate a subgroup of I'r which
contains I'} as a subgroup of infinite index; hence I'} and yg generate a dense subgroup!
of Gg. Therefore, by Lemma 10 of Chapter 1, if A is an eigenvalue of p,(TRyrI[R) in
Myns2, then A # d([RyRIR). Therefore by (12), we see immediately that if A is an eigen-
value of pj(ISyrI}) in H'(T%, pno), then A # d(Tyrl). This shows that the kernel of
P yrIR) — AT yrIY) is trivial, and hence H'(T'r, p») = {0}.

1See Supplement §1.
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The case n = 0. The above proof of the injectivity of the restriction map ¢ does not
apply to this case, but the rest of the proof applies to this case also. Therefore, itis enough
to prove the injectivity of ¢.

Since po = I, H'(T'r, po) resp. H'(T'2, poo) can be ldentlﬁed with Hom(FR, R) resp
Hom(I'}, R). Let @ € Hom(T'g, R) with alry = 0. Let H be the kernel of . Then Hisa
normal subgroup of I'y containing I%, and if @ # 0, I'n/H must be infinite. Therefore by
our assumption, we get & = 0. Hence g is injective. 0

CoroLLARY . Let I be a discrete subgroup of G = Gg x G, with compact quotient and
with dense images of projections I'r, T’y in Ggr, G, respectively. Then we have :
(15) H'Trp) =10} (n=0,1,2,-).

ProOF. PutI® = I'N(GrxPS Ly(0,)). ThenTY is maximal in I'y (Corollary of Lemma
11 in Chapter 1), and obviously is not normal in I'y. Therefore, all conditions in Theorem
1 are satisfied. o

§6. Consequence of H'(I'r, o) = {0}. Let I be as in the above Corollary, and let
[I",T'] be the commutator subgroup. Then, since I' is finitely generated (see §25, Chapter
2), the quotient I'/ [T, I'] is a finitely generated abelian group, and hence is isomorphic to
a direct product of a finite group and a free abelian group of finite rank. But since the
above corollary for n = 0 asserts that :

Hom(T', R) = Hom(I', R) = H'(T'r, po) = {0},

we see immediately that I'/ [T, I'] must be finite.

As an exercise, let us give some estimation of the group index (T : [l" I']) in the case
where I is torsion-free. For this purpose, it is more convenient to consider the homology
group than the cohomology group. Thus let

=T'N(Gr x PSLy(0)),

and let g (> 2) be the genus of $/T%. Put A4 = I'%/[T, 1] and consider it as an additive
group. Then 4 = Z29, and we have an anti-representation pj, of H(I', ') on

H'\(°,Z) = Hom(I'°, Z) = Hom(4, Z)
(see §2)? Its dual R is a representation of H(T,I'®) on 4 defined by

) d
(16) | RIYo = [ [ =
i=1

where o € I'?,
(@) o is the [I‘° I'%-coset containing o,
(i) I%I° = 37, I'; (disjoint), and y,0 = x;;y; with x;; e I (1 < i < d).

2 Since (T, I'®) is commutative (see Chapter 1, § 10), all anti-representations of H(I', T) are represen-
tations.



CHAPTER 3. 1. SOME PROPERTIES OF T'. 143

Moreover, it can be immediately checked that
an (RETOYT®) - dT°yT*)4 < [T,T] N /[0, 1]
holds for any y € I. Therefore, the ngoup index |

| (C: [T = (°: [,T]NT)

divides det{R(I°yI®) — d(I%yI?)} for any y € I'. Now let p, be the anti-representation
of H(I,T%) = H(Twr,I}) in M, defined by (11). Then by the identification M, =g
Hom(4®zR, R), py is equivalent to p; ®2 R. Hence the above determinant is also equal to
det{py(T%yI®) — d(T%yT?)}. Now consider I, as a vector space over C. Then py may also
be regarded as a g-dimensional complex anti-representation of H(I',I°) in M;. Call it 5§.
Then by Petersson, pf is a direct sum of one-dimensional representations y;, - - - , Xg;> and
xi(X) (1 <i < g) are real numbers for all X € H(I",I'®) (see Chapter 1, §9). Therefore,

= det{pf(T%T?) - d(%yT))2.

Put %I =T (see Chapter 1, §10). Then (18) will be equal to

19) det{pg (") - ¢* — g¥°. |
But'ﬁ(‘f is nothing but p = p, of Chapter 1. Therefore by (54) of Chapter 1, we finally get
0 det(R(T") - d(T) = P(1)?, |

where P(u) = []7_,(1 — mau)(1 — mju) is the main numerator of {r(u). So, we have proved
the following.

TueoreM 2. Let I be a discrete subgroup of G = Gr X G, with compact quotient
and with dense images of projections I'r,T', in Gr, G, respectively. Then the commutator
quotient group '/ [I',T'] is finite, and if T is moreover torsion-free, its group order is a
divisor of P(1)?, where

g
P(u) = ﬂ(l — ma)(1 — mu)
i=1

is the main numerator of {r(d) (see Chapter 1, §8 (20))3

§7. Consequence of H'(I'g,p;) = {0}. Let " be as in Theorem 2 (but not assumed
to be torsion-free). Then, since p; is equivalent to the adjoint representation Ad of Gy in
gr (see §3 (9)), the corollary of Theorem 1 for » = 1 shows that H'(T'r, Ad) = {0}. Put
Gc = PLy(C) = PSLy(C), let gc = gr ® C be its Lie algebra, and let Ad¢ be the adjoint
representation of G¢ in g¢c. Denote its restriction to I'y also by Adc. Then it follows
immediately from the equality H'(T'r, Ad) = {0} that

1) H'(Tr, Adc) = {0).
Now, by A. Weil (A. Weil [37]), we have the following:

3By Chapter 1, Theorem 2, we have 7, 7] # 1.



144

Lemma 2 (A. Weil). Let X be a real Lie group, let A be a finitely generated subgroup
of X, and let Ad be the adjoint representation of X (or its restriction to A). Then, if
HY(A, Ad) = {0}, A has no non-trivial deformation in X.

By applying this to X = G¢ and A = I'g, we get the following theorem by (21):

TueoreM 3. Let T be as in Theorem 2 (but not necessarily torsion-free). Then Ty has
no non-trivial deformation in G¢c = PS L(C).

ReMARK 1. Since we used only Theorem 1 (for » = 1) and Lemma 2 to get Theorem
3, it is clear that the triviality of deformation of I'g in G¢ is valid for any subgroup I'y of
Gr satisfying the following three conditions.

(i) Tr contains a discrete subgroup I'y of Gg with compact quotient Gg/T'S, and I'},
¥ T} YR are commensurable with each other for every yr € I'r.
(ii)* 'R is dense in Gg.
(iii) Iy is finitely generated.

ReMARk 2. Theorem 3 is slightly stronger than the Corollary of Lemma 8 in Chapter
2, which asserts the triviality of deformation of I'g in Gr only. While the proof of Lemma
8 and its corollary (Chapter 2) is quite elementary with the elliptic elements of I'r playing
the main role, the proof of Theorem 3 is slightly more sophisticated, based on the inequal-
ity (89) (Kuga) of Chapter 1 for automorphic forms of weight 4, Borel’s density theorem
for fuchsian groups, Eichler-Shimura’s isomorphism (10), and Weil’s Lemma 2. While
Lemma 8 was necessary and sufficient for our purpose in Chapter 2, what we now need is
our Theorem 3, the triviality of deformation of I'g in Gc.

Applications of Theorem 3 ; the deformation variety.

§8. As before and throughout the following, let I' be a discrete subgroup of G =
Gr X G, with compact quotient and with dense images of projections I'g, I, in Gg, G,
respectively. Let yy, - - - ,y, be a set of gencrators of T, and let Ry(yy,--- ,v,) = I (A € A)
be a system of fundamental relations between y, - - - ,y,. Let Gc = PL,(C) be identified
with a Zariski open subspace

{(xll . le . x21 . x22)|x11x22 _x12x21 #+ 0}

of the projective space P2. Put G, = G¢ X --- x G¢ (n-copies), and let ¥ = ¥; be an
algebraic subset of G, formed of all points (x;, - - - , x,) € G¢ satisfying Ry(xy, -+ , x,) = 1
for all 2 € A. Then it is clear that for any homomorphism (as abstract groups) ¢ of I" into
Gc, (¢(71), -+ - ,¢(yn)) lies on V; and conversely, if (x;,--- , x,) is on V, then by putting
e(y1) = x1,-- ,(yn) = x,, Wwe get a homomorphism ¢ of T into G¢. In this manner,
points on ¥ are in one-to-one correspondence with homomorphisms (as abstract groups)

*This is equivalent to (T'r : %) = co (see Supplement §1).
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of I into G¢. Therefore, we shall identify them and call V the deformation variety of T in
Gec.

For any element x € G¢, we put x = ((x¥)) (1 < i,j < 2) with projective coor-
dinates x”. Then for each 1 € A, (Ri(x1,: -+ ,%s)”)) € Gc c P? is well-defined, and
Ry(x1,--+ ,x,)Y are (multi-homogeneous) polynomials of x;cj with rational integral coeffi-
cients. Therefore, ¥ is a bunch of algebraic varieties in G¢, and it is normally algebraic
over Q. Let ¢r be the projection T — I'g ¢ Gr € G, and let ¥ be an irreducible
component of ¥V containing @gr. Then, since ¥ is normally algebraic over Q, ¥; is defined
over Q, i.e., the algebraic closure of Q. On the other hand, G¢ acts on V as

22) Geat:VoprInt(f)opel,

where ¢ is a homomorphism of T into G¢ considered as a point on ¥, and Int(¢) denotes
the inner automorphism x - ! xt of G¢. Since ¢r(I') = I'r is dense in Gy, its centralizer
in Gc is {1}; hence the stabilizer of pr € V; in Gc is trivial. Now, by Theorem 3, there
exists a neighborhood U of ¢g in G7. such that U N V' is contained in the G¢-orbit of ¢g.
Therefore, ¥ denoting the Gc-orbit of ¢g, V; is obviously irreducible, dim ¥ = 3, and
UNnV =Un V. Therefore ¥, is the unique irreducible component of ¥ containing ¢g,
dim ¥, = 3, and ¥ is a Zariski dense algebraic subset of ¥,. Before going into a detailed
study of ¥, we shall give some simple application of this to the structure of T".

89. Subgroups of I with finite indices. In general, an abstract group A is called
residually finite if the intersection of all subgroups of A with finite indices is {1}, or equiv-
alently, if the intersection of all normal subgroups of A with finite indices is {1}.

ThEOREM 4. Let T be a discrete subgroup of G = Gr % G, with compact quotient and
with dense images of projections in Gr and G,. Then

(i) T is residually finite.
(ii) T contains a subgroup with finite index which has no elements # 1 of finite order.

Proor. Since V; is Zariski dense in ¥, and since V) is defined over Q, there are in-
finitely many Q-rational points on V;. Let (ay,--- ,a,) be such a point, and let K be an
algebraic number field such that all g; (1 < i < n) are K-rational. Let ¢ be the homomor-
phism of I" into G¢ defined by ¢(y;) = a; (1 < i < n). Then, since (ay,--- , ay) lies on ¥,
¢ is of the form ¢ = Int(f) o g with some ¢ € G¢. In particular, ¢ is injective. Therefore,
I is isomorphic to a subgroup ¢(I') of PLy(K). Put a; = ((a;;j )) with a;j € K (¥i, j, k), and
let [ be a prime ideal of K such that all @} and all (a}'a? — a}’a}')™" are l-integral. Now
denote by O, the I-adic completion of the ring of integers of K. Then, since ay,--- ,ay,
generate (T), this shows that ¢(I") can be considered as a subgroup of PL,(Oy); therefore,

(23) I' = a subgroup of PL(Oy).

Now the residual finiteness of " follows immediately from that of PL,(Oy) (take congru-
ence subgroups!). This settles (i). Finally, it is well-known (and easy to prove) that O

Sgan is injective (see Chapter 1, §2, Proposition 1).
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being the ring of l-adic integers of any [-adic number field, there exists some » such that
the congruence subgroup

{x € SLy(O)Ix = £1 (mod M)}/ + 1
is torsion-free. This settles (ii). 0

RemARK . In the proof of Theorem 4, we only used the fact that small deformation
of I'r in G is injective. This is, of course, a consequence of Theorem 3, but it is much
weaker than Theorem 3 and can be proved much more easily.

Study of Vy; the field F = Q((tr yr)2lyr € ).

§10.

ProrosrrioN 2. The notations being as in §8, we have Vy = V.

Proor. We have shown in §8 that ¥ is Zariski dense in V. Therefore, it is enough to
prove that ¥} is closed in G¢.. For each 7 € G, put

24) X =(ymt, - lyurd) € Ge.

Then Vj is the set of all x, with # € G¢, and the map ¢ — x, is one-to-one (see §8).
Now let C[T'r] be the subalgebra of M,(C) generated by y; r,--- ,¥,r over C. Then
C[I'r] > +Ir; hence C[I'g] > SL,(R); hence we get C[I'r] = M;(C). In particular,
(8 (1)) and ((1) g) are contained in C[I'r]. Put 7 = ((t;;)) € PSLy(C) = G, and suppose
that £y g, - - - , !y, rt are contained in a given compact subset of G¢. Then

S0 1y, [+ 2 L0 0y [+ -2
; (o o)"(—él 5?) and ! (1 o)"(zfl )

must also be contained in some compact subset of M,(C); hence all ;; (1 < i, j < 2) must
be contained in some compact subset of C. Therefore, the intersection of Vy with any
given compact subset of G¢, is contained in the image (by ¢ — x,) of some compact subset
of G¢. But this implies that ¥ is closed in G, since the map ¢ — x, is continuous and
G¢ is locally compact. m]

CoRroLLARY . Vj is the connected component of V containing ¢g.

Proor. Since Vj is irreducible, it is connected. Therefore, it is enough to show that if
V1 is any irreducible component of ¥ with ¥, N V; # ¢, then V; = V;. Let V; be such
an irreducible component, and let ¢ € ¥, N ¥;. Then since V, = Vs, there is an element
t € G, such that g = Int(?) o ¢. But then, ¢R is contained in Int(f) o ¥;, which is also an
irreducible component of V. But we know that ¥} is the unique irreducible component of
V containing ¢g. Therefore, Int(f) o ¥; = V;; hence ¥, = Int(t" )V, = V. ]
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§11. A field of definition of V. Let F(;) be the set of all elements yr € I'g which are
elliptic (i.e., | tr yr| < 2) and of infinite order. Put

(25) F = Q((tryn)’lyr € Tr) > Fo = Q((tryr)’lyr € TY).
ProrosrTion 3. Let k (c C) be a field of definition of V. Then F C k.

Proor. Let o be any automorphism of C which is trivial on k. Then VJ = V;. There-
fore, the homomorphism I' 5 y - ¥4 € G is conjugate (in G¢) to gr. Hence there exists
t € Gc¢ such that yg = gt for all yg € T'r. By taking traces of both sides, which are
well-defined up to the signs, we get + tr(yg) = +tryg; hence +tr(yr)” = *tryg for all
yr € I'r. Therefore, (tr yr)? is o-invariant for any o € Aut,(C). Therefore, (tryg)? € k
for any yg € I'r, which implies F C k. o

CoroLLARY . The fields F, F are algebraic number fields.

Proor. Since ¥V} is defined over 6 (see §8), we can take k to be an algebraic number
field. ‘ m]

ProrosiTioN 4. ¥V, is defined over F,.

Proor. To begin with, we shall prove that Fg) generates I'r. By a remark given in
Chapter 1 (§3), the set

S = {tryr | yr : of finite order}

is finite. Therefore, if we put
X={xeGgr||trx]<2,trx¢S},

then X is an open subset of Gy satisfying X! = XandTx N X =T g). Moreover, since
Gr is connected, X generates Gy (as abstract group). Now let yr be an arbitrary element
of I'r, and put ygr = x;---x, withx; € X (1 <i<n). Foreachi(1 <i<n-1),Ilet

yg) € I'r be sufficiently near x;. Then yﬁ’ elRNX = I"g) for1 <7< n-1,and moreover

('yg) ‘.- ‘}’}(:_1))-]’)’11 € I'r is sufficiently near x,; hence it is contained inI'g N X = 1"(1?.
Therefore, we have yg = y{- --yg') with Y € I“(lf) forall i (1 < i < n). Hence I'Y
generates ['g.

Now, let o~ be an automorphism of C which is trivial on F,. Since ¥, can be considered
as the set of all homomorphisms ¢, of I'g into G¢ given by ¢,(yr) = £ 'yrt (with ¢ € G¢),
it is clear that ¥y can be considered as the set of all homomorphisms ¢7 of I'g into G¢
given by ¢ (yr) = @:(yr)” = (1) '3 .

Let ¢ and ¢’ be, at the moment, arbitrary elements of ¥, and V{ respectively, and
identify G¢ = PL,(C) with PS L,(C). Then tr o(yr), tr ¢’(yr) € R are well-defined up to

the signs, and since ¢ is trivial on F;y, we have

|yl = (tryr)°| = [tryrl  forany yg € TP

Therefore, we have |tr o'(yr)l = |tro(yr)| for any yr € I'g). Now, fix any ér € l"(,f),
and let +(g, £7!) be the eigenvalues of g. Then, since 0% and Or have the same traces,
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+(g, &) are also the eigenvalues of 53. Therefore, there exist 7, # € G¢ such that

- - e 0
ropt="¢ ‘6;t'=:t(0 6_1).

Therefore, by putting ¢ = ¢, € Vp and ¢’ = ¢p:6_, € Vg, we get p(6r) = ¢'(6r) =

+ ((E) 59‘)' Now, let yg be any element of 'Y, and put

@(yR) = i(; Z)),¢'(Yn)= i(; 1)

with x + w = X’ + w’. Take an integer n # 0 such that £” is sufficiently near 1. Then &3
is sufficiently near 1; hence yg - 8% is also contained in l"]:) (since I“(;) =IrRNXand X
is open). Therefore, | trp(yrdg)l = |tr¢’(yrdg)l; hence xe" + we™ = +(x'e” + w'e™). If
x+w=x"+uw # 0and if £ is still nearer 1, then x&” + we™, x’&” + w'e™" are sufficiently
near x + w = x’ + w’ # 0; therefore, we have x&” + we™ = x’&" + w’e™. If on the other

hand, x + w = ¥’ + w’ = 0, then we can replace (ch g) ) by —(ch Z) ) if necessary and

assume that x&” + we™ = x’'&" + w'e™. Now, by the two equations x + w = x’ + w’ and
xe"+we =x'g"+we™, we getx = x’ and w = w'. Therefore, if yr € 1"(1:), we can put

_.[* Y , _ x y
e(yr) = i(z w),tp (yr) = i(z, w)-
Now fix another element &}, € I'Y such that
,n_ . [a b R A T
w(0g) = :t(c d)’ and ¢’(6g) = i(c’ d)wzth ad # 1.
It is clear that such &} exists, since I'(l:) = I'r N X and X is open in Gr. Since their

determinants are 1, we have bc, b’'c’ # 0. Hence we have (Z Z) = p! (:1, Z) p, with

p= (l:) g), hence if we put ¢” = Int(p) o ¢’ € V', we get
e 0
ﬂ:(o s") and

@"(0y) = :(‘; Z),ad#l.

¢(dr) ¢"(6R)

(26)

#(0g)

€

(Note that p commutes with (O

8(31).) Now we shall prove that ¢ = ¢”. First, let yg €
l'(Re), and put

¢(yr) = i(: Z) ¢"(yr) = i(; lyu)
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For each integer n # 0, put (Z Z) = (‘CI” z"), and take 7 such that this matrix is suffi-

ciently near 1 (recall that & is in I"Re) and hence this is possible). Then 63" -yr is contained
in 1"(;). Therefore, if the signs of matrices are suitably chosen, the two matrices ¢(6g"Yr)
and ¢’(63"yr) must have the common diagonal components. Thus, by applying the sim-

w
x = w = 0 and if necessary), we get a,x + b,z = a,x + b,z and ¢,y + d,w = ¢,y + dw;
hence

@7) biz-Z)=ciy-y) =0.

But we have b,c, # 0. In fact, since the centralizer of 8 in Gy is isomorphic to R/Z, it is
topologically generated by any one power 83" (n # 0) of 6. Moreover, ¢ is induced by

ilar arguments as before on the signs of matrices (and by changing the sign of (:, Y ) if

. : : . . . b
an inner automorphism of G¢ and hence is continuous. Therefore, if » # 0, then (Z d)

‘Z" Z") Therefore, b, = 0 (n # 0) implies b = 0,
which is a contradiction to ad # 1. Therefore, we get b, # 0, and in the same manner we
get ¢, # 0. Therefore by (27), we get z = 2z’ and y = y’. Therefore, ¢(yr) = ¢”(yr) holds
forall yg € I‘ﬁf). But since I‘(lf) generates I'r, ¢(yr) = ¢”(yr) holds for all yg € I'y; hence
we get ¢ = ¢”. Since ¢ € Vj and ¢” € VY, this implies Vo N V§ # ¢. But Vo, V] are
Gc-orbits of any one element of each. Therefore Vg = Vp. Therefore, Vg = ¥, holds for
all oo € Aut(C) which are trivial on Fy. Hence V) is defined over Fj. 0

can be approximated by the powers of (

COROLLARY . We have F = Fy; and it is the smallest field of definition of V.

Proor. Since ¥ is defined over F, (Proposition 4), Proposition 3 shows Fy O F. But
Fy c F. Therefore, Fy = F. By Proposition 3, if k is a field of definition of V¥, then
k > F = F,. Therefore, Fy is the smallest field of definition of V. m}

§12. V¥, as a principal homogeneous space. Let & be a field of definition of V.
Then, since G¢ = PL,(C) acts on ¥, in a simply transitive manner and since its action is
defined over k, we can regard ¥ as a principal homogeneous space of PL, defined over £.
Let A, be the quaternion algebra over k which corresponds to this principal homogeneous
space® Then, for any field K > k, ¥, has a K-rational point if and only if 4,@¢K = M(K).
In particular, let k = F (= Fy), and put 4 = Ar. Then 4 is a quaternion algebra over F,
and 4; = A ® k holds for any field of definition k for V, (i.e., for any k > F). We shall
call this A4 the quaternion algebra attached to T. Note that if X is a subfield of C such that
V, has a K-rational point, then K contains F. In fact, that implies t Tt ¢ PLy(K) for
some ¢ € G¢. Therefore, if yr € I'r, we can put ¢ 'yrt = p - ((a;;)) with p € C*, Va;; € K.

6 Cf. e.g. [34] for the one-to-one correspondence; principal homogeneous space of PL, over k <> central
simple algebra of degree n? over k.
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Taking (trace)?/determinant of both sides, we get

(tryr)* = (tr((a,)))’/ det((ayy)) € K.

Therefore, (tryr)* € K holds for all yg € I'y; hence F c K. Therefore, for any subfield K
of C, ¥, has a K-rational point if and only if K > F and A®r K = M,(K). By summarizing
our results in §8, §10 ~ §12, we get the following Theorem.

TheorREM 5. Let " be a discrete subgroup of G = Ggr X G, with compact quotient
and with dense projection images I'g,I'y in Gr, G, respectively. Let V be the deformation
variety of ' in Gc = PLy(C) (see §8), and let Vy, be an irreducible component of V,
containing the projection map ¢r : I' — I'n. Then V, is unique and coincides with
the G¢-orbit of pr. Moreover, if we put F = Q((tr yr)?lyr € I'r), then F is an algebraic
number field, and it is the smallest field of definition of V. Finally, let A be the quaternion
algebra over F attached to T (see §12). Then for any subfield K of C, V, has K-rational
point (i.e., I'r can be realized in PLy(K)) ifand only if K 5 F and A ®¢ K = M,(K).

Examples will be given in Chapter 4, Part 1.

§13. More about F and 4. Throughout the following, we shall denote by I'* the
intersection of all normal subgroups I'" of I whose quotients I'/I” are finite and of type
(2,2,---,2). ThenI"" contains the commutator subgroup [I',I'] of ', and by Theorem 2,
[[,T] is of finite index in . Therefore, I'* is also of finite index in T.

ProposITION 5. Let T be as in Theorem 5, and let I be a subgroup of T of finite index.
Put F = Q((tryr)*| yr € Tr), F' = Q((try)*| v € TR), and let A, A’ be the quaternion
algebras attached to T', T respectively. Then F = F’, and A is isomorphic to A’ over F.
Moreover, I'* being as above, we have F = Q(tr v | yg € T'g) for all subgroups " of T*
of finite indices.

Proor. It is clear that F c F. Let V; (resp.V;) be the connected component of the
deformation variety of T (resp. I") in G¢ containing the projection map pg : I' — I'g
(resp. @i : I" — I'y). We shall show that if X is a subfield of C, then ¥} has a K-rational
point if and only if V has a K-rational point. The “only if ” part is trivial. To show
the “if” part, suppose that 7 has a K-rational point. Then there exists # € G¢ such that
1" 'Txt € PLy(K). But since I" is finitely generated, the intersection £ 'T¢ N PS Ly(K) is
of finite index in t"l";‘t hence there is a normal subgroup f“R of I'r of finite index such
that £ 'I'rt c PSL,(K). Put AR =1 lI‘Rt Ag = r'I'gt. Since Ty is dense in Gy, TR spans
M;,(C) over C; hence so does AR But AR c PSL,;(K). Therefore AR spans M;(K) over
K. Now let 6g € Ag. Then &g "ARdr = Ag; hence 63 2 My(K)or = My(K). Therefore,
Or € PL,(K); hence AR C PLz(K), hence ¥, has a K-rational point. Therefore, ¥, has a
K-rational point if and only if ¥ has a K-rational point; hence

(28) KSF, A@r K= MyK) o K> F', 4 @ K = My(K).

But in general, if B is a quaternion algebra over an algebraic number field %, then there are
infinitely many quadratic extensions / of k which split B; i.e., B ®; ] = My(I). Moreover,
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if B’ is another quaternion algebra over k which is not isomorphic to B over k, then there
exists / which splits one of B or B’ but not the other (however, there may not exist / which
splits the given B and which does not split B). Now, these show that F = F’ and that
A = A’ over F. In fact, by our first remark, the intersection of all X containing F' (resp.
F") and splitting 4 (resp. 4’) is F (resp.F’). Therefore, (28) implies F = F’. Also, by our
second remark, we see immediately that (28) implies 4 = A4’ over F.

Finally, let K, K, be two distinct quadratic extensions of F which split 4, so that ¥,
has K;-rational points (i = 1,2). Take #;,, € G¢ such that #;!Trt; ¢ PL,(K}) (i = 1,2).
Then, since I'r N%;,PS L,(K;)t;! are normal subgroups of I'r whose quotients are finite and
of (2,2,---,2) type, they contain Iy. Hence #'Tg#; ¢ PSLy(K;) (i = 1,2). Therefore,
if yy € Ty, then we have tryg, € K; N K; = F. Therefore, if I'y is a subgroup of
I'y of finite index, then on one hand, we have Q(trygzlyg € I'y) C F, and on the other
hand (by what we have shown already), Q((tryg)*lygr € I'r) = F. Therefore, we get
Q(tryglyg €Tg) = F for all suchI". o

Remark 1. The field Q(tr yrlyr € T'r) is a finite (2, - - - , 2) type extension of F, and in
general, it does not coincide with F.

PropPosITION 6. Let I be as in Theorem 5, and let T* be the subgroup of T defined at the
beginning of this section. Let A* = Q[I'y] be the subalgebra of M(R) generated over Q by
Ty Then its center consists of all scalar matrices a - I witha € F = Q((tr yr)*lyr € TR),
and A* is isomorphic over F to the quaternion algebra A attached to T. Moreover, if
(4*)*/F* is considered as a subgroup of PL,(R), then Ty is contained in (4*)* [F*.

Proor. Remark that, by Proposition 5, we have F = Q(tryglyg € I'n)- Let F* be the
center of A*. Then, since
A3+ = (ryR) I
for all y € T'y, F* contains all scalar matrices a - J with a € F. On the other hand, since
Iy, is dense in Gy, elements of F* must be scalar matrices. So, leta* -1 € F*. Then itis
a linear combination over Q of elements of I'y. Therefore, its trace 24" is contained in F;
hence a* € F. Therefore F* = {a- Ila € F}. Now let yg € I'n. Then y3 € I'y; hence

(tryr)yr = v +1 € QIR] = 4"
Therefore if trygr # 0, then yg is contained in the subgroup (4*)*/F* of PL,(R) (this
does not mean that yg is contained in (4*)*/F* c GL,(R)/F*). But since I'r is dense
in Gg and the set {gr € Grltrgr # 0} is open in Gy, it is clear that I'g is generated by
elements with non-vanishing traces. Therefore we get I'r C (4*)*/F* c PLy(R).

Finally, we shall show that 4* is isomorphic to 4 over F. For this purpose, let K
be any field with K > F and 4 ®r K = M,(K). Then there exists ¢ € G¢ such that
"'t € PLy(K). Since TrNtPS L,(K)r™! is a normal subgroup of I'y with finite (2, - - ,2)
type quotient, it contains Iy; hence 'yt ¢ PSLy(K). Therefore, x > ™' xt gives an
isomorphism over F of 4* into M;(K). Now Iy, contains four elements that are linearly
independent over R, and since I'y ¢ PS Ly(R), they are also linearly independent over C.
Therefore, £ 'T'y¢ contains four elements which are linearly independent over K. There-
fore, t714*t ® K = My(K); hence 4* ®z K = M,(K) over F. In particular, 4* is a
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quaternion algebra over F. Conversely, if X is a field with K > F and 4* ®r K = M;(K),
then there is an isomorphism ¢ of 4* into M,(K) over F; and since  is trivial on the center
F, it is induced by some inner automorphism Int(#) of G¢; hence 1 !4*t ¢ My(K). Now
since I'g € (4*)*/F* c PLy(R), we get 1 'I'rt ¢ PLy(K); hence K splits 4. Therefore, A*

is isomorphic to 4 over F. ‘ r m]
ReMARrk 2. In general, Q[I'r] will not give 4. It gives I — | @2
A®r Q(tryrlyr € I'n)- @-2)
~ CoroLLARY . The notations being as in Proposition 6, Al — r
let T" be a subgroup of T of finite index. Then Q[I'R] =
Q[I'z]. Moreover, Q[I'x] = Q[IR] holds for all sub- ’
groups T of T* of finite indices. e | ¢

Proor. Since I’ /T” NT™* is of type (2,---,2), I’" is contained in I’ N I'*; hence in I'*.
Therefore, Q[I";] c Q[I'y]. But their centers are Q((tr y4)?ly} € I'y) and Q((tr yr)?lyr €
I'r) respectively, and they are equal by Proposition 5. Hence if we denote the common
center by F, we have

F c Q[I'g] € Q[Ig] and [Q[I'R] : F]1=[Q[["R]: F]=4.
Therefore, Q[I'z] = Q[I"R].

Now, we have Q"] ¢ Q[T3] ¢ Q[T}], and Q3] = Q[Iy); hence Q[Iy] =
QIIR] =

§14. A remark on F. The following simple remark is needed in Chapter 2, §36.
Let F, Fy be as in §11. We have shown that F = F, and that it is an algebraic number
field. Here, we note that F = F, holds without the compactness assumption for the
quotient G/T". (We do not even need the finiteness of volume of G/I'.) In fact, in our
proof of Proposition 4, we have proved that if o € Autg, C, then the homomorphism
I'r 3 yr = Vg € Gc is induced by an inner automorphism of G¢,; and the only properties
of I'r we used in the proof 7 of this assertion are

(i) T'r is dense in Gg, and

(ii) the set S = {trygr|yr is of finite order} is finite.
Since on one hand, these properties are satisfied by the projection I'r (to Gr) of any
discrete subgroup I' of G = Gr X G, having a dense image of projection in each component
of G (see Chapter 1, §3 for the property (ii)), and on the other hand, the above italicized
assertion implies F' = F at once, it follows that:

IfT is a discrete subgroup of G = Gr X G, having a dense image of projection in each
component of G, then F = F, holds for such aT.

However, we do not know at present whether F = F, is an algebraic number field in
such a general case.

TWe made use of the language of deformation varieties, but as can be immediately seen, it has nothing
to do with the proof.
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